GENERATING GROUPS OF CERTAIN SOLUBLE VARIETIES

Dedicated to the memory of Hanna Neumann

NARAIN GUPTA and FRANK LEVIN

(Received 21 June 1972, revised 20 December 1972)

Communicated by M. F. Newman

1. Introduction

Any variety of groups is generated by its free group of countably infinite rank. A problem that appears in various forms in Hanna Neumann's book [7] (see, for intance, sections 2.4, 2.5, 3.5, 3.6) is that of determining if a given variety \mathfrak{V} can be generated by $F_k(\mathfrak{V})$, one of its free groups of finite rank; and if so, if $F_n(\mathfrak{V})$ is residually a k-generator group for all $n \ge k$. (Here, as in the sequel, all unexplained notation follows [7].)

To any variety \mathfrak{V} generated by a finitely generated group one can associate the number $d(\mathfrak{V})$, the least positive integer such that \mathfrak{V} is generated by its free group of rank $d(\mathfrak{V})$. For example, for the variety \mathfrak{O} of all groups, $d(\mathfrak{O}) = 2$ (in fact every free group is residually free of rank 2 [8]); for \mathfrak{A} , the variety of abelian groups, $d(\mathfrak{A}) = 1$ and $d(\mathfrak{A}') = 2$ ($l \ge 2$) ([7] 16.35 and 25.34); for \mathfrak{R}_c , the variety of nilpotent groups of class at most c, $d(\mathfrak{N}_c) = c - 1$ ($c \ge 3$)([6],[9]); and more generally for $\mathfrak{V} \le \mathfrak{N}_c$, $d(\mathfrak{N}) \le c$ ([7] 35.12). Further examples may be found in [7] where, in addition, for two varieties \mathfrak{U} and \mathfrak{V} , the dependence of $d(\mathfrak{U}\mathfrak{V})$ on $d(\mathfrak{U})$ and $d(\mathfrak{V})$ is discussed. Also, Baumslag [2] has shown that for arbitrary \mathfrak{U} , the non-cyclic free groups of $\mathfrak{U}\mathfrak{A}$ are residually free of rank 2 so that, in particular, $d(\mathfrak{U}\mathfrak{A}) \le 2$ (cf. [7] 25.33).

Corresponding results for $[\mathfrak{U}, \mathfrak{V}]$ are more isolated even for $\mathfrak{V} = \mathfrak{E}$, especially since $[\mathfrak{U}, \mathfrak{E}]$ is indecomposable for any $\mathfrak{U} \neq \mathfrak{O}$ ([7] 24.32). In the present paper we shall consider such problems for $\mathfrak{M}_{(1)} = [\mathfrak{U}^2, \mathfrak{E}]$, the variety of centre-bymetabelian groups; and more generally for $\mathfrak{M}_{(c)}$, defined inductively by $\mathfrak{M}_{(c)}$ $= [\mathfrak{M}_{(c-1)}, \mathfrak{E}](c \geq 2)$. In addition, we obtain information regarding the ascending chains

(1)
$$\operatorname{Var} F_2(\mathfrak{M}_{(c)}) \leq \operatorname{Var} F_3(\mathfrak{M}_{(c)}) \leq \cdots$$

Research supported by grants from N. R. C. and N. S. F. respectively.

(see [7] Section 1.6 for a general discussion of such chains).

Our results for c = 1, 2 rely heavily on a 3×3 matrix representation of $F_{\infty}(\mathfrak{M}_{(1)})$ found by Gupta [4] and a corresponding 4×4 matrix representation of $F_{\infty}(\mathfrak{M}_{(2)})$ (Section 4). These representations are generalizations of the well-known faithful 2×2 matrix representation of $F_{\infty}(\mathfrak{M})$ found by Magnus (see [7], 36.12), where $\mathfrak{M} = \mathfrak{A}^2$. In Section 2 we divert from our discussion to illustrate how the Magnus representation can be used to give an alternate and rather elementary proof of the result that $F_k(\mathfrak{M})$ is residually $F_2(\mathfrak{M})$ for $k \ge 2$. On the whole, Section 2 serves the purpose of introducing the terminology and the computational techniques required in our discussion of $\mathfrak{M}_{(1)}$ and $\mathfrak{M}_{(2)}$.

In Section 3 we show that $d(\mathfrak{M}_{(1)}) = 4$ (Theorem 3.7) and establish that

(2)
$$\operatorname{Var} F_2(\mathfrak{M}_{(1)}) = \operatorname{Var} F_3(\mathfrak{M}_{(1)}) < \operatorname{Var} F_4(\mathfrak{M}_{(1)}) = \mathfrak{M}_{(1)}.$$

The inequality in (2) is a result of Gupta [5] who shows that the laws of $F_3(\mathfrak{M}_{(1)})$ are consequences of those of $\mathfrak{M}_{(1)}$ plus an additional law u with the property that u^2 is a law of $\mathfrak{M}_{(1)}$. Further she shows that if U is the subgroup generated by the values of u in $F_{\infty}(\mathfrak{M}_{(1)})$, then $F_{\infty}(\mathfrak{M}_{(1)})/U$ is isomorphic to the group M_3 of 3×3 matrices mentioned above. Thus it follows from (2) that $d(\operatorname{Var}(M_3)) = 2$.

In Section 4 we show that not only is $d(\mathfrak{M}_{(2)} = 4$ (Theorem 4.6), but that

(3)
$$\operatorname{Var} F_2(\mathfrak{M}_{(2)}) = \operatorname{Var} F_3(\mathfrak{M})_{(2)} < \operatorname{Var} F_4(\mathfrak{M}_{(2)}) = \mathfrak{M}_{(2)}$$

which is the chain (2) with $\mathfrak{M}_{(1)}$ replaced by $\mathfrak{M}_{(2)}$. Our investigations, in Section 5, regarding $\mathfrak{M}_{(c)}(c \ge 3)$ are not so complete. However, while we have not determined the precise chain (1) for these cases, we are able to verify that for $c \ge 3$ Var $F_{k-1}(\mathfrak{M}_{(c)})$ is properly contained in Var $F_k(\mathfrak{M}_{(c)})$ for $k = 2, \dots, c-1$. The proof uses methods similar to those in Levin [6].

Another problem for the varieties of the form $[\mathfrak{U},\mathfrak{E}]$ is that of deciding when the centre of $F/[\mathcal{U}(F), F]$ is precisely $\mathcal{U}(F)/[\mathcal{U}(F), F]$, where F is a free group of finite or countably infinite rank. This, for instance, is the case if $\mathfrak{U} = \mathfrak{N}_c(Witt,$ cf. [7] 31.63) or $\mathfrak{U} = \mathfrak{M}$ (follows from the fact that the centre of $F(\mathfrak{M})$ is trivial [1]). On the other hand, Cossey [3] has shown that this is not the case for $\mathfrak{U} =$ Var SL(2, 5). As a by-product of our results, we show in Section 6 that the centre of F/[F'', F, F] is precisely [F'', F]/[F'', F, F].

We are thankful to Dr. M. F. Newman for his comments on an earlier draft of the paper.

2. The Variety M

Let ZG be the integral group ring of a free abelian group G freely generated by x_1, x_2, \cdots , and let $T_2 = ZG[\Lambda_2]$ be the ZG-algebra in the set $\Lambda_2 = \{\lambda_{21}^{(k)}; k=1, 2, \cdots\}$ of commuting indeterminates. Let M_2 be the multiplicative group of 2 × 2 matrices (over T_2) generated by Narain Gupta and Frank Levin

(4)
$$\begin{bmatrix} 1 & 0 \\ \lambda_{21}^{(k)} & \mathbf{x}_k \end{bmatrix} = X_k^{(2)},$$

for $k = 1, 2, \cdots$. Let F be the (absolutely) free group freely generated by x_1, x_2, \cdots and let $\phi_2: F \to M_2$ be the homomorphism of F onto M_2 defined by $\phi_2(x_k) = X_k^{(2)}$. Define a mapping $\alpha_{21}: F \to T_2$ by $\alpha_{21}(w) = 21$ -entry of the matrix $\phi_2(w)$ for all $w \in F$.

LEMMA 2.1. (Magnus, cf. [7] 36.12). $\alpha_{21}(w) = 0$ if and only if $w \in F''$. In particular F/F'' is isomorphic to M_2 under the natural mapping $x_k F'' \to X_k^{(2)}$.

Since $G \cong F/F'$, we may identify G with F/F' (and ZG with Z(F/F') correspondingly) by identifying x_k with x_kF' . Thus if $w = w(x_1, \dots, x_n) \in F'$, then we may write

(5)
$$w \equiv \prod_{\substack{n \geq i > j \geq 1}} [x_i, x_j]^{a_{ij}} (\text{mod } F''),$$

where $q_{ij} = q_{ij}(\mathbf{x}_1, \dots, \mathbf{x}_n) \in ZG$.

For each $l, k \in \{1, 2, \dots\}$ and each $t \in Z$ we define an endomorphism $\theta_{l,k,t}$ of F and an endomorphism $\overline{\theta}_{l,k,t}$ of ZG as follows:

(6)
$$\theta_{l,k,i}(x_l) = x_k^t, \theta_{l,k,i}(x_l) = x_i \text{ for } i \neq l$$

(7)
$$\bar{\theta}_{l,k,i}(\mathbf{x}_l) = \mathbf{x}_k^t, \bar{\theta}_{l,k,i}(\mathbf{x}_i) = \mathbf{x}_i \text{ for } i \neq l.$$

LEMMA 2.2. If $w \in F'$, then $\alpha_{21}(w) = \sum_i p_i \lambda_{21}^{(i)}$, where each p_i is a uniquely determined element of ZG. Further if $\alpha_{21}(\theta_{l\cdot k,i}(w)) = \sum_i q_i \lambda_{21}^{(i)}$, then for all $i \notin \{l, k\}$, $q_i = \overline{\theta}_{l,k,i}(p_l)$. (Here θ , $\overline{\theta}$ are as defined in (6), (7)).

PROOF. It is clear that $\alpha_{21}(w)$ will be an expression of the form $\sum_i p_i \lambda_{21}^{(i)}$ and since $\lambda_{21}^{(i)}$ are linearly independent over ZG, p_i are unique. Replacing x_k by x_l^t in w has the effect of changing the corresponding matrix expression $\phi_2(w)$ by replacing $X_k^{(2)}$ by $(X_l^{(2)})^t$. Thus if $i \notin \{k, l\}$, the coefficient of $\lambda_{21}^{(i)}$ in $\alpha_{21}(\theta_{l,k,t(w)})$ is precisely $\theta_{l,k,t}(p_l)$.

For any $p \in ZG$ let $e_k(p)$ denote the maximum of the absolute values of the exponents of x_k occurring in p. The following lemma will have repeated applications in the sequel.

LEMMA 2.3. Let $p \in ZG$, $p \neq 0$. For any integers $l, k, \overline{\theta}_{l,k,i}(p) \neq 0$ whenever $|t| \geq 2e_k(p) + 1$.

PROOF. The lemma follows immediately from the observation that if $|s_1| < |s|$ $(s_1 \neq s)$ and $s_2 \ge 2|s| + 1$ then the equation $is_2 + s_1 = js_2 + s$ has no integral solution, from which it follows that if $s_2 \ge 2|s| + 1$, then $x_i^j x_k^{s_1} - x_i^j x_k^s$ will not vanish for any replacement of x_i by $x_k^{s_2}$.

We conclude this section by giving an alternate proof of the following result.

224

THEOREM 2.4. (cf. [2]). For $n \ge 2 F_n(\mathfrak{M})$ is residually $F_2(\mathfrak{M})$.

PROOF. It is enough to show that for $n \ge 3$, $F_n(\mathfrak{M})$ is residually $F_{n-1}(\mathfrak{M})$. Let $w = w(x_1, \dots, x_n)$ be an element of $F \setminus F''$. If $w \notin F'$ then $\theta_{i,i,0}(w) \notin F'$ for some $i \in \{1, \dots, n\}$. Thus we may assume that $w \in F' \setminus F''$. By Lemmas 2.2 and 2.1, $\alpha_{21}(w) = p_1 \lambda_{21}^{(1)} + \dots + p_n \lambda_{21}^{(n)} \neq 0$, and we may assume, without loss of generality, that $p_1 = p_1(x_1, \dots, x_n) \neq 0$. Since $n \ge 3$, by Lemma 2.2 the coefficient of λ_{21} in the expansion of $\alpha_{21}(\theta_{n,n-1,i}(w))$ is precisely $\overline{\theta}_{n,n-1,i}(p_1)$ which by Lemma 2.3 is non-zero for a large enough t. It follows by Lemma 2.1 that $\theta_{n,n-1,i}(w) \notin F''$. This completes the proof of the theorem.

3. The variety $\mathfrak{M}_{(1)}$ (= $[\mathfrak{M}, \mathfrak{E}]$)

As in Section 2 let $\Lambda_3 = \{\lambda_{i,i-1}^{(k)}; i = 2, 3; k = 1, 2, \dots\}$ and let $T_3 = ZG[\Lambda_3]$. Let M_3 be the group of 3×3 matrices (over T_3) generated by

(8)
$$\begin{bmatrix} 1 & 0 & 0 \\ \lambda_{21}^{(k)} & x_k & 0 \\ 0 & \lambda_{32}^{(k)} & 1 \end{bmatrix} = X_k^{(3)},$$

for $k = 1, 2, \cdots$ and let ϕ_3 be the homomorphism of F onto M_3 defined by $\phi_3(x_k) = X_k^{(3)}$ for $k = 1, 2, \cdots$. Further let $\alpha_{ij} (3 \ge i > j \ge 1)$ be the mapping of F into T_3 defined by $\alpha_{ij}(w) = ij$ -entry of the matrix $\phi_3(w)$ for all $w \in F$.

LEMMA 3.1. (Gupta [4]). Let $w \in F''$. Then $\alpha_{31}(w) = 0$ if and only if $w = w_1w_2$, where w_1 is a product of values of the word

(9)
$$u_{1234}(x) = [x_1^{-1}, x_2^{-1}; x_3, x_4][x_1^{-1}, x_3^{-1}; x_4, x_2][x_1^{-1}, x_4^{-1}; x_2, x_3]$$
$$[x_3^{-1}, x_4^{-1}; x_1, x_2][x_4^{-1}, x_2^{-1}; x_1, x_3][x_2^{-1}, x_3^{-1}, x_1, x_4],$$

and $w_2 \in [F'', F]$.

LEMMA 3.2. (Gupta [4]). $F_3(\mathfrak{M}_{(1)})$ is isomorphic to the subgroup of M_3 generated by $X_1^{(3)}, X_2^{(3)}, X_3^{(3)}$.

LEMMA 3.3. (Gupta [5]). $u_{1234}(x) \notin [F'', F]$ but $u_{1234}^2(x) \in [F'', F]$, where $u_{1234}(x)$ is defined by (9). Further if $w = w(x_1, \dots, x_n)$ $(n \ge 4)$ is an n-variable word in F'' such that $\alpha_{31}(w) = 0$, then

(10)
$$w = \prod_{1 \le i < j \le k < l \le n} u_{ijkl}^{\epsilon(ijkl)}(x) \pmod{[F'', F]},$$

where $u_{ijkl}(x)$ is defined as in (9) and $\varepsilon(ijkl) \in \{0, 1\}$.

The next lemma is analogous to Lemma 2.2 and the proof is essentially the same.

LEMMA 3.4. If $w \in F''$, then $\alpha_{31}(w) = \sum_{i,j} p_{ij} \lambda_{32}^{(i)} \lambda_{21}^{(j)}$, where each p_{ij} is a uniquely

determined element of ZG. Further if $\alpha_{31}(\theta_{l,k,t}(w)) = \sum_{i,j} q_{ij} \lambda_{32}^{(i)} \lambda_{21}^{(j)}$, then for all $i, j \notin \{l, k\}, q_{ij} = \bar{\theta}_{l,k,t}(p_{ij})$, where $\theta, \bar{\theta}$ are defined in (6), (7).

LEMMA 3.5. Let $w = w(x_1, \dots, x_n)$ $(n \ge 2) \in F''$ be an n-variable word such that $\alpha_{31}(w) \ne 0$. Then there is an automorphism ξ of F such that for some $i \in \{1, \dots, n\}$ the coefficient of $\lambda_{32}^{(i)} \lambda_{21}^{(i)}$ in the expansion of $\alpha_{31}(\xi(w))$ is non-zero.

PROOF. Let $\alpha_{31}(w) = \sum_{k,l} p_k \lambda_{32}^{(k)} \lambda_{21}^{(l)}$. If for some $i, p_{ii} \neq 0$ then we take ξ to be the identity automorphism of F. Otherwise, we may assume that for some i, $j \in \{1, \dots, n\} (i \neq j), p_{ii} = 0 = p_{jj}$ and one of p_{ij}, p_{ji} is non-zero. Let ξ_1 be the automorphism of F which maps x_j to $x_i x_j$ and x_k to x_k for $k \neq j$, and ξ_2 be the corresponding automorphism mapping x_j to $x_j x_i$ and x_k to x_k for $k \neq j$. Let $\alpha_{31}(\xi_1(w)) = \sum_{k,l} q_{kl} \lambda_{32}^{(k)} \lambda_{21}^{(l)}$ and $\alpha_{31}(\xi_2(w)) = \sum_{k,l} r_{kl} \lambda_{32}^{(k)} \lambda_{21}^{(l)}$. One verifies that

$$q_{ii} = \bar{p}_{ij} + \mathbf{x}_j \bar{p}_{ji}$$
 and $r_{ii} = \mathbf{x}_j \bar{p}_{ij} + \bar{p}_{ji}$

where \bar{p} is obtained from p on replacing x_j by $x_j x_i$. If both q_{ii} and r_{ii} are zero then both \bar{p}_{ij} and \bar{p}_{ji} must be zero and equivalently both p_{ij} and p_{ji} must be zero, contrary to the assumption.

We can now prove,

THEOREM 3.6. Let $\mathfrak{G} = \operatorname{Var}(M_3)$. Then for all $n \geq 2$, $F_n(\mathfrak{G})$ is residually $F_2(\mathfrak{G})$. In particular $F_3(\mathfrak{M}_{(1)})$ is residually $F_2(\mathfrak{M}_{(1)})$.

PROOF. Let $w = w(x_1, \dots, x_n)$ $(n \ge 3)$ be an *n*-variable word in *F* such that $w \notin \mathfrak{G}(F) < F''$. If $w \notin F''$ then, by Theorem 2.4, $\theta_{l,k,i}(w) \notin F''$ for some $l, k \in \{1, \dots, n\}$ $(l \ne k)$ and some $t \in \mathbb{Z}$. Thus we may assume that $w \in F''$. Using an automorphism ξ of *F*, if necessary, we may, by Lemma 3.5, assume that the coefficient p_{ii} of $\lambda_{32}^{(i)}\lambda_{21}^{(i)}$ in the expansion of $\alpha_{31}(w)$ is non-zero for some $i \in \{1, \dots, n\}$. It follows, by Lemma 2.3, that $\bar{\theta}_{l,k,i}(p_{ii}) \ne 0$ for $i \notin \{l,k\}$ $(l \ne k)$. Thus by Lemma 3.4, $\theta_{l,k,i}(w) \notin \mathfrak{G}(F)$. The second part of the theorem uses Lemma 3.2.

We conclude this section by proving the following result.

THEOREM 3.7. For $n \ge 4$, $F_n(\mathfrak{M}_{(1)})$ is residually $F_4(\mathfrak{M}_{(1)})$.

PROOF. Let $w = w(x_1, \dots, x_n)$ $(n \ge 5)$ be an *n*-variable word in $F \setminus [F'', F]$. As in Theorem 3.6 we may assume that $w \in F'' \setminus [F'', F]$. Further, if $\alpha_{31}(w) \neq 0$ then, as in Theorem 3.6, $\theta_{i,k,i}(\xi(w)) \notin [F'', F]$. Thus we may assume that $\alpha_{31}(w) = 0$ so that, by Lemma 3.3,

$$w = \prod_{1 \leq i < j < k < l \leq n} u_{ijkl}^{\varepsilon(ijkl)} \pmod{[F'', F]}$$

and for some $i < j < k < l, \varepsilon(ijkl) \neq 0$. Since $n \ge 5$, we can choose $r \notin \{i, j, k, l\}$. By Lemma 3.3, $\theta_{r,r,0}(w) \notin [F'', F]$. This completes the proof of the theorem.

[5]

4. The variety $\mathfrak{M}_{(2)}$ (= [$\mathfrak{M}, \mathfrak{E}, \mathfrak{E}$])

In this section we first of all show that $d(\mathfrak{M}_{(2)}) > 3$. We do this by exhibiting a 4-variable word which is not a law in $F_4(\mathfrak{M}_{(2)})$ but is a law in $F_3(\mathfrak{M}_{(2)})$.

THEOREM 4.1. Let $w = [u_{1234}(x), x_4]$, where $u_{1234}(x)$ is defined by (10). Then w is a law in $F_3(\mathfrak{M}_{(2)})$ but not a law in $F_4(\mathfrak{M}_{(2)})$. In particular $\operatorname{Var} F_3(\mathfrak{M}_{(2)}) < \operatorname{Var} F_4(\mathfrak{M}_{(2)})$.

PROOF. Since $u_{1234}(x)$ is a law in $F_3(\mathfrak{M}_{(1)})$ (Gupta [4]), it follows that w is a law in $F_3(\mathfrak{M}_{(2)})$. To complete the proof it suffices to show that w is not a law in $F_4(\mathfrak{M}_{(2)} \wedge \mathfrak{N}_7)$.

Expanding w modulo $\gamma_8(F)[F'', F, F]$ shows that

$$w = [x_1, x_2; x_1, x_2, x_3, x_4; x_4] [x_1, x_3; x_1, x_3, x_2, x_4; x_4] [x_1, x_4; x_1, x_4, x_2, x_3; x_4] [x_2, x_3; x_2, x_3, x_1, x_4; x_4] [x_2, x_4; x_2, x_4, x_1, x_3; x_4] [x_3, x_4; x_3, x_4, x_1, x_2; x_4]$$

(cf. [5]). Since the frequency of generators is different in each factor, as words in $\gamma_7(F)$ the factors of w are independent of each other modulo $\gamma_8(F)$. However, it is readily verified that modulo $\gamma_8(F)$, [F'', F, F] is generated by all commutators of the form $[x_{i1}, x_{i2}; x_{i3}, x_{i4}; x_{i5}; x_{i6}]$ plus those of the forms $[x_{i1}, x_{i2}; x_{i3}, x_{i4}; x_{i5}; x_{i6}; x_{i7}], [x_{i1}, x_{i2}; x_{i3}, x_{i4}; x_{i5}; x_{i6}; x_{i7}], [x_{i1}, x_{i2}; x_{i3}, x_{i4}; x_{i5}; x_{i6}; x_{i7}], [x_{i1}, x_{i2}; x_{i3}, x_{i4}; x_{i5}; x_{i6}; x_{i7}]$ where $i1, i2, \dots, i7 \in \{1, 2, \dots\}$. In particular if $w \equiv 1$ (modulo $\gamma_8(F)[F'', F, F]$) then it is not difficult to verify that in fact $w \in [\gamma_3(F), \gamma_2(F), F, F]$ $\gamma_8(F)$. Since the generators of weight 7 cannot alter the frequency pattern of any factor of w, it follows that if w lies in $\gamma_8(F)[F'', F, F]$ then each factor of w lies in $\gamma_8(F)[F'', F, F]$, and in particular, $[x_{11}, x_{2}; x_{11}, x_{2}, x_{11}, x_{2}; x_{2}] \in \gamma_8(F)[F'', F, F]$. In what follows we shall show that $[x_{11}, x_{2}; x_{11}, x_{21}, x_{21}, x_{22}; x_{21}]$ is in fact non-trivial modulo $\gamma_8(F)[F'', F, F]$.

Let H be the free group of class 7 freely generated by a, b and let N_1 be the normal subgroup of H generated by all basic commutators ([7], 31.51) of weight 7 other than the following three commutators:

 $c_1 = [b, a, a, b, b; b, a],$ $c_2 = [b, a, a, b; b, a, b]$ and $c_3 = [b, a, b, b; b, a, a].$ Let N_2 be the normal subgroup of H generated by $N_1, c_1^2, c_2^2, c_3^2, c_1c_3^{-1}$. Then

$$d = [b, a, a, b; b, a; b] = [b, a, a, b, b; b, a][b, a, a, b; b, a, b]$$
 by the Witt
identity ([7], 33.34)
$$= c_1 c_2 \notin N_2.$$

We next observe that modulo N_2 ,

$$\begin{bmatrix} b, a, b; b, a; b; a \end{bmatrix} \equiv \begin{bmatrix} b, a, b; b, a; a; b \end{bmatrix} \equiv \begin{bmatrix} b, a, b, a; b, a; b \end{bmatrix} \begin{bmatrix} b, a, b; b, a, a; b \end{bmatrix}$$
$$\equiv dc_3c_2^{-1} = c_1c_2c_3c_2^{-1} = c_1c_3 \equiv 1, \text{ and } \begin{bmatrix} b, a, a; b, a; b; b \end{bmatrix}$$
$$\equiv \begin{bmatrix} b, a, a, b; b, a; b \end{bmatrix} \begin{bmatrix} b, a, a; b, a, b; b \end{bmatrix} \equiv dc_2c_3^{-1} = c_1c_2c_2c_3^{-1} = c_1c_3^{-1} \equiv 1.$$

Thus H/N_2 is a centre-by-centre-by-metabelian group of class 7 in which d = [b, a, a, b; b, a; b] is non-trivial. This completes the proof of the theorem.

We now construct an $\mathfrak{M}_{(2)}$ -group which will be useful in the sequel.

As in Sections 2 and 3 let $\Lambda_4 = \{\lambda_{i,i-1}^{(k)}; i = 2, 3, 4; k = 1, 2, \dots\}$ and $T_4 = ZG[\Lambda_4]$. Let M_4 be the group of 4×4 matrices (over T_4) generated by

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \lambda_{21}^{(k)} & \mathbf{x}_{k} & 0 & 0 \\ 0 & \lambda_{32}^{(k)} & 1 & 0 \\ 0 & 0 & \lambda_{43}^{(k)} & 1 \end{bmatrix} = X_{k}^{(4)}$$

for $k = 1, 2, \cdots$. Let ϕ_4 be the homomorphism of F onto M_4 defined by $\phi_4(x_k) = X_k^{(4)}$ for $k = 1, 2, \cdots$ and let $\alpha_{ij} \ (4 \ge i > j \ge 1)$ be the mapping of F into T_4 defined by $\alpha_{ij}(w) = ij$ -entry of the matrix $\phi_4(w)$ for all $w \in F$. Using matrix multiplication the following lemma is routinely verified.

LEMMA 4.2. (i) If $w \in [F'', F, F]$, then $w \in kernel of \phi_4$;

- (ii) $[u_{1234}(x), x_5] \in kernel \ of \ \phi_4;$
- (iii) If $w \in F''$, then $\alpha_{41}[w, x_k] = -\lambda_{43}^{(k)} \alpha_{31}(w)$.

We now establish the following useful analogue of Lemma 3.5.

LEMMA 4.3. Let $w = w(x_1, \dots, x_n)$ $(n \ge 2)$ be an n-variable word in [F'', F]such that $\alpha_{41}(w) \ne 0$. Then there is an automorphism ξ of F such that for some $i \in \{1, \dots, n\}$, the coefficient of $\lambda_{43}^{(i)} \lambda_{32}^{(i)} \lambda_{21}^{(i)}$ is non-zero in the expansion of $\alpha_{41}\xi(w)$).

PROOF. By Lemmas 4.2 and 3.4 we write

(11)
$$\alpha_{41}(w) = \sum_{i,j,k} p_{ijk} \lambda_{43}^{(i)} \lambda_{32}^{(j)} \lambda_{21}^{(k)},$$

where p_{ijk} are uniquely determined elements of ZG and for some $i, j, k \in \{1, \dots, n\}$, $p_{ijk} \neq 0$. Let $i, j \in \{1, \dots, n\}$ $(i \neq j)$ be fixed and let ξ_1, ξ_2, ξ_3 be automorphisms of F defined as follows: $\xi_1(x_j) = x_i x_j, \xi_1(x_k) = x_k$ for $k \neq j$; $\xi_2(x_j) = x_j x_i, \xi_2(x_k)$ $= x_k$ for $k \neq j$; $\xi_3(x_i) = x_i^{-1}, \xi_3(x_k) = x_k$ for $k \neq i$. Let

(12)
$$\alpha_{41}(\xi_1(w)) = \sum_{i,j,k} q_{ijk} \lambda_{43}^{(i)} \lambda_{32}^{(j)} \lambda_{21}^{(k)}; \ \alpha_{41}(\xi_2(w)) = \sum_{i,j,k} r_{ijk} \lambda_{43}^{(i)} \lambda_{32}^{(j)} \lambda_{21}^{(k)}; \text{ and}$$
$$\alpha_{41}(\xi_3(w)) = \sum_{i,j,k} s_{ijk} \lambda_{43}^{(i)} \lambda_{32}^{(j)} \lambda_{21}^{(k)}.$$

For $p \in ZG$, let p^* be the element of ZG obtained from p on replacing x_i by x_i^{-1} and \bar{p} be the element of ZG obtained from p on replacing x_j by $x_j x_i$. If $p_{iii} = p_{jjj}$ = 0, then using matrix multiplication the following can be verified:

(13)
$$q_{iii} = \bar{p}_{iij} + x_j \bar{p}_{iji} + \bar{p}_{jii} + x_j \bar{p}_{jji} + \bar{p}_{jij} + x_j \bar{p}_{ijj};$$

(14)
$$r_{iii} = x_j \bar{p}_{iij} + \bar{p}_{jji} + \bar{p}_{jji} + x_j \bar{p}_{jjj} + x_j \bar{p}_{ijj};$$

(15)
$$s_{iij} = x_i^{-1} p_{iij}^*, s_{iji} = x_i^{-1} p_{iji}^*, s_{jji} = -x_i^{-1} p_{jji}^* \text{ and } s_{jij} = -x_i^{-1} p_{jij}^*;$$

(16)
$$q_{jjl} = \bar{p}_{jjl}, q_{jlj} = x_i \bar{p}_{jlj}$$
 and $q_{ijl} = \bar{p}_{ijl} + \bar{p}_{jjl} + \bar{p}_{ijj};$

(17)
$$q_{kii} = \bar{p}_{kij} + x_j \bar{p}_{kji} + \bar{p}_{kii} + x_j \bar{p}_{kjj};$$
 and

(18)
$$r_{kii} = \mathbf{x}_j \bar{p}_{kij} + \bar{p}_{kji} + \bar{p}_{kii} + \mathbf{x}_j \bar{p}_{kjj}$$

To complete the proof of the lemma, let us assume that,

(19)
$$p_{iii} = p_{jjj} = q_{iii} = q_{jjj} = r_{iii} = r_{jjj} = s_{iii} = s_{jjj} = 0.$$

Then from (13) and (14) we conclude that

(20)
$$p_{iij} - p_{iji} = p_{jji} - p_{jij}$$
, and hence also $s_{iij} - s_{iji} = s_{jji} - s_{jij}$.

Using (15), this last equation yields

$$p_{iij}-p_{iji}=-p_{jji}+p_{jij},$$

which together with the first equation in (20) gives

(21) $p_{iij} = p_{iji}$ and $p_{jji} = p_{jij}$, and hence also $q_{iij} = q_{iji}$ and $q_{jji} = q_{jij}$. Using (16) the last equation in (21) together with the second equation in (21) gives $p_{jji} = 0 = p_{jij}$; by symmetry,

(22) $p_{iij} = p_{iji} = p_{jij} = p_{jij} = 0$, and similarly $q_{iij} = q_{iji} = q_{jji} = q_{jij} = 0$.

Using (22) in the last equation in (16) yields

(23)
$$p_{ijj} = 0$$
 and (by symmetry) $p_{jii} = 0$.

Thus we have shown that if (19) holds for any $i, j \in \{1, \dots, n\}$, then

(24)
$$p_{iij} = p_{iji} = p_{jii} = p_{jji} = p_{jij} = p_{ijj} = 0,$$

and the same for the corresponding q, r, s terms. Assuming (19) for every pair $i, j \in \{1, \dots, n\}$ $(i \neq j)$, if $k \notin \{i, j\}$, then $q_{kii} = r_{kii} = \bar{p}_{kij} = 0$, so that from (17) and (18) we get as in the proof of Lemma 3.5, $p_{kij} = 0$, which implies by (11) that $\alpha_{41}(w) = 0$, contrary to the hypothesis. This completes the proof of the lemma.

As an immediate consequence of Lemma 4.3, we prove the following.

THEOREM 4.4. $F_3(\mathfrak{M}_{(2)})$ is residually $F_2(\mathfrak{M}_{(2)})$.

PROOF. Let $w = w(x_1, x_2, x_3) \in F \setminus [F'', F, F]$. By Theorem 3.6, we may assume that $w \in [F'', F] \setminus [F'', F, F]$. If $\alpha_{41}(w) \neq 0$ then, as in the proof of Theorem 3.6, using Lemma 4.3 we can map w to a 2-variable word which does not belong to [F'', F, F]. If $\alpha_{41}(w) = 0$, then we may write $w \equiv [v_1, x_1] [v_2, x_2] [v_3, x_3]$

[8]

mod [F'', F, F], where $v_1, v_2, v_3 \in F''$ and $\alpha_{31}(v_i) = 0$ for i = 1, 2, 3 (by Lemma 4.2 (iii)). By Lemma 3.2, each $v_i \in [F'', F]$ and hence $w \in [F'', F, F]$, contrary to the assumption.

For the proof of our final result in this section, we need the following lemma.

LEMMA 4.5. Let
$$w = [u_{2345}(x), x_1][u_{1345}(x), x_2]$$

 $[u_{1245}(x), x_3][u_{1235}(x), x_4][u_{1234}(x), x_5],$

where $u_{ijkl}(x)$ is defined by (9). Then $w \in [F'', F, F]$.

PROOF. If
$$v = [x_1^{-1}, x_2^{-1}; x_3, x_4, x_5][x_1^{-1}, x_3^{-1}; x_4, x_2, x_5][x_1^{-1}, x_4^{-1}; x_2, x_3, x_5]$$

 $[x_3^{-1}, x_4^{-1}; x_1, x_2, x_5][x_4^{-1}, x_2^{-1}; x_1, x_3, x_5][x_2^{-1}, x_3^{-1}; x_1, x_4, x_5]$

then working modulo [F'', F], it can be verified directly that

$$(25) v \equiv 1.$$

Further, using the Witt identity

 $[a, b, c^{a}][c, a, b^{c}][b, c, a^{b}] = 1$ with $a = [x_{1}^{-1}, x_{2}^{-1}], b = [x_{3}, x_{4}], c = x_{5}$ and working modulo [F'', F, F] gives $[x_{1}^{-1}, x_{2}^{-1}; x_{3}, x_{4}; x_{5}][x_{5}, [x_{1}^{-1}, x_{2}^{-1}], [x_{3}, x_{4}]^{x_{5}}]$ $[x_{3}, x_{4}, x_{5}, [x_{1}^{-1}, x_{2}^{-1}]] \equiv 1$ and hence

(26) $[x_1^{-1}, x_2^{-1}; x_3, x_4; x_5][x_1^{-1}, x_2^{-1}, x_5^{-1}; x_3, x_4]^{x} [x_1^{-1}, x_2^{-1}; x_3, x_4, x_5]^{-1} \equiv 1.$

To complete the proof of the lemma, we first expand w applying (26) to each factor. Next we note, using (25), that the 6-weight contributions of each $[u_{ijkl}(x), x_t]$ lie in [F'', F, F]. Finally, the remaining 5-weight commutators in w can be rearranged to form a product of elements of the form

$$\begin{bmatrix} x_i^{-1}, x_j^{-1} \end{bmatrix}, \begin{bmatrix} x_k, x_l, x_m \end{bmatrix} \begin{bmatrix} x_l, x_m, x_k \end{bmatrix} \begin{bmatrix} x_m, x_k, x_l \end{bmatrix} \text{ and} \\ \begin{bmatrix} x_i^{-1}, x_j^{-1}, x_k^{-1} \end{bmatrix} \begin{bmatrix} x_j^{-1}, x_k^{-1}, x_i^{-1} \end{bmatrix} \begin{bmatrix} x_k^{-1}, x_i^{-1}, x_j^{-1} \end{bmatrix}, \begin{bmatrix} x_l, x_m \end{bmatrix} \begin{bmatrix} -1 \\ x_k \end{bmatrix}^{-1}$$

which belong to [F'', F, F].

We are now in a position to prove the following theorem.

THEOREM 4.6. For each $n \ge 4$, $F_n(\mathfrak{M}_{(2)})$ is residually $F_4(\mathfrak{M}_{(2)})$.

PROOF. Let $w = w(x_1, \dots, x_n)$ $(n \ge 5)$ be an *n*-variable word in $F \setminus [F'', F, F]$. Then as in Theorem 3.6, we may assume that $w \in [F'', F]$, so that $w \equiv \prod_{i=1}^{n} [v_i, x_i]$ (mod [F'', F, F]), where $v_i \in F''$. By Lemma 4.2 (iii), $\alpha_{41}(w) = \sum_{i=1}^{n} -\lambda_{43}^{(i)} \alpha_{31}(v_i)$. There are two cases to be considered.

CASE I. $(\alpha_{41}(w) \neq 0)$. In this case, as in the proof of Theorem 4.4, we can use Lemma 4.3 to map w to an (n-1)-variable non-trivial word (mod [F'', F, F]).

CASE II. $(\alpha_{41}(w) = 0)$. In this case $\alpha_{31}(v_i) = 0$ for each $i = 1, \dots, n$. Thus by Lemma 3.3 each v_i is of the form (10). If n > 5 then $\theta_{k,k,0}(w) \notin [F'', F, F]$ for some k (by Theorem 4.1, $[u_{1234}(x), x_5] \notin [F'', F, F]$). If n = 5, then $w \equiv [u_{2345}(x), x_1]^{\beta_1}$ $\cdots [u_{1234}(x), x_5]^{\beta_5}$ (mod [F'', F, F]), where $\beta_1, \dots, \beta_5 \in \{0, 1\}$, by Lemma 3.3. Since $w \notin [F'', F, F]$, by Lemma 4.5 $\beta_i = 0$ and $\beta_j = 1$ for some i, j, and we may assume, without loss of generality, that $\beta_1 = 0$ and $\beta_2 = 1$. Then $\theta_{1,2,1}(w)$ $= [u_{2345}(x), x_2] \notin [F'', F, F]$. This completes the proof of the theorem.

5. The variety $\mathfrak{M}_{(c)}$ $(c \geq 3)$

While we are unable to determine the precise chain (1) for $c \ge 3$, our main result in this section goes some way towards the solution of this problem. Our method is similar to the one used in Levin [6].

Let $Z[y_1, \dots, y_m]$ $(m \ge 3)$ be the free associative Z-algebra in non-commuting indeterminates y_1, \dots, y_m and let I_{m+5} be the ideal generated by all monomials of length m + 5. Put $R = Z[y_1, \dots, y_m]/I_{m+5}$. We first prove the following lemma.

LEMMA 5.1. Let $\rho_m = \sum_{\sigma} |\sigma| \langle y, y_{1\sigma}, \dots, y_{m\sigma} \rangle$, where $y = \langle \langle y_1, y_2 \rangle, \langle y_3, y_4 \rangle \rangle$ and σ runs through all permutation of $\{1, 2, \dots, m\}$ with $|\sigma| = 1$ or -1 according as σ is even or odd. Then $\rho_m \notin I_{m+5}$. (Here $\langle r_1, r_2 \rangle$ denotes the Lie commutator $r_1r_2 - r_2r_1$.)

PROOF. CASE I. (m odd).

If $\rho_m \equiv 0 \pmod{I_{m+5}}$, then the sum of the terms with left factor y_1^2 in the expansion of ρ_m is in I_{m+5} . However, these occur precisely in the terms with left factor $y_1 y$ and a straight-forward computation shows that this sum is $-y_1 y \sum_{\sigma'} |\sigma'| y_{2\sigma'} \cdots y_{m\sigma'}$ (since *m* is odd), where σ' runs through all permutations of $\{2, \dots, m\}$, and this is clearly non-zero modulo I_{m+5} .

CASE II. (m even).

In this case we proceed as in Case I, but this time we consider terms with left factors $\langle y_1, y_2 \rangle y$ and show that this sum is not in I_{m+5} . The computation in this case is simplified by making use of the identity

$$\langle y, \dots, y_i, y_j, \dots \rangle - \langle y, \dots, y_j, y_i, \dots \rangle = \langle y, \dots, \langle y_i, y_j \rangle, \dots \rangle$$

to rewrite ρ_m as

$$\rho_m = \sum_{\mu} \langle y, \langle y_{1..}, y_{2..} \rangle, \cdots, \langle y_{(m-1)..}, y_{m..} \rangle \rangle,$$

where μ runs through all even permutations of $\{1, \dots, m\}$ satisfying $(2i-1)\mu < (2i)\mu$ for $i = 1, \dots, m/2$. We omit the rest of the details.

THEOREM 5.2. Var $F_2(\mathfrak{M}_{(c)}) < \cdots < \operatorname{Var} F_{c-1}(\mathfrak{M}_{(c)}) (c \ge 4)$.

PROOF. To show that Var $F_{c-2}(\mathfrak{M}_{(c)}) < \text{Var } F_{c-1}(\mathfrak{M}_{(c)})$, we consider the word

Narain Gupta and Frank Levin

$$w_{c-1} = \prod_{\sigma} \left[x, x_{1,\sigma}, \cdots, x_{(c-1)\sigma} \right]^{|\sigma|}$$

where $x = [x_1, x_2; x_1, x_3]$ and σ runs through all permutations of $\{1, \dots, c-1\}$. It is immediate that w_{c-1} is a law in $F_{c-2}(\mathfrak{M}_{(c)})$. With m = c - 1, the group A(R) of units of R belongs to Var $F_{c-1}(\mathfrak{M}_{(c)})$. Thus to see that w_{c-1} is not a law in $F_{c-1}(\mathfrak{M}_{(c)})$, we note by Lemma 5.1 that $\rho_{c-1} \notin I_{c+4}$. Finally to see that Var $F_{k-2}(\mathfrak{M}_{(c)}) < Var F_{k-1}(\mathfrak{M}_{(c)}) (4 \le k \le c)$, observe by Lemma 5.1 again that

$$w_{c-1,k-1} = [w_{k-1}, x_k, \cdots, x_{c-1}]$$

is not a law in $F_{k-1}(\mathfrak{M}_{(c)})$ but is clearly a law in $F_{k-2}(\mathfrak{M}_{(c)})$. This completes the proof of the theorem.

6. Concluding remarks

Let F be a free group of finite or countably infinite rank and let W be a fully invariant subgroup of F. In general the centre of F/[W, F] is not W/[W, F] (see Cossey [3] for an example). If W = F'', then using Lemma 2.1, it is not difficult to see that the centre of F/[F'', F] is precisely F''/[F'', F]. Here we are able to prove the corresponding result for W = [F'', F].

THEOREM 6.1. The centre of F/[F'', F, F] is precisely [F'', F]/[F'', F, F].

PROOF. Since F''[F'', F] is the centre of F/[F'', F], it follows that the centre of F/[F'', F, F] is contained in F''[F'', F, F]. Let $w \in F'' \setminus [F'', F]$ such that $[w, x_k] \in [F'', F, F]$ for all $k = 1, 2, \dots$. By Lemma 4.2 (iii), $0 = \alpha_{41}[w, x_k] = -\lambda_{43}^k \alpha_{31}(w)$. Thus $\alpha_{31}(w) = 0$ and by Lemma 3.3, w is a product of the form (10). Since $[w, x_k]$ is a law in F/[F'', F, F], it follows by (proof of) Theorem 4.6 that $[u_{1234}(x), x_4]$ is a law in F/[F'', F, F], contrary to Theorem 4.1. Thus $w \in F'' \setminus [F'', F]$ implies that $[w, x_k] \notin [F'', F, F]$, and hence the centre of F/[F'', F, F] is precisely [F'', F]/[F'', F, F].

References

- M. Auslander and R. C. Lyndon, 'Commutator subgroups of free groups', Amer. J. Math. 77 (1955), 929-931.
- [2] Gilbert Baumslag, 'Some theorems on the free groups of certain product varieties', J. Combinatorial Theory 2 (1967), 77-99.
- [3] John Cossey, 'On decomposable varieties of groups', J. Austral. Math. Soc .11 (1970), 340– 342.
- [4] Chander Kanta Gupta, 'A faithful matrix representation for certain centre-by-metabelian groups', J. Austral. Math. Soc. 10 (1969), 451-464.
- [5] Chander Kanta Gupta, 'The free centre-by-metabelian groups', J. Austral. Math. Soc. 16 (1973), 294-299.
- [6] Frank Levin, 'Generating groups for nilpotent varieties', J. Austral. Math. Soc. 11 (1970), 28-32.

- [7] Hanna Neumann, Varieties of groups. (Springer-Verlag, New York 1967).
- [8] Ada Peluso, 'A residual property of free groups', Comm. Pure Appl. Math. 19 (1966), 435-437.
- [9] M. R. Vaughan-Lee, 'Generating groups of nilpotent varieties', Bull. Austral. Math. Soc. 3 (1970), 145-154.

University of Manitoba Winnipeg, Canada

Rutgers, The State University New Brunswick, N. J., U. S. A. and Ruhr Universität Bochum, W. Germany.

[12]