
Glasgow Math. J. 57 (2015) 693–707. C© Glasgow Mathematical Journal Trust 2014.
doi:10.1017/S0017089514000573.

DIRECTLY FINITE ALGEBRAS OF PSEUDOFUNCTIONS ON
LOCALLY COMPACT GROUPS

YEMON CHOI
Department of Mathematics and Statistics, Fylde College, Lancaster University,

Bailrigg, Lancaster, Lancashire LA1 4YF, United Kingdom
e-mail: y.choi1@lancaster.ac.uk

(Received 2 Feburary 2014; accepted 12 May 2014; first published online
17 December 2014)

Abstract. An algebra A is said to be directly finite if each left-invertible element
in the (conditional) unitization of A is right invertible. We show that the reduced
group C∗-algebra of a unimodular group is directly finite, extending known results
for the discrete case. We also investigate the corresponding problem for algebras of
p-pseudofunctions, showing that these algebras are directly finite if G is amenable and
unimodular, or unimodular with the Kunze–Stein property. An exposition is also given
of how existing results from the literature imply that L1(G) is not directly finite when
G is the affine group of either the real or complex line.
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1. Introduction. This paper arose from work on the following problem. Let G be
a locally compact group, let 1 < p < ∞, and let f ∈ Cc(G). By integrating f against
the left regular representation of G on Lp(G), we obtain a bounded linear operator
λp(f ) : Lp(G) → Lp(G).

Question. How big is the approximate point spectrum of λp(f )?
When G is abelian, Gelfand/Fourier theory shows us that the spectrum of λp(f )

consists entirely of approximate eigenvalues; that is, the approximate point spectrum
is as big as possible. For non-abelian groups, new tools are needed, and we do not have
a complete answer.

Nevertheless, when G is discrete, it can be shown that the spectrum of λ2(f ) consists
entirely of approximate eigenvalues. The key to proving this is an old observation,
apparently first noted by Kaplansky, that the group algebra of a discrete group is
directly finite, as defined in the abstract. (See [3, Remark 2.10] for some further remarks
on the history of this observation, and later proofs.) It is therefore natural to ask if the
same is true for an arbitrary locally compact group, and this leads to the first main
result of this paper.

THEOREM 1.1. If G is unimodular, then its reduced group C∗-algebra is directly finite.

The proof boils down to an extension of the technique used in [16] for discrete
groups, with the “Kaplansky trace” replaced by the ‘Plancherel weight’. Note, however,
that Theorem 1.1 does not work if we replace the reduced group C∗-algebra with the
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group von Neumann algebra. For instance, if G is the real Heisenberg group, then its
group von Neumann algebra is isomorphic to L∞(�)⊗B(L2(�)) and therefore contains
a large supply of left-invertible elements that are not invertible. The same phenomenon
also occurs for semisimple Lie groups that are not compact.

By repeating the arguments used in the author’s previous paper [3] (specifically,
the proof of Theorem 1.2 in that paper), one obtains the following corollary of
Theorem 1.1, giving an answer to certain cases of the question raised at the start.

COROLLARY 1.2. Let G be unimodular and let f ∈ Cc(G). Then the spectrum of the
operator λ2(f ) : L2(G) → L2(G) consists entirely of approximate eigenvalues.

REMARK 1.3. The arguments from [3] would actually give slightly more, namely
that Corollary 1.2 remains true if L2(G) is replaced by any noncommutative Lp-space
associated to the group von Neumann algebra VN(G). We omit the details, since this
paper is concerned with operators on Lp(G) rather than on Lp(VN(G)).

In attempting to establish the same result for λp(f ) where p �= 2, a natural first step
would be to show that PFp(G), the algebra of p-pseudofunctions on G, is also directly
finite. We were unable to obtain a proof or a counter-example for general unimodular
groups, but by building on the C∗-case we obtain partial results. The following result
follows easily from combining Theorem 1.1 with an embedding result of Herz.

THEOREM 1.4. Let G be an amenable, unimodular, locally compact group. Then
PFp(G) is directly finite for all 1 < p < ∞.

Results of Lohoué [14] show that the assumption of amenability in Herz’s
embedding result is necessary, even in if one restricts to unimodular examples.
Nevertheless, for certain non-amenable groups one can use a similar idea to obtain the
same conclusion.

THEOREM 1.5. Let G be a unimodular, locally compact group which has the Kunze–
Stein property (see Section 4 below for the definition). Then PFp(G) is directly finite for
all 1 < p < ∞.

Examples of groups with the Kunze–Stein property are: semisimple Lie groups
with finite centre, and certain automorphism groups of trees, in their natural totally
disconnected topology. We note that a group is both amenable and Kunze–Stein if and
only if it is compact.

It is tempting to try to remove the condition of unimodularity. However, such
hopes are dashed by the following examples.

THEOREM 1.6. Let G be the affine group of either � or �. Then L1(G) (and hence
each of the algebras PFp(G) for 1 < p < ∞) fails to be directly finite.

REMARK 1.7. The key to the proof of Theorem 1.1 is the existence of a densely-
defined, faithful trace on C∗

r (G) when G is unimodular. Such a trace no longer exists
when G is the affine group of � or �. However, VN(G) is in both cases semifinite, and
therefore has an ultraweakly-densely-defined faithful trace. This should be borne in
mind when we come to the proof of Theorem 1.1.

Theorem 1.6 can be derived quickly by combining some known results scattered
through the literature. Namely, one combines a theorem of Leptin, which says that
the inclusion L1(G) → C∗

r (G) is spectrum-preserving when G is either of the groups
described above, with calculations of Diep and of Rosenberg that were used in
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classifying C∗
r (G) for certain solvable Lie groups G. Since Theorem 1.6 seems to have

gone unrecorded, as far as the author was able to find, and since the results used in its
proof may be of independent interest to researchers in abstract harmonic analysis and
Banach algebras, some details are included in an expository section.

Let us briefly describe the structure of this paper. We set up some preliminary
notation and observations on direct finiteness in Section 2, with emphasis on how
to formulate the concept in a way that works equally well for rings with or without
identities. In Section 3 we specialize to the setting of C∗-algebras equipped with densely-
defined faithful traces, and show how the ideas of [16] can be extended beyond the
setting of discrete groups to yield a proof of Theorem 1.1. Section 4 initiates a study
of direct finiteness for the algebras PFp(G) in the cases p �= 2, and gives the proof of
Theorems 1.4 and 1.5. Section 5 is essentially expository, but shows how Theorem 1.6 is
proved; and in the final section we pose some questions for future work. In an appendix
we show how to extract from two dense papers of Herz the bare minimum needed for
the proof of Theorem 1.4.

One aim of this paper is to give yet another demonstration that fairly simple
operator-algebraic techniques can be used profitably in abstract harmonic analysis.
We have attempted to make it accessible to those working in Banach algebras or non-
abelian harmonic analysis who, like the author, are not operator algebraists. In several
places this has meant repeating some material which is well-known to specialists, in
order to provide extra background, or to make the paper more self-contained, or to
provide references to sources where the reader can find actual proofs (as opposed to
assertions or references to proofs). We hope that the sacrifice of brevity for exposition
will not trouble the reader unduly.

2. Directly finite Banach algebras. Throughout, we adopt the convention that a
ring need not be commutative, nor contain an identity element. A ring R with identity
is said to be directly finite if each left-invertible element of R is invertible. Motivated by
examples from semigroup theory, Munn [17] generalized this definition to the setting
of rings without identity. It is convenient to present Munn’s definition using the notions
of left and right quasi-inverses.

DEFINITION 2.1. Let R be a ring. Given a, b ∈ R, let a • b := a + b − ab. If a • b =
0 then we say that a is a left quasi-inverse for b and b is a right quasi-inverse for a. An
element which has both a left and a right quasi-inverse is said to be quasi-invertible.

Of course, if R has an identity element 1, then

1 − a • b = (1 − a)(1 − b), (2.1)

and it is clear from this, or directly from the definition, that a • 0 = a = 0 • a for
all a ∈ A. Moreover, the operation • is associative: one could check this by a direct
calculation, but it is more instructive to adjoin a formal identity 1 and observe, using
(2.1) repeatedly, that

1 − (a • b) • c = (1 − a • b)(1 − c) = (1 − a)(1 − b)(1 − c)

= (1 − a)(1 − b • c) = 1 − a • (b • c)

(In the Banach-algebraic setting, a convenient reference for all this is [2, Section
4] .)
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REMARK 2.2. It is more intuitive to reason with left, right and two-sided invertible
elements than with their ‘quasi-’counterparts. On the other hand, the language of
quasi-inverses sidesteps the clunky use of conditional unitizations, allowing us to treat
unital and non-unital cases together.

DEFINITION 2.3. A ring R is directly finite if any pair (a, b) ∈ R × R satisfying
a • b = 0 also satisfies b • a = 0.

REMARK 2.4. In [17], a ring with this property is said to be “quasidirectly finite”.
We have chosen instead to extend the terminology from the unital case to the non-unital
one.

It is clear that if S is a directly finite ring and φ : R → S is an injective ring
homomorphism, R is directly finite; this holds even if R and S have identity elements
and φ(1A) �= 1S.

We now discuss unitizations, and from here on switch to algebras rather than
rings (just to sidestep the annoyance that the ring-unitization of an algebra is not its
algebra-unitization). Recall that the forced unitization of a k-algebra A, which we shall
denote by A�, is defined to be the vector space A ⊕ k, equipped with the multiplication
(a, λ)(b, μ) := (ab + λb + μa, λμ), and with the identity element (0, 1) denoted by 1.

LEMMA 2.5.
(i) Let A be an algebra (with or without identity). Then A is directly finite (in the

sense of Definition 2.3) if and only if each left-invertible element of A� is invertible.
(ii) Let A be an algebra with identity. Then A is directly finite (in the sense of

Definition 2.3) if and only if each left-invertible element of A is invertible.

The lemma follows easily from the identity (2.1); we omit the proof.
In a unital Banach algebra, the group of invertible elements is open in the norm

topology. There is an analogous result for quasi-inverses, see [2, Theorem 4.8]; we shall
require a slightly more precise version.

LEMMA 2.6. Let A be a Banach algebra and let c ∈ A. Suppose there exists b ∈ A
with b • c = 0. Then, for each c′ ∈ A that is sufficiently close to c, there exists a ∈ A such
that a • b • c′ = 0.

Proof. Give the unitization A� its usual norm, so that ‖1‖ = 1. We have (1 −
b)(1 − c) = 1 in A�. Let δ = (1 + ‖b‖)−1 > 0 and suppose c′ ∈ A satisfies ‖c′ − c‖ < δ.
Put u := (1 − b)(1 − c′) ∈ A�. Since ‖1 − u‖ = ‖(1 − b)(c′ − c)‖ < 1, u is invertible in
the Banach algebra A�, and a := 1 − u−1 = −∑

n≥1(1 − u)n lies in A. By construction,
1 − u = b • c′, so that a • b • c′ = 0 as required. �

The following proposition will be important in the next section, where we only
apply it to certain 2-sided ideals, and also in Section 4, where we really do need to
consider left ideals as well. The author does not know if the same result remains true
under the weaker hypothesis that J is merely a dense subalgebra of A.

PROPOSITION 2.7. Let A be a Banach algebra, and let J be a left ideal in A which is
dense for the norm topology. Then J is directly finite if and only if A is.

Proof. Clearly, if A is directly finite then so is J. Conversely, suppose J is directly
finite, and let b, c ∈ A satisfy b • c = 0. By Lemma 2.6 and density of J in A, we can
find c′ ∈ J and a ∈ A such that a • b • c′ = 0.
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Put b′ = a • b; then since b′ • c′ = 0, we have b′ = b′c′ − c′ ∈ J, as c′ ∈ J and J is
a left ideal. Since J is directly finite, c′ • b′ = 0, that is, c′ • a • b = 0. So b has a left
quasi-inverse in A, and as b • c = 0 we conclude that c • b = 0 as required. �

3. Directly finite C∗-algebras, via densely-defined traces. We recall some standard
C∗-algebraic terminology from [20, Section 5], just to fix the notation. If A is a C∗-
algebra, A+ will denote its cone of positive elements. A weight on A+ is a function φ :
A+ → [0,∞] that is �+-linear and additive. φ is faithful if φ(x) > 0 for all x ∈ A+ \ {0};
it is tracial if it satisfies φ(u∗au) = φ(u) for all a ∈ A+ and all unitary u ∈ A�.

Given a tracial weight τ on A+, there exists a 2-sided ∗-ideal Aτ ⊆ A, and a linear
tracial functional Aτ → � which coincides with τ on Aτ ∩ A+; by abuse of notation,
we will denote this functional also by τ . Aτ is called the ideal of definition of the trace τ .
Moreover, the set

Aτ
2 := {x ∈ A : τ (xx∗) < ∞}

has the same norm-closure in A as does Aτ . (See [20, Section 5.1] for the details.)

PROPOSITION 3.1. Let A be a C∗-algebra and τ a faithful tracial weight on A+. Let
B denote the norm-closure of Aτ inside A. Then B is directly finite.

When A is unital and Aτ = A = B, this result is known, and gives a quick proof that
the group von Neumann algebra of a discrete group is directly finite (see [16]) which
does not require classification of projections. The author is unaware of a reference
which explicitly states Proposition 3.1 in the generality given here, so a full proof will
be given below. The key observation is the following standard result about C∗-algebras.

LEMMA 3.2. If p is an idempotent in a C∗-algebra, there exists a Hermitian idempotent
e in that algebra which satisfies ep = p and pe = e.

When discussing this work with other researchers, the author has found Lemma 3.2
is not universally known. For convenience, we give an outline of the standard proof.

Proof of Lemma 3.2. After adjoining an identity element to our algebra if necessary,
we make the Ansatz

e = pp∗(1 + (p − p∗)(p∗ − p))−1, (†)

which clearly satisfies e = pe. It remains to check that ep = p and that e is an
idempotent. One could verify this directly, but a more intuitive approach is to take a
faithful representation of our (unital) C∗-algebra on a Hilbert space H, and regard p as a
2 × 2 operator matrix ( I R

0 0 ) with respect to the decomposition H = ran(p) ⊕ ran(p)⊥.
Computing the right-hand side of (†) with respect to this block-matrix decomposition
gives ( I 0

0 0 ), which is the orthogonal projection of H onto ran(p). �

REMARK 3.3. A similar but less spatial approach, taken by Kaplansky himself in
[11], is to exploit the theory of polynomial identities; the author thanks Meyer [15] for
bringing this to his attention.

Proof of Proposition 3.1. By Proposition 2.7, it suffices to show that Aτ is directly
finite. Let a, b ∈ Aτ be such that a • b = 0, and let p := b • a = ab − ba ∈ Aτ . We must
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show p = 0. Observe that p2 = p, since

2p − p2 = p • p = b • a • b • a = b • 0 • a = p .

By Lemma 3.2, there is a self-adjoint idempotent e ∈ B such that pe = e and ep = p; in
particular, e ∈ Aτ , since Aτ is a (right) ideal in B. Since τ is tracial,

τ (e∗e) = τ (e) = τ (pe) = τ (ep) = τ (p) = τ (ab) − τ (ba) = 0 .

As τ is faithful, this forces e = 0. Hence p = 0 as required. �
Proposition 3.1 applies, in particular, to the norm-completions of Hilbert algebras.

Let us recall some of the terminology for ease of reference. A Hilbert algebra is an
associative, complex ∗-algebra A, equipped with an inner product (· | ·) that satisfies
certain compatibility conditions: see [7, Chapitre I, Section 5, Définition 1] or [19,
Definition 11.7.1]. Completing A in the norm x �→ (x | x)1/2 yields a Hilbert space H.
Given a ∈ A we denote by Ua : H → H the unique operator satisfying Ua(x) = ax for
all x ∈ A; the map λ : a �→ Ua is an injective ∗-homomorphism from A into B(H).(See
[19, Section 11.7] for a summary of these results, or [7, Chapitre I, Sections 5–6] for
full details and proofs.)

The closure of λ(A) in the weak operator topology of B(H) is denoted by U(A),
and called the left von Neumann algebra associated to A. A fundamental result in the
theory of Hilbert algebras tells us there is a faithful tracial weight φ on U(A)+, such
that

φ(U∗
a Ua) < ∞ for all a ∈ A. (∗)

(See [7, Chapitre I, Section 6], Proposition 1 and Théorème 1 for the proof.)

COROLLARY 3.4. Let A be a Hilbert algebra, and let B be the norm-closure of λ(A)
inside B(H). Then B is directly finite.

Proof. Let τ be the restriction of the weight φ to B+; then τ is a faithful
tracial weight on B+, and in the notation used at the start of this section, (∗) tells
us that λ(A) ⊆ Bτ

2 . Hence Bτ
2 is dense in B, and by our earlier general remarks on

tracial weights, this implies Bτ is dense in B. Applying Proposition 3.1 completes the
proof. �

We can now prove Theorem 1.1. A standard example of a Hilbert algebra is given
by the space Cc(G) of continuous, compactly supported functions on G, equipped with
convolution as product, when G is unimodular. (For full details of the Hilbert algebra
structure, see [7, Chapitre I, Section 5, Exercice 5] and the ensuing hints, or [8, Section
13.10], or [19, Example 11.7.2].) The associated Hilbert space H is just L2(G); the
representation λ : A → B(H) is the left regular representation λ2 defined earlier; and
the norm-closure of λ(A) inside B(H) is C∗

r (G). Therefore Theorem 1.1 follows as a
special case of Corollary 3.4.

REMARK 3.5. We proved Theorem 1.1 by using the existence of a densely-defined
faithful trace on C∗

r (G), but we appealed to rather general results to produce this trace.
It may be instructive to have a more explicit description of what is going on. Let A(G)
be the Fourier algebra of G, and define

J = {f ∈ A(G) : h �→ f ∗ h is bounded from Cc(G) to L2(G)},
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which we might describe somewhat loosely as A(G) ∩ VN(G). The faithful trace τ can
then be described on J as τ (f ) = f (e), where e is the identity element of the group; this
is the Plancherel weight on VN(G). Finally, J contains A(G) ∩ Cc(G), so J ∩ C∗

r (G) is
the desired dense ideal in C∗

r (G). (In general J �⊆ C∗
r (G); for instance, if G = � then the

Fourier transform intertwines J with (L1 ∩ L∞)(�̂) and C∗
r (�) with C0(�̂).)

It is natural to ask if the converse of Theorem 1.1 holds. The following examples
show it does not, although in some sense they constitute a ‘cheat answer’.

EXAMPLE 3.6 (A certain family of solvable Lie groups). Let p, q be strictly positive
integers, and let α = (α1, . . . , αp+q) where each αj is a strictly positive real number.
Denote by G(p, q, α) the semidirect product �p+q

� �, where the action of � on �p+q

is given by

t �→ diag(eα1t, . . . , eαpt, e−αp+1t, . . . , e−αp+qt).

In general, G(p, q, α) is not unimodular. However, the isomorphism class of
C∗(G(p, q, α)) depends only on p and q and not on α. (See [22, pp. 12–13] and
[21, pp. 190–191].) Moreover, if we happen to choose α such that α1 + · · · + αp =
αp+1 + · · · + αp+q, then G(p, q, α) is unimodular; see [21, p. 190]. Therefore, by
Theorem 1.1, C∗

r (G(p, q, α)) is directly finite even when G(p, q, α) is non-unimodular.

REMARK 3.7. In general, if A is a Hilbert algebra, U(A) need not be directly finite.
For instance, take A to be the ∗-algebra of finite rank operators on �2, equipped with
the Hilbert algebra structure defined by the bilinear map (S, T) �→ tr(TS). Then the
associated Hilbert space can be identified with �2, and U(A) = B(�2), which is clearly
not directly finite (just look at any non-unitary isometry on �2). If we want examples of
the form Cc(G), then as mentioned in the introduction, we could take G to be the real
Heisenberg group or any semisimple connected Lie group; in all such cases VN(G) will
contain an isomorphic copy of B(�2), but since G is unimodular C∗

r (G) will be directly
finite.

4. Some groups for which PFp(G) is directly finite. We start with a quick review
of the algebras PFp(G). Let G be a locally compact group, for now not necessarily
unimodular, and as before regard Cc(G) as an algebra with product given by
convolution. For each p ∈ (1,∞), define a homomorphism λp : Cc(G) → B(Lp(G))
by

λp(f )(h) = f ∗ h (f ∈ Cc(G), h ∈ Lp(G)).

The norm-closure of λp(Cc(G)) inside B(Lp(G)) is denoted by PFp(G) and called the
algebra of p-pseudofunctions on G. Note that PF2(G) is nothing but the reduced group
C∗-algebra of G.

We have deliberately avoided introducing general convolution operators on Lp(G)
and how one represents them by (possibly infinite) Radon measures on G, just to keep
the technicalities to a minimum. Further references and additional details are given
in the monograph [5], although some of the basic properties are stated without full
proofs.

REMARK 4.1. Let G be a unimodular, locally compact group. Let p and q be
conjugate indices, strictly between 1 and ∞. The operator B(Lp(G)) → B(Lq(G)),
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T �→ T∗, is an anti-isomorphism from PFp(G) onto PFq(G). It follows that PFq(G)
is directly finite if and only if PFp(G) is.

One would like to generalize Theorem 1.1 to cover PFp(G) for G unimodular and
all p ∈ (1,∞), or to find a unimodular example for which PFp(G) is not directly finite
for some p �= 2. This section presents some partial results in the positive direction. We
start by considering the case where G is amenable. The following theorem is a special
case of results of Herz.

THEOREM 4.2 (Herz). Let G be a locally compact, amenable group. Regard λp

as a homomorphism from Cc(G) to PFp(G). Then there is an injective homomorphism
J : PFp(G) → PF2(G) such that λ2 = Jλp.

Combining Theorem 4.2 with Theorem 1.1, the following is immediate.

COROLLARY 4.3. Let G be an amenable, unimodular, locally compact group. Then
PFp(G) is directly finite, for every 1 < p < ∞.

REMARK 4.4. Let CVp(G) denote the subalgebra of B(Lp(G)) consisting of all
operators that commute with right translations. Herz’s full result, proved by combining
results in [9] and [10], says that when G is amenable there is a unital embedding
CVp(G) → VN(G) that extends the homomorphism λ2 : Cc(G) → VN(G). Clearly this
contains Theorem 4.2 as a special case. However, extracting a complete proof of the
general result from these dense papers requires some work, since the necessary results
are intertwined with other technically demanding results that are superfluous in the
present context. Therefore, in Appendix A, we have given a quick account of those
results from Herz’s papers needed to prove Theorem 4.2.

Now we change direction and turn away from amenable groups.

DEFINITION 4.5. A locally compact group G is said to have the Kunze–Stein
property, or to be a Kunze–Stein group, if for each 1 ≤ p < 2 there exists a constant
Cp ≥ 1 such that

‖g ∗ h‖2 ≤ Cp‖g‖p‖h‖2 for all g ∈ Lp(G) and all h ∈ Cc(G). (4.1)

EXAMPLE 4.6 (Examples with the Kunze–Stein property).
(i) Let G be a connected semisimple Lie group with finite centre, such as SL(n, �).

Cowling [4] proved that G has the Kunze–Stein property. (The particular case
n = 2 was established by Kunze and Stein in [12].)

(ii) Let T be a homogeneous tree of order ≥3, and equip Aut(T) with the
topology of pointwise convergence; this makes it into a locally compact,
totally disconnected group. Let G be a closed subgroup of Aut(T) which acts
transitively on the boundary ∂T . (For instance, when � is a local field, the
group SL(2, �) is of this form.) Then G has the Kunze–Stein property [18].

It is also remarked in [4] that the only amenable groups with the Kunze–Stein
property are the compact ones. In view of this, the following result is a somewhat
surprising counterpart to Corollary 4.3.

THEOREM 4.7. Let G be unimodular and Kunze–Stein. Then PFp(G) is directly finite.

The proof of Theorem 4.7 occupies the rest of this section. The main idea is to
define a dense, one-sided ideal in PFp(G) which is also a subalgebra of PF2(G), and then
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use Theorem 1.1. Let diagp : Cc(G) → Lp(G) ⊕1 PFp(G) be the ‘diagonal’ embedding,
i.e. diagp(f ) = (f, λp(f )), and define Xp(G) to be the norm-closure of diagp(Cc(G)). Let
πL and πP denote the coordinate projections from Lp(G) ⊕1 PFp(G) onto Lp(G) and
PFp(G) respectively

LEMMA 4.8. The restrictions of πL and πP to the subspace Xp(G) are both injective.

Proof. If (g, T) ∈ Xp(G) and h ∈ Cc(G), an easy continuity argument shows that
g ∗ h = T(h) ∈ Lp(G). Moreover, if S ∈ B(Lp(G)) and S(h) = 0 for all h ∈ Cc(G), then
S = 0. The result follows. �

LEMMA 4.9.
(i) Let S ∈ PFp(G) and (g, T) ∈ Xp(G). Then (S(g), ST) ∈ Xp(G).

(ii) The bilinear map Xp(G) × Xp(G) → Xp(G), defined by

((f, S), (g, T)) �→ (S(g), ST)

is associative, and makes Xp(G) a Banach algebra; moreover, πP : Xp(G) → PFp(G) is an
algebra homomorphism with dense range.

Proof. For this proof, we denote the usual Lp-norm on Cc(G) by ‖·‖p and the
operator norm on B(Lp(G)) by ‖·‖p→p. Let (gn) be a sequence in Cc(G) with diag(gn) →
(g, T); that is, ‖gn − g‖p → 0 and ‖λp(gn) − T‖p→p → 0. Let (fn) be a sequence in Cc(G)
with ‖λp(fn) − S‖p→p → 0. Then fn ∗ gn ∈ Cc(G); and a standard “3ε argument” shows
that ‖fn ∗ gn → S(g)‖p → 0 and ‖λp(fn ∗ gn) − ST‖p→p → 0. This proves part (i). For
part (ii): associativity can be checked directly, as can the fact that the norm on Xp(G)
is submultiplicative. So Xp(G) is a Banach algebra. Clearly πP : Xp(G) → PFp(G) is a
homomorphism; it has dense range, since πp diagp = λp. �

REMARK 4.10. Morally speaking, Xp(G) = PFp(G) ∩ Lp(G); however, as we have
defined things, PFp(G) is a space of operators on Lp(G) and not a space of functions
or measures on G. Rather than set up enough machinery to make sense of elements
of Lp(G) as densely-defined convolution operators on Lp(G), or to regard elements of
PFp(G) as certain kinds of distributions on G, it seemed easier here to use ‘soft’ tools.

LEMMA 4.11. When G is Kunze–Stein, there exist injective, continuous linear
maps ıKS : Lp(G) → PM2(G) and λ̃p,2 : Xp(G) → PF2(G) making the following diagram
commute:

Lp(G)

Cc(G)
diagp

�

ıp

�

Xp(G)

πL

�

PF2

ıKS

�

˜λp,2

�λ2

� (4.2)

Moreover, λ̃p,2 is an algebra homomorphism.
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Proof. Since G is Kunze–Stein, it follows from (4.1) that there exists a bounded
linear map ıKS : Lp(G) → PF2(G), which makes the outer triangle in Diagram 4.2
commute. If f ∈ ker ıKS then f ∗ h = 0 for each h ∈ Cc(G), so by basic measure theory
f = 0 as an element of Lp(G). Thus ıKS is injective.

Put λ̃p,2 := ıKSπL; clearly this is continuous and linear, and it is injective since ıKS

and πL are. By construction , it makes the right-hand inner triangle in (4.11) commute.
Now the top inner triangle in (4.11) commutes, by the definitions of diagp and πL.
Hence, by a straightforward diagram chase, the remaining inner triangle commutes.

Finally, since λ̃p,2 diagp = λ2 is a homomorphism and diagp has dense range, it
follows by continuity that λ̃p,2 is a homomorphism. �

Proof of Theorem 4.7. Let G be unimodular and Kunze–Stein. For p = 2,
Theorem 4.7 is a special case of Theorem 1.1. So by Remark 4.1, it suffices to consider
the case 1 ≤ p < 2.

By Lemma 4.11, λ̃p,2 : Xp(G) → PF2(G) is an injective algebra homomorphism;
thus Xp(G) is directly finite, using Theorem 1.1. Consider πP(Xp(G)) ⊆ PFp(G); this is
directly finite, since πP is an injective algebra homomorphism. On the other hand, by
Lemma 4.9, πP(Xp(G)) is a dense left ideal in PFp(G). Therefore, by Proposition 2.7,
PFp(G) is directly finite. �

5. Two groups for which L1(G) is not directly finite. Let � be either � or �,
equipped with its usual topology: write �× for � \ {0}, regarded as a multiplicative
group. The affine group of �, denoted by Aff(�), is defined to be the group{(

a b
0 1

)
: a ∈ �×, b ∈ �

}

equipped with the natural topology.
In this section, we give an exposition of the result stated in Section 1 as

Theorem 1.6: neither L1(Aff(�)) nor L1(Aff(�)) are directly finite. By some standard
measure-theoretic arguments, the map λp : Cc(G) → PFp(G) extends to a continuous,
injective algebra homomorphism L1(G) → PFp(G). Theorem 1.6 therefore implies that
if G = Aff(�) or G = Aff(�), none of the algebras PFp(G) are directly finite.

We start with some general definitions. A ∗-algebra A is said to be symmetric if
σ (x∗x) ⊆ [0,∞) for all x ∈ A, and Hermitian if σ (h) ⊆ � for all self-adjoint h ∈ A.
(The spectrum is taken relative to A or to A�, depending on whether A has an identity
element.) The two notions coincide for Banach ∗-algebras (see [19, Theorem 11.4.1]).
A locally compact group G is said to be Hermitian if L1(G), equipped with the usual
involution, is a Hermitian Banach ∗-algebra. Further background on Hermitian groups
can be found in [19, Section 12.6.22].

THEOREM 5.1 (Leptin). Aff(�) and Aff(�) are Hermitian.

Proof. This follows from a slightly more general result [13, Satz 6]. �
Barnes observed that groups which are both Hermitian and amenable have the

following spectral permanence property.

PROPOSITION 5.2 (Barnes). Let G be a Hermitian, amenable group, and let θ :
L1(G) → B(H) be a faithful ∗-representation on some Hilbert space. If h = h∗ ∈ L1(G),
then σL1(G)(h) = σB(H)θ (h).
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Proof. This is essentially contained in [1, Theorem 6]. Strictly speaking, the
statement of [1, Theorem 6] only gives σL1(G)(h) = σC∗

r (G)λ2(h). However, examination
of the proof, together with the theorem of Hulanicki that is quoted in [1, p. 329], shows
that λ2 can be replaced by any faithful ∗-representation of L1(G) on Hilbert space.
(The key point is that since G is amenable, the reduced and full group C∗-algebras
coincide.) �

5.1. Calculations of Diep and of Rosenberg. We first treat the case G = Aff(�),
for which our main source is Chapter 3 of the monograph [6]. The results originally
date from Diep’s thesis, and are summarized without full proofs in [23].

The irreducible, continuous, unitary representations of Aff(�) were first worked
out by Gelfand and Naimark. We focus on one in particular: let HS be the Hilbert
space L2(�×, |x|−1 dx), and define a strongly continuous unitary representation S :
Aff(�) → B(HS) by

(Sgf )(x) = eibxf (ax) for f ∈ HS and g =
(

a b
0 1

)
.

The representation S is quasi-equivalent to the left regular representation, and so in
particular the induced ∗-homomorphism C∗(Aff(�)) → B(HS) is injective. (See [6,
Proof of Lemma 3.3].)

THEOREM 5.3 (Diep). There exists f ∈ L1(Aff(�)), such that I − S(f ) : HS → HS

is injective with closed range of codimension one.

For the reader’s convenience we give an outline of the proof.

Proof. Define h ∈ L1(Aff(�)) by

h
((

a b
0 1

))
= χ|a|≤1

2a2

√
2π

exp(−b2/2) . (5.1)

By [6, Lemmas 3.6 and 3.7], I − S(h) is invertible modulo the compacts, i.e. it is
a Fredholm operator on L2(HS). In particular, it has closed range. Furthermore,
by [6, Lemmas 3.9 and 3.10], I − S(h) has one-dimensional kernel and is surjective.
We therefore take f = h∗ ∈ L1(Aff(�)); by the previous observations, I − S(f ) = (I −
S(h))∗ is injective with closed range, and has one-dimensional cokernel. �

REMARK 5.4. We have only taken from Diep’s work what is needed for the present
paper. For a fuller discussion of how C∗(Aff(�)) arises as an extension of an abelian C∗-
algebra by K(HS), and the role played by the Fredholm operator I − S(h) in classifying
C∗(Aff(�)), see [6, Section 3].

In the case G = Aff(�), we have a result analogous to Theorem 5.3, obtained by
Rosenberg [21] using a suitable adaptation of Diep’s methods. Let HS be the Hilbert
space L2(�×, |z|−1 dz), and define a strongly continuous unitary representation S :
Aff(�) → B(HS) by

(Sgf )(z) = ei Re wzf (az) for f ∈ H and g =
(

a w

0 1

)
.
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THEOREM 5.5 (Rosenberg). There exists f ∈ L1(Aff(�)) such that I − S(f ) : HS →
HS is injective with closed range of codimension one.

We omit the example and proof, which can be found, modulo some small
adjustments, in [21, Proposition 1].

Proof of Theorem 1.6. We first treat the case of Aff(�). Applying Theorem 5.3, there
exists a faithful unitary representation S : Aff(�) → HS, and some f ∈ L1(Aff(�)),
such that I − S(f ) : HS → HS is injective with closed range of codimension one. Since
I − S(f ) is not invertible in B(HS), f is not quasi-invertible in L1(Aff(�)). On the other
hand, note that

I − S(f ∗ • f ) = I − S(f )∗ • S(f ) = (I − S(f ))∗(I − S(f )),

which is invertible in B(HS).
Now, since Aff(�) is a Hermitian group and S is faithful, by Proposition 5.2 we

have

σL1(Aff(�))� (f
∗ • f ) = σB(HS)S(f ∗ • f ) .

In particular, f ∗ • f is quasi-invertible in L1(Aff(�)), with quasi-inverse h, say. Then
h • f ∗ ∈ L1(Aff(�)) and h • f ∗ • f = 1, showing that L1(Aff(�)) is not directly finite.

The proof for Aff(�) is exactly similar, except that we use Theorem 5.5 instead of
Theorem 5.3. �

6. Concluding thoughts. Theorems 1.1 and 1.6 immediately suggest the natural
question:

QUESTION 1. For which locally compact groups G is C∗
r (G) directly finite?

Even in the special case where G is a solvable Lie group, Example 3.6 suggests that
a full characterization may be somewhat tricky to obtain.

QUESTION 2. Is the completion of a directly finite normed algebra itself directly
finite?

We suspect not, but know of no counterexample. On the other hand, if Question 2
has a positive answer, then PFp(G) is directly finite for every unimodular group and all
p ∈ (1,∞).

A. Ingredients in the proof of Theorem 4.2. To fix notation and provide
background, we quickly summarize the necessary definitions from [9]. Throughout,
p ∈ (1,∞) and q is the conjugate index to p. Fix a left Haar measure μ on G. Define a
contractive linear map θp : Lp(G) ⊗̂ Lq(G) → C0(G) by

θp(f ⊗ g)(x) = 〈λp(x)f, g〉 =
∫

G
f (x−1y)g(y) dμ(y) (f ∈ Lp(G), q ∈ Lq(G), x ∈ G),

and let Ap(G) ⊆ C0(G) be the coimage of θp (more explicitly, the image of θp equipped
with the quotient norm induced from

(
Lp(G) ⊗̂ Lq(G)

)
/ ker θp). Restricting θp to the

dense subspace Cc(G) ⊗ Cc(G) yields a linear map θ : Cc(G) ⊗ Cc(G) → Cc(G), whose
image we denote by Ac(G). Note that Ac(G) is dense in Ap(G), for every p.
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Now we make some preliminary observations. Integration on G defines a pairing
Cc(G) × C0(G) → � and hence gives natural maps Cc(G) → C0(G)∗ → Ap(G)∗, the
second map being restriction. We may thus regard θ∗

p as a map Cc(G) → (Lp(G) ⊗̂
Lq(G))∗ ∼= B(Lp(G)). Explicitly, given f ∈ Cc(G) and ξ ∈ Lp(G), η ∈ Lq(G), we have

〈θ∗
p (f )ξ, η〉 =

∫
G

f (t)θp(ξ ⊗ η)(t) dμ(t).

Moreover, if ξ, η ∈ Cc(G) then it is easily checked that 〈θ∗
p (f )ξ, η〉 = 〈λp(f )ξ, η〉, and

since both θ∗
p (f ) and λp(f ) are bounded operators, density implies θ∗

p (f ) = λp(f ). In
particular, λp(f ) ∈ θ∗

p (Ap(G)) for all f ∈ Cc(G). Finally, since θ∗
p : Ap(G)∗ → B(Lp(G))

is the adjoint of a quotient map, it is an isometry with weak-star closed range. Hence,
θp(Ap(G))∗ ⊇ PFp(G), so there is an isometry φp : PFp(G) → Ap(G)∗ such that θ∗

p φp is
just the inclusion of PFp(G) into B(Lp(G)).

The key result needed from [9] is the following theorem, whose proof we omit. It
should be emphasized that the theorem is independent of the results in [10], which is
not always made clear in the secondary literature.

THEOREM A.1 ([9, Theorem 1]). Let G be a locally compact group and let p ∈
(1,∞). Then the map Ap(G) ⊗̂ A2(G) → C0(G) defined by multiplication of functions
takes values in Ap(G), and

‖f h‖Ap(G) ≤ ‖f ‖A2(G)‖h‖Ap(G) (A.1)

for all f ∈ Ap(G) and h ∈ A2(G).

We also need a result that is stated and proved in [10, Section 9], where it is
described as being folklore.

LEMMA A.2. Let G be amenable and let p ∈ (1,∞). Given any compact set K ⊆ G,
and any ε > 0, there exists a compactly supported function f ∈ Ap(G) which is identically
1 on K and has Ap(G)-norm at most 1 + ε.

Proof of Theorem 4.2. Let h ∈ A2(G) have compact support. Taking K = supp(h)
in Lemma A.2 and using (A.1), we get h ∈ Ap(G) and ‖h‖Ap(G) ≤ (1 + ε)‖h‖A2(G), for all
ε > 0. Since Ac(G) is norm-dense in A2(G), this implies that A2(G) ⊆ Ap(G) with non-
increase of norms. Moreover, since ı(Ac(G)) = Ac(G), and Ac(G) is dense in Ap(G), the
inclusion ı : A2(G) → Ap(G) has dense range. Hence ı∗ : Ap(G)∗ → A2(G)∗ is injective,
and has norm ≤ 1.

Now consider the following commutative diagram:

Cc(G)
λp � PFp(G)

φp � Ap(G)∗

PF2(G)
φ2

�

λ2
�

A2(G)∗

ı∗

�

For each f ∈ Cc(G), ‖λ2(f )‖ = ‖φ2λ2(f )‖ = ‖ı∗φpλp(f )‖ ≤ ‖λp(f )‖. Therefore, since
λp(Cc(G)) is norm-dense in PFp(G), there is a unique continuous linear map J :
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PFp(G) → PF2(G) such that Jλp = λ2. By continuity, J is an algebra homomorphism.
Moreover, for each f ∈ Cc(G),

φ2Jλp(f ) = φ2λ2(f ) = ı∗φpλp(f )

so by density, φ2J = ı∗φp. Since ı∗φp is injective, so is J, and the proof of Theorem 4.2
is complete. �

ACKNOWLEDGEMENTS. The present paper has a somewhat tangled history, and
has taken shape over the course of several years while the author has held positions at
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Scientifiques, Fasc. XXV.

8. J. Dixmier, C∗-algebras, Translated from the French by Francis Jellett, North-Holland
Mathematical Library, vol. 15 (North-Holland Publishing Co., Amsterdam, 1977).

9. C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Am.
Math. Soc. 154 (1971), 69–82.

10. C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973),
91–123.

11. I. Kaplansky, Modules over operator algebras, Am. J. Math. 75 (1953), 839–858.
12. R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic

analysis of the 2 × 2 real unimodular group, Am. J. Math. 82 (1960), 1–62.

https://doi.org/10.1017/S0017089514000573 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000573


DIRECTLY FINITE ALGEBRAS OF PSEUDOFUNCTIONS 707

13. H. Leptin, Lokal kompakte Gruppen mit symmetrischen Algebren, in Symposia
Mathematica, vol. 22 (Convegno sull’Analisi Armonica e Spazi di Funzioni su Gruppi
Localmente Compatti, INDAM, Rome, 1976) (Academic Press, London, 1977), 267–281.
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