The role of asymptotic giant branch stars in the chemical evolution of the Galaxy

G. Tautvaišienė¹, C. Viscasillas Vázquez¹, V. Bagdonas¹,
R. Smiljanic², A. Drazdauskas¹, Š. Mikolaitis¹,
R. Minkevičiūtėė¹ and E. Stonkutė¹

¹Institute of Theoretical Physics and Astronomy, Vilnius University, Sauletekio av. 3, 10257, Vilnius, Lithuania email: grazina.tautvaisiene@tfai.vu.lt

²Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716, Warsaw, Poland

Abstract. Asymptotic giant branch stars play an important role in enriching galaxies by s-process elements. Recent studies have shown that their role in producing s-process elements in the Galactic disc was underestimated and should be reconsidered. Based on high-resolution spectra we have determined abundances of neutron-capture elements in a sample of 310 stars located in the field and open clusters and investigated elemental enrichment patterns according to their age and mean galactocentric distances.

Keywords. stars: abundances, Galaxy: evolution

1. Introduction

Young open clusters seem to have larger abundances of s-process dominated chemical elements compared to the older ones, however, it is still debatable, whether this phenomenon is similar in all s-process elements (D'Orazi *et al.* 2017 and references therein). We derived yttrium, zirconium, barium, lanthanum, cerium, praseodymium, neodymium, and europium abundances for 37 red giant branch (RGB) stars, which are probable members of 6 open clusters (NGC 5460, NGC 5822, NGC 6709, NGC 3680, NGC 6940, IC 4651). In addition, we observed all FGK dwarfs brighter than V < 8mag (more than 400 stars) in two Galactic fields with the radii of 20° centered at $\alpha(2000) = 161^{\circ}.03552/\delta(2000) = 86^{\circ}.60225$ and at $\alpha(2000) = 265^{\circ}.08003/\delta(2000) =$ $39^{\circ}.58370$.

2. Observations and method of analysis

Spectra for the cluster stars were obtained with the 2.2 m MPG/ESO telescope at La Silla using the FEROS echelle spectrograph which provided a spectral resolving power of R = 48~000 in a spectral region of 3700–8600 Å. Galactic field stars were observed with the Vilnius University Echelle Spectrograph (VUES), mounted on the f/12 1.65 m Ritchey-Chretien telescope at the Molėtai Astronomical Observatory. With the VUES, we observed spectra in the 4000 to 8800 Å wavelength range with two spectral resolution modes ($R = 30\,000$ and $60\,000$).

For the determination of atmospheric parameters, the mean galactocentric distances R_{mean} , and ages, we applied methods described by Mikolaitis *et al.* (2018).

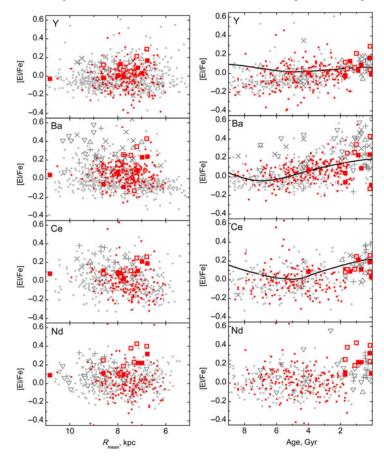


Figure 1. Elemental abundances in field stars and open clusters relatively to R_{mean} and ages. The dots indicate data for the Galactic field stars (the red – our results, the grey – by Bensby *et al.* 2014 and Battistini & Bensby 2016), the empty and filled red squares – our new and published data for open clusters, respectively (see Bagdonas *et al.* 2018 for references). The continuous lines indicate a chemical evolution model by Maiorca *et al.* (2012) at the solar radius.

3. Results

The available data (Fig. 1) do not show obvious s-process dominated element to iron abundance ratio gradients in respect to the R_{mean} . A rise of abundances is visible with decreasing age. At young ages, the observations follow the chemical evolution models by Maiorca *et al.* (2012), however, we do not observe the raise of abundances in stars older than 6 Gyr predicted by the models.

Acknowledgements

We thank the Research Council of Lithuania (LAT-08/2016).

References

Bagdonas, V., Drazdauskas, A., Tautvaišienė, G., Smiljanic, R., & Chorniy, Y. 2018, A&A, 615, A165
Battistini, C., & Bensby, T. 2016, A&A, 586, A49
Bensby, T., Feltzing, S., & Oey, M. S. 2014, A&A, 562, A71
D'Orazi, V., De Silva, G. M., & Melo, C. F. H. 2017, A&A, 598, A86
Maiorca, E., Magrini, L., Busso, M., et al. 2012, ApJ, 747, 53
Mikolaitis, Š., Tautvaišienė, G., Drazdauskas, A., et al. 2018, PASP, 130, 074202