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Sidon Sets are Proportionally Sidon with
Small Sidon Constants

Kathryn E. Hare and Robert (Xu) Yang

Abstract. In his seminal work on Sidon sets, Pisier found an important characterization of Sidonicity:
A set is Sidon if and only if it is proportionally quasi-independent. Later, it was shown that Sidon
sets were proportionally “special” Sidon in several other ways. Here, we prove that Sidon sets in
torsion-free groups are proportionally n-degree independent, a higher order of independence than
quasi-independence, and we use this to prove that Sidon sets are proportionally Sidon with Sidon
constants arbitrarily close to one, the minimum possible value.

1 Introduction

Let G be a compact abelian group and let Γ be its discrete dual. A subset E ⊆ Γ is
called a Sidon set if there is a constant C such that every bounded E-function ϕ is the
restriction of the Fourier Stieltjes transform of a ûnitemeasure onG ofmeasure norm
at most C∥ϕ∥∞. he least such C is called the Sidon constant of E. Sidon sets are well
known to be plentiful. Indeed, inûnite examples can be found in every inûnite subset
of Γ and include lacunary sets (in Γ = Z) and independent sets.

Sidon sets have been extensively studied, yet fundamental questions remain open.
As the class of Sidon sets is closed under ûnite unions, it is natural to ask whether ev-
ery Sidon set is the ûnite union of a “nicer”, i.e.,more restricted, class of interpolation
sets. Important progress on this general problem was made when Pisier [12] charac-
terized Sidon sets as those that are “proportionally” quasi-independent (special Sidon
sets that are independent-like). Later, Ramsey [15] proved that Sidon sets are propor-
tionally I0 (special Sidon sets where the interpolating measure can be chosen to be
discrete) in a uniform sense, and subsequently one of the authors with Graham [4]
showed that they are proportionally ε-Kronecker (special Sidon sets deûned by an
approximation property) under the assumption that Γ has no elements of ûnite order.

In this paper we prove that if Γ has no elements of ûnite order, then every Sidon
set is proportionally Sidon with Sidon constants arbitrarily close to one. his will be
established by generalizing Pisier’s proportional quasi-independent characterization
of Sidon to higher degrees of independence. Of course, every Sidon set has Sidon
constant at least one, and this is the Sidon constant for an independent set in the case
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where Γ has no elements of ûnite order. But many groups, including Z, have no non-
trivial independent sets, or even any subsets with Sidon constant equal to one, other
than sets with one or two elements.

Our result does not hold, in general, for groups that admit elements of ûnite order,
as there are such groups with the property that the Sidon constant of every non-trivial
independent set is bounded away from one. However, we do show that the propor-
tionality result holds when Γ is a product of ûnite groups with prime order tending to
inûnity.

2 Definitions and Basic Properties

We begin by recalling some well-known equivalent deûnitions of Sidonicity. For
proofs of these facts and other properties of Sidon sets mentioned below, we refer
the reader to [5] or [9].

Deûnition 2.1 Asubset E ⊆ Γ is called a Sidon set if whenever ϕ∶ E → C is a bounded
function, there is a measure µ on G, the interpolating measure, with the property that
µ̂(γ) = ϕ(γ) for every γ ∈ E and ∥µ∥M(G) ≤ C∥ϕ∥∞. he least such constant C
is known as the Sidon constant of E. he set E is called I0 if the measure µ can be
chosen to be discrete.

Proposition 2.2 he following are equivalent:
(i) E is Sidon.
(ii) here are constants C and 0 ≤ δ < 1 such that for every ϕ ∈ Ball(ℓ∞(E)), there is
a measure µ on G with ∥µ∥M(G) ≤ C and satisfying

sup
γ∈E

{∣ϕ(γ) − µ̂(γ)∣} ≤ δ.

(iii) For every ϕ∶ E → {±1}, there is a measure µ on G such that

sup
γ∈E

{∣ϕ(γ) − µ̂(γ)∣} < 1.

(iv) here is a constant C such that whenever f is a trigonometric polynomial with
supp f̂ ⊆ E ,

∑
γ∈E

∣ f̂ (γ)∣ ≤ C sup{∣ f (x)∣ ∶ x ∈ G}.

A duality argument shows that the minimal constant C satisfying (iv) is (also)
the Sidon constant; see [5, hm. 6.2.3]. An iterative argument, such as given in [5,
Prop. 1.3.2], can be used to show that if item (ii) is satisûed, then the Sidon constant
of E is at most C/(1 − δ).

Deûnition 2.3 Asubset {γ j}⊆ Γ is called independent if, whenever k ∈N,∏k
j=1 γ

n j
j = 1

for n j ∈ Z implies γn j
j = 1 for all j = 1, . . . , k (where 1 denotes the identity in Γ).

If ϕ ∈ Ball(ℓ∞(E)), then ϕ = (ψ1+ψ2)/2 forψ j ∶ E → TwhereT is the unit circle in
C. If E is an independent set in a group with no elements of ûnite order, then there are
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elements x j ∈ G such that for all γ ∈ E, we have ψ j(γ) = γ(x j) for j = 1, 2. hus, if we
let δx denote the point mass measure at x and put µ = (δx1 + δx2)/2, then ∥µ∥ = 1 and
ϕ(γ) = µ̂(γ) for all γ ∈ E. Hence, E satisûes (ii) with δ = 0 and C = 1, and therefore
E has Sidon constant 1. More generally, if E is any independent set and ϕ∶ E → {±1},
then choose x such that δ̂x(γ) = ϕ(γ) if γ ∈ E has inûnite order and δ̂x(γ) is the n-th
root of unity nearest ϕ(γ) if γ ∈ E has order n. It follows from (iii) that E is Sidon.
Finite sets F are always Sidon sets with Sidon constant at most

√
∣F∣. Subsets of Z

consisting of one or two elements have Sidon constant one, but this is never the case
for subsets of three or more elements; see [11]. A classical example of an inûnite Sidon
set is the subset E = {3n}∞n=1 ⊆ Z. Indeed, given ϕ ∈ ℓ∞(E) with ∥ϕ∥∞ = 1/2, we can
take as the interpolating measure the Riesz product measure

µ =
∞

∏
j=1

( 1 + 2R(ϕ(3n)e i3
n x)) ,

where the inûnite product notation means µ is the weak ∗ limit in M(T). As
∥µ∥M(T) = 1, the Sidon constant of E is at most 2. In fact, the set {3n}, or more
generally any lacunary set {n j} ⊆ Z+ (meaning inf n j+1/n j = q > 1), is an example of
an I0 set (although the Riesz product measure argument does not show this).

he class of I0 sets is a proper subset of the Sidon sets, since the class of Sidon sets
is closed under ûnite unions, but the class of I0 sets is not. But I0 sets are also plentiful,
and every inûnite subset of Γ contains an inûnite I0 set. It is of interest to understand
the relationship between Sidon and I0 sets since I0 sets are known not to cluster at
any continuous character in the Bohr topology, while it is unknown whether Sidon
sets can (even) be dense in the Bohr compactiûcation of Γ.
Another interesting class of Sidon sets is that of the ε-Kronecker sets: E ⊆ Γ is ε-

Kronecker if for every ϕ∶ E → T there exists x ∈ G such that ∣ϕ(γ) − γ(x)∣ < ε for all
γ ∈ E. Any lacunary set {n j} with inf n j+1/n j > 2 is ε-Kronecker for some ε < 2, and
every set that is (2− ε) -Kronecker is Sidon [7]. here are examples of Sidon sets that
are not (2− ε)-Kronecker for some groups Γ, but it is unknown if such examples can
be found in Z.
A weakened version of independence is the following notion.

Deûnition 2.4 Let n ∈ N. We say that E ⊆ Γ is n-degree independent if whenever
k ∈ N, γ1 , . . . , γk are distinct elements in E andm1 , . . . ,mk are integers with ∣m i ∣ ≤ n,
then ∏k

i=1 γ
m i
i = 1 implies γm i

i = 1 for all i = 1, . . . , k. A 1-degree independent set is
usually called quasi-independent, and a 2-degree independent set is called dissociate.

he set E is said to be n-length independent if whenever γ1 , . . . , γn are distinct ele-
ments in E and m1 , . . . ,mn ∈ {0,±1}, then∏n

i=1 γ
m i
i = 1 implies γm i

i = 1 for all i.

Clearly, 1-degree independence implies n-length independence, and a set is inde-
pendent if and only if it is n-degree independent for every n. he set E = {3n} is a
dissociate set, and a Riesz product construction shows that any dissociate set is Sidon.
Amodiûcation of this argument can be given to show that quasi-independent sets are
also Sidon.

Signiûcant eòorts have beenmade to characterize Sidon sets in terms of thesemore
restricted classes of sets. Towards this end, Malliavin and Malliavin [10] showed that
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any Sidon set not containing the identity, in the group⊕Zp where p is a given prime,
is a ûnite union of independent sets, while Bourgain [1] proved that every Sidon set
E ⊆ Γ/{1} is a ûnite union of n -length independent sets. However, it is unknown if
every Sidon set is one of the following:
● a ûnite union of I0 sets;
● a ûnite union of ε-Kronecker sets;
● a ûnite union of quasi-independent sets.

Pisier introduced probabilistic techniques to study these and related questions and
obtained important “proportional” characterizations of Sidon sets (seeheorem 2.5).
hese characterizations inspired a number of other such characterizations and are the
motivation for this paper. Here are some examples of these “proportional” character-
izations.

Terminology Given two classes of setsA,B, we will say that E ∈ A is proportionally
B if there is some constant δ > 0 such that for every ûnite F ⊆ E, there is some H ⊆ F
such that ∣H∣ ≥ δ∣F∣ and H ∈ B.

heorem 2.5

(i) he following are equivalent for E ⊆ Γ/{1}.
(a) E is Sidon;
(b) E is proportionally quasi-independent;
(c) here exists a constant C such that E is proportionally Sidon with Sidon constant

at most C;
(d) here exists an integer M such that E is proportionally I0(M). 1

(ii) If Γ has only ûnitely many elements that are of order 2k for some k and E has no
elements of order two, then E is Sidon if and only if E is proportionally ε-Kronecker
for some ε <

√
2.

he equivalence of (a)–(c) is a deep result of Pisier (see [12–14]) with later proofs
given by Bourgain in [2,3]. he equivalence of (d) was shown by Ramsey in [15], while
(ii) was established in [4] along with other related proportional equivalences. We also
refer the reader to [5, ch. 7,9] and [8, pp. 482–499] for expositions of these results.

In this paper, we will modify Pisier’s technique to prove that if Γ has no elements
of ûnite order, then E is Sidon if and only if E is proportionally n-degree independent
for each n, if and only if for every constantC > 1, E is proportionally Sidonwith Sidon
constant C. Partial results are obtained in the case that Γ has elements of ûnite order.

3 Proportional Sidon Subsets in Torsion-free Groups

In this section ourmain focuswill be on torsion-free, discrete abelian groups Γ, groups
that have no elements of ûnite order. hese are the groups whose dual groups G are

1E is I0(M) if for every ϕ ∈ Ball(ℓ∞(E)), there is a discrete measure µ = ∑M
j=1 a jδx j with ∣a j ∣ ≤ 1 and

supγ∈E ∣ϕ(γ) − µ̂(γ)∣ ≤ 1/2.
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connected. We will ûrst extend Pisier’s proportional quasi-independent characteriza-
tion of Sidon to n-degree independence and then use this to deduce that Sidon sets
are proportionally Sidon with constants arbitrarily close to 1.

We begin with some preliminary lemmas that hold for general discrete abelian
groups.

Lemma 3.1 Suppose E ⊆ ΓÓ{1} is Sidon. here is a constant K, depending only on
the Sidon constant of E , such that for all ûnite subsets A ⊆ E and real numbers (aγ)γ∈A,
we have

∫
G
exp (∑

γ∈A
aγR(γ)) ≤ exp (K∑

γ∈A
a2
γ) .

Proof his is a straightforward argument using the power series expansion of the
exponential function and the well-known fact that if E is a Sidon set with Sidon con-
stant S, then

∥ f ∥p ≤ 2S
√

p∥ f ∥2

for any integer p ≥ 2 and trigonometric polynomial f with supp f̂ ⊆ E ([5, hm.
6.3.9]).

Let A ⊂ E be a ûnite set. We will let f = ∑γ∈A αγγ and let S denote the Sidon
constant of E. With this notation,

∫
G
exp (∑

γ∈A
αγR(γ))

=∑
k≥0
∫

(∑γ∈A αγR(γ))k

k!
= 1 + ∑

k≥2
∫

(R(∑γ∈A αγγ))k

k!

≤ 1 + ∑
k≥2
∫

G

∣ f ∣k
k!

= 1 + ∑
k≥2

∥ f ∥k
k

k!
≤ 1 + ∑

k≥2

(2S
√

k∥ f ∥2)k

k!

= 1 +∑
p≥1

(2S√2p∥ f ∥2)2p

(2p)! +∑
p≥1

(2S√2p + 1∥ f ∥2)2p+1

(2p + 1)! .

If we let L = max{2S + 1, 4}, then since pp ≤ (2p)(2p − 1) ⋅ ⋅ ⋅ (p + 1) , we have
(2S√2p∥ f ∥2)2p

(2p)! ≤ (8LS2∥ f ∥2
2)p

(2S + 1)p! .

hus,

1 +∑
p≥1

(2S√2p∥ f ∥2)2p

(2p)! ≤ 1
2S + 1

(exp(8LS2∥ f ∥2
2) + 2S) .

Similarly,

∑
p≥1

(2S√2p + 1∥ f ∥2)2p+1

(2p + 1)! ≤2S∥ f ∥2

2S + 1
(exp(8LS2∥ f ∥2

2) − 1) ,

and therefore

∫
G
exp (∑

γ∈A
αγR(γ)) ≤ exp(16LS2∥ f ∥2

2) = exp ( 16LS2 ∑
γ∈A
a2
γ) . ∎
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Lemma 3.2 Let n ∈ N and assume that Γ contains no non-trivial elements of order
≤ n. Suppose E ⊆ ΓÓ{1} and Ek is Sidon for each k = 1, . . . , n. hen there is a constant
Kn , depending only on n and the Sidon constants of the sets Ek , k = 1, . . . , n, such that
for all 0 < λ < 1/n and ûnite subsets A ⊆ E, we have

∫ ∏
γ∈A

( 1 + λ
n

∑
k=1

R(γk)) ≤ exp (Kn ∣A∣n3λ2) .

(Here ∣A∣ denotes the cardinality of the set A.)

Proof Let A ⊆ E be ûnite. Since ∣∑n
k=1 R(γk)∣ ≤ n and λ < 1/n, we have

∏
γ∈A

( 1 + λ
n

∑
k=1

R(γk)) ≤ exp ( λ∑
γ∈A

n

∑
k=1

R(γk)) .

Put A(n) = ⋃n
k=1 Ak . We can write

∑
γ∈A

n

∑
k=1

R(γk) = ∑
β∈A(n)

aβR(β).

Note that the coeõcients aβ satisfy 0 ≤ aβ ≤ 2n, since the assumption that Γ contains
no elements of order ≤ n ensures that R(γk) = R(χk) for γ, χ ∈ A and k ≤ n only if
γ = χ or χ.

Since a ûnite union of Sidon sets is Sidon with Sidon constant depending only on
the Sidon constants of the individual sets and the number of sets in the union, A(n) is
Sidon with Sidon constant depending only on that of the sets Ek and n. hus, Lemma
3.1 and the fact that ∣A(n)∣ ≤ n∣A∣ implies that there is a constant kn with

∫ exp ( λ∑
γ∈A

n

∑
k=1

R(γk)) = ∫ exp ( λ ∑
β∈A(n)

aβR(β))

≤ exp ( kn ∑
β∈A(n)

λ2a2
β) ≤ exp (4knn3λ2∣A∣) . ∎

Next, we upgrade Pisier’s proportional quasi-independent characterization of
Sidon to n-degree independent proportional sets. Our proof follows his strategy that
can be found in [13, hm. 2.11].

Proposition 3.3 Let n ∈ N and assume that Γ contains no non-trivial elements of
order ≤ n. Suppose E ⊆ ΓÓ{1} and Ek is Sidon for each k = 1, . . . , n. here exists
δn > 0 such that for each ûnite set F ⊆ E that there is a further ûnite subset H ⊆ F that
is n-degree independent and satisûes ∣H∣ ≥ δn ∣F∣.

Proof We will say that a ûnite set A ⊆ Γ is an n-relation set if there exists (ξγ)γ∈A ∈
{±1, . . . ,±n}A with ∏γ∈A γξγ = 1. he ûrst step of the proof is to use probabilistic
arguments and the Sidon assumption to show that no ûnite subset of E contains “too
many” n-relations for any integer n. Using combinatorial arguments, we will then

Proportional Sidon Sets

Notation Given E ⊆ Γ and k ∈ N, we let Ek = {γk ∶ γ ∈ E}.
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deduce that there must be large subsets that are complements of n-relation sets and
hence are n-degree independent.

To begin, ûx an integer n and for any ûnite subset F ⊆ E, let Cn(F) denote the
cardinality of the set of n-relations of F; that is, Cn(F) is the cardinality of the set

{(ξγ)γ∈F ∈ {0,±1, . . . ,±n}F ∶ ∏
γ∈F

γξγ = 1} .

First, we will show that there are constants δ = δn , α = αn > 0 such that for each
ûnite F ⊆ E , there is a further subset H ⊆ F with ∣H∣ ≥ δ∣F∣ and Cn(H) ≤ 2 ⋅ 2α∣H∣.
To see this, ûx such F and let λ ∈ (0, 1/n). Let (εγ)γ∈F be a collection of independent
0, 1-valued random variables on a probability space (Ω,P) such that P{εγ = 1} = λ/2.
An application of Fubini’s theorem, independence, and Lemma 3.2 gives

E∫ ∏
γ∈F

( 1 + εγ
n

∑
k=1

(γk + γ−k)) = ∫ E∏
γ∈F

( 1 + εγ
n

∑
k=1

(γk + γ−k))

= ∫ ∏
γ∈F

( 1 + λ
n

∑
k=1

R(γk))

≤ exp (Knn3λ2∣F∣) .

If we let F(ω) = {γ ∈ F ∶ εγ(ω) = 1}, then

E(Cn(F(ω))) = E∫ ∏
γ∈F

( 1 + εγ
n

∑
k=1

(γk + γ−k)) ≤ exp (Knn3λ2∣F∣) .

By Markov’s inequality, with probability at least 1/2, we have

Cn(F(ω)) ≤ 2 exp (Knn3λ2∣F∣) .

Notice that if γ1 ≠ γ2, then E((εγ1 −Eεγ1)(εγ2 −Eεγ2)) = 0, and thus

E(∣F(ω)∣ −E∣F(ω)∣) 2 = E(∑
γ∈F

(εγ −Eεγ))
2

= ∑
γ∈F

E(εγ −Eεγ)2

= ∣F∣(λ/2 − λ2/4) ≤ ∣F∣λ/2.

Also, since E(∣F(ω)∣) = ∣F∣λ/2, it follows from Chebyshev’s inequality that

P{∣F(ω)∣ ≤ ∣F∣λ/4} ≤ P{(∣F(ω)∣ −E∣F(ω)∣) 2 ≥ ∣F∣2λ2/16}

≤ ∣F∣λ/2
∣F∣2λ2/16 = 8

∣F∣λ .

Choose λ = λn > 0 so small that exp(4Knn3λ) < 2 and let α ∈ (0, 1) be given
by 2α = exp(4Knn3λ). With this choice of λ, P{ ∣F(ω)∣ > ∣F∣λ/4} > 1/2 if ∣F∣ is
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2 ⋅ 2α∣F(ω)∣ = 2 exp (4Knn3λ∣F(ω)∣) ≥ 2 exp (Knn3λ2∣F∣) .

hus, ∣F(ω)∣ > ∣F∣λ/4 and Cn(F(ω)) ≤ 2 ⋅ 2α∣F(ω)∣ with positive probability.
his proves that there are constants δ = λ/4 and 0 < α < 1 such that for any ûnite

F ⊆ E there is a subset H = F(ω) ⊆ E with ∣H∣ ≥ δ∣F∣ and Cn(H) ≤ 2 ⋅ 2α∣H∣.
Given A, we let M(A) denote a maximal (with respect to inclusion) subset of A

that is an n-relation set. he maximality ensures that AÓM(A) is an n-degree inde-
pendent set. To complete the proof of the proposition, we will establish the following
claim.

Claim Given a suõciently large ûnite set F satisfying Cn(F) ≤ 2 ⋅ 2α∣F∣ for some
α > 0, there exists a constant 0 < θ < 1, depending only on α, and a subset H1 ⊆ F with
∣H1∣ ≥ ∣F∣/2 and having ∣M(H1)∣ ≤ θ∣H1∣.

Of course, in this case, H = H1ÓM(H1) is an n -degree independent subset of F
with cardinality at least (1 − θ)∣F∣/2.
A technical fact we will use in proving the claim is that if we let

s(θ) = ( 1 − θ
2

) log2 (
2e

1 − θ
) for θ ∈ (0, 1),

then, since (n
k) ≤ ( ne

k )k
, we have

( n
n(1−θ)

2
) ≤ 2s(θ)n .

Assume the claim is false. hen whenever H1 is a subset of F with ∣H1∣ = ∣F∣/2
(without loss of generality we can assume that F has an even number of elements), we
must have ∣M(H1)∣ > θ∣H1∣.
As limθ→1 s(θ) = 0, we can choose θ suõciently close to 1 such that 1 − s(θ) > α.

A combinatorial argument shows that if H0 ⊆ F and θ∣F∣/2 < ∣H0∣ < ∣F∣/2, then the
number of subsets H1 ⊆ F containing H0 and having cardinality ∣F∣/2 is

∣ {H1 ⊆ F ∶ ∣H1∣ = ∣F∣/2,H1 ⊇ H0}∣ = ( ∣F∣ − ∣H0∣
∣F∣/2 − ∣H0∣

)(3.1)

≤ ( ∣F∣
∣F∣/2 − ∣H0∣

)

≤ ( ∣F∣
∣F∣(1 − θ)/2) ≤ 2s(θ)∣F∣ .

Here the ûrst inequality holds, because (N
n) increases if n is ûxed andN increases, and

the second inequality holds, since ∣F∣/2 − ∣H0∣ ≤ ∣F∣(1 − θ)/2 ≤ ∣F∣/2.

Proportional Sidon Sets
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We let F denote the collection of all subsets H0 ⊆ F such that there exists H1 ⊆ F
with ∣H1∣ = ∣F∣/2 andM(H1) = H0. Of course, Cn(F) ≥ ∣F∣. hus,

( ∣F∣
∣F∣/2) = ∣{H1 ⊆ F ∶ ∣H1∣ = ∣F∣/2}∣

= ∑
H0⊆F

∣{H1 ⊆ F ∶ ∣H1∣ = ∣F∣/2,M(H1) = H0}∣

≤ ∑
H0∈F

∣{H1 ⊆ F ∶ ∣H1∣ = ∣F∣/2,H1 ⊇ H0}∣

≤ ∣F∣2∣F∣s(θ) ≤ Cn(F)2∣F∣s(θ) ,

where the second inequality comes from (3.1). Since 1 − s(θ) > α, this implies

Cn(F) ≥ ( ∣F∣
∣F∣/2)2

−∣F∣s(θ) ≥ c 1√
∣F∣

2∣F∣2−∣F∣s(θ) > 2c ⋅ 2α∣F∣

for some constant c > 0 if ∣F∣ is suõciently large, and that is a contradiction. ∎

Lemma 3.4 Assume that Γ is a torsion-free group. If E ⊆ Γ is a Sidon set, then for
all positive integers n, the set En = {γn ∶ γ ∈ E} is also a Sidon set with the same Sidon
constant as E.

Proof Assume f (x) = ∑γ∈E aγγn(x) is a trigonometric polynomial with supp f̂ ⊆
En . Choose x0 ∈ G such that ∣∑γ∈E aγγ(x0)∣ = ∥∑ aγγ∥∞ and pick y ∈ G such that
yn = x0. (We can do this, since Γ torsion-free implies G is a divisible group.) As
γn(y) = γ(x0),

∣ f (y)∣ = ∣∑
γ∈E
aγγ(x0)∣ = ∥∑

γ∈E
aγγ∥

∞
≥ 1

S
∑
γ∈E

∣aγ ∣,

where S is the Sidon constant of E. Hence, En is a Sidon set with constant at most S.
It is even easier to see that the Sidon constant of E is at most the Sidon constant of

En , hence we have equality. ∎

We are now ready to prove our main result.

heorem 3.5 Assume that Γ is a torsion-free group. he following are equivalent for
E ⊆ Γ/{1}.
(i) E is Sidon.
(ii) For each positive integer n, E is proportionally n-degree independent.
(iii) For each ε > 0, E is proportionally Sidon with Sidon constant at most 1 + ε.

Proof he fact that (ii) and (iii) each imply (i) is a consequence of Pisier’s propor-
tional characterizations heorem 2.5.

he fact that (i) implies (ii) follows directly from the previous lemma and Propo-
sition 3.3.

We turn now to the proof that (i) implies (iii). Fix ε > 0 and choose η > 0 so
that (1 − η)/(1 + η) ≥ 1/(1 + ε). Pick n such that ∣e2πit − 1∣ < η/2 on [−1/n, 1/n] and
consider the continuous, even function f ∶T = [−1/2, 1/2]→ R given by f (x) = n−n∣x∣
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for x ∈ [−1/n, 1/n] and f (x) = 0 otherwise. Obviously, f ≥ 0 and f̂ (0) = ∥ f ∥1 = 1.
An easy calculation shows f̂ (±1) ≥ 1 − η/2.

Select an even, real-valued trigonometric polynomial q such that ∥ f − q∥∞ < η/2
and let p be the even, positive, trigonometric polynomial given by

(3.2) p = q + η/2
q̂(0) + η/2 .

his normalization ensures that p̂(0) = 1 and p̂(±1) ≥ (1− η)/(1+ η) ≥ 1/(1+ ε). Let
N be the degree of p.

Since Sidon sets are proportionally n-degree independent for each n, there exists
δ > 0 such that each ûnite F ⊆ E admits an (N+1)-degree independent subset H with
∣H∣ ≥ δ∣F∣.

We now give a Riesz product construction to bound the Sidon constant of H. Let
ϕ∶H → C with ∥ϕ∥∞ = 1/(1 + ε). Let uγ = ϕ(γ)/∣ϕ(γ)∣ be a complex number of
modulus one, and deûne the trigonometric polynomial Pγ on G by

Pγ(x) =
∣ϕ(γ)∣
p̂(1)

N

∑
n=−N

p̂(n)(uγγ(x))n + 1 − ∣ϕ(γ)∣
p̂(1) for x ∈ G .

hen

P̂γ(1) =
∣ϕ(γ)∣
p̂(1) p̂(0) + 1 − ∣ϕ(γ)∣

p̂(1) = 1

and

P̂γ(γ) =
∣ϕ(γ)∣
p̂(1) p̂(1)uγ = ϕ(γ).

Since ∣ϕ(γ)∣/p̂(1) ≤ 1, Pγ ≥ 0, and therefore ∥Pγ∥1 = 1.
Let P = ∏γ∈H Pγ . Since each Pγ is a polynomial in γ and γ−1 of degree N and H

is (N + 1) -degree independent, standard arguments show that ∥P∥1 = P̂(1) = 1 and
P̂(γ) = ϕ(γ) for all γ ∈ H.

Now supposeψ is any bounded E-function. If ∥ψ∥∞ = 0, we can take the zeromea-
sure as the interpolating measure. So assume otherwise and set ϕ = ψ/(∥ψ∥∞(1+ ε)).
As ∥ϕ∥ = 1/(1 + ε), we can construct P as above for ϕ. Put Q = (1 + ε)∥ψ∥P. hen
Q̂(γ) = ψ(γ) for all γ ∈ H and ∥Q∥1 = (1 + ε)∥ψ∥. his proves that H is a Sidon set
with Sidon constant bounded by 1 + ε, as we desired to show. ∎

Remark 3.6 (i) An antisymmetric Sidon set that has the additional property that the
interpolating measure can always be chosen to be positive is called a Fatou-Zygmund
set with the Fatou-Zymund constant deûned in the obvious way. As the Riesz product
measure P constructed in the proof of the heorem is a positive measure, we actu-
ally have shown that any Sidon set in a torsion-free group is proportionally Fatou-
Zygmund with Fatou-Zygmund constant arbitrarily close to 1.

(ii) Since ûnite sets have the same Sidon and I0 constants ([6]), it also follows that
E is Sidon if and only if for each ε > 0, E is proportionally I0 with I0 constant at most
1 + ε.
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When the group Γ has elements of ûnite order, the situation is quite diòerent. In
[1], Bourgain proved that every Sidon set in Γ = ZN

n , where n has no repeated prime
factors, is a ûnite union of independent sets. Hismethods actually show the following.

Proposition 4.1 Suppose Γ = ⊕N
i=1 ZN

p i
, p i prime and assume p1 = min{p j}N

j=1. hen
any Sidon set in Γ is a ûnite union of sets that are (p1 − 1)-degree independent.

However, such Sidon sets are not necessarily proportionally Sidon with Sidon con-
stants arbitrarily close to 1. Indeed, it is easy to see using Proposition 2.2(iv) that if,
for example, Γ = ZN

p for a prime number p, then any subset of Γ consisting of two
elements (even if an independent set) has Sidon constant bounded below by

sup
α ,β

( min
ξ p-root unity

∣α∣ + ∣β∣
∣α + βξ∣ ) ≥ sec(π/(2p)).

We can, however, obtain our “small constants” proportionality result for products
of cyclic groups Zp i where (p i) tends to inûnity.

Proposition 4.2 Suppose Γ = ⊕∞
i=1 Zp i where (p i)i is a sequence of prime numbers

tending to inûnity. If E ⊆ Γ is Sidon, then for all ε > 0 there is some δ > 0 such that for
all ûnite F ⊆ E , there exists a further ûnite subset H ⊆ F with Sidon constant bounded
by 1 + ε and satisfying ∣H∣ ≥ δ∣F∣.

Proof Fix ε > 0 and suppose that F is a ûnite subset of E. Let p be the polynomial
deûned in (3.2) and put N = deg p. Choose n0 such that p i > N + 1 for all i > n0.
Let Γ1 = ⊕n0

i=1 Zp i and M = ∣Γ1∣ . Choose F1 ⊆ F such that F1 = γ ⋅ Y where γ ∈ Γ1,
Y ⊆ ⊕i>n0 Zp i and ∣F1∣ ≥ ∣F∣/M. Since translation preserves Sidon constants, Y is a
Sidon set with constant at most that of E.

Now consider Yk ={χk ∶ χ ∈ Y} for k ≤N . Since the elements ofZp i for i > n0 have
prime order exceeding N , essentially the same argument as in the proof of Lemma 3.4
shows that each Yk is Sidon with Sidon constant the same as E.
Applying Proposition 3.3, we see that there is a constant δ > 0 (depending on N)

and an (N + 1)-degree independent set Y0 ⊆ Y such that ∣Y0∣ ≥ δ∣Y ∣. For Y0 , being
(N + 1)-degree independent is the same as saying∏k

i=1 γ
m i
i = 1 for ∣m i ∣ ≤ N + 1 only

if γ i = 1 for all i. hat fact allows us to apply the Riesz product construction of the
proof of heorem 3.5 (with the polynomial p), and, as in that proof, we deduce that
the Sidon constant of Y0 is at most 1 + ε. Of course, this is also a bound on the Sidon
constant ofH = γ ⋅Y0 and this subset of F has cardinality at least (δ/M)∣F∣, completing
the proof. ∎
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