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Abstract

We consider a broad class of fair leader election algorithms, and study the duration of
contestants (the number of rounds a randomly selected contestant stays in the competition)
and the overall cost of the algorithm. We give sufficient conditions for the duration to
have a geometric limit distribution (a perpetuity built from Bernoulli random variables),
and for the limiting distribution of the total cost (after suitable normalization) to be a
perpetuity. For the duration, the proof is established via convergence (to 0) of the first-
order Wasserstein distance from the geometric limit. For the normalized overall cost, the
method of proof is also convergence of the first-order Wasserstein distance, augmented
with an argument based on a contraction mapping in the first-order Wasserstein metric
space to show that the limit approaches a unique fixed-point solution of a perpetuity
distributional equation. The use of these two steps is commonly referred to as the
contraction method.
Keywords: Leader election; recurrence; functional equation; fixed point; contraction
method; metric space; perpetuity; weak convergence
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1. Introduction

There is a plethora of research work on leader election algorithms, each dealing with a
specific instance of the problem (see, e.g. [5], [7], [9], [11], [12], [13], and [16]). There is a
need for a broader framework to establish results for classes of such algorithms. The recent
work [8] gives a theory for the cost associated with the number of rounds (equivalently the
height of the underlying incomplete tree). It is our purpose in this paper to give a parallel set
of conditions to obtain results for the duration of contestants and overall cost for a broad class
of leader election algorithms.

Fair leader election algorithms are used in numerous applications including the selection of
a winner of a contest, a loser of bets, or a coordinator of a security system in the case of failure
of the existing central coordinator. The common scenario in these situations is the following.
There are a number of contestants who will compete fairly to elect a winner (and in some
variations they may all lose the election, resulting in no winner). The contestants go through
elimination rounds in which they generate events that decide whether or not they advance to
the next round, or alternatively a moderator generates these events to fairly elect the candidates
at the next round. The concept of fairness will be implied throughout, according to which the
chance (probability) of winning is the same for all contestants.
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In the analysis of several specific variants of leader election algorithms, the typical parameter
that researchers have focused on has been the number of rounds till termination (see [5]
and [7]). An equally important parameter is the total cost. For instance, in variants in which
the elimination is determined by coin flips, the cost can be taken to be the total number of coin
flips till termination. We also study the prospects of a particular contestant, as represented by
the distribution of the number of rounds she stays, which is an important measure from the
point of view of an individual contestant.

To embed the fair leader election in a broader scope of algorithms, we consider an underlying
one-sided tree structure (also called an incomplete tree). Consider, for instance, the classic case
of n contestants flipping coins, and only those who flip Heads (with probability p) advance to
the next round. Those who flip Tails (with probability q) are out of the competition, unless
all the contestants flip Tails, in which case the coin tosses are deemed inconclusive and all
the contestants try again. Rounds of coin tossing are repeated among those who advance till
one winner is elected as a leader. A path in a binary tree (also called the trie) underlies this
elimination process. If we develop both sides of the tree, we would get the full binary tree
with each contestant residing in a leaf by herself. However, as we eliminate the losers by
pruning the branches leading to them, we trim the tree down to a path joining the root to the
single leaf containing the winner. Such an incomplete tree forms the backbone for many one-
sided algorithms, such as the tree that underlies the algorithm Find [19], which identifies order
statistics in a data set.

Our main contribution is to present a unifying treatment for leader election algorithms,
and to see how perpetuities naturally come about. In the past, leader election algorithms
have been discussed via a variety of methods, such as analytic techniques, Poissonization,
integral transforms, and others, which may work for some splitting protocols but not for all.
Our treatment covers one-sided leader election algorithms represented by a certain stochastic
recurrence with linearly bounded toll functions. The methodology can be extended, with some
adaptation, to other one-sided algorithms of similar structure; see, e.g. [3], [10], [14], and [19].
A variety of other one-sided algorithms may be approached by the methods we discuss in the
present paper, such as the random walk on interval trees [6], which have a continuous flavor.

2. The technical setup

Assume that there are n contestants competing. They (or a contest moderator on their
behalf) generate(s) a certain number Kn ∈ {0, 1, . . . , n}, possibly deterministic or random,
of candidates who remain in the contest and the rest of the contestants are eliminated. The
algorithm is then applied recursively on the remaining set of contestants, until a leader is elected
or no one wins the contest. The generated events and the moderators are fair, in the sense that
all contestants have the same chance of winning. The cost (number of steps) of the operations
for generating the set of candidates who advance to the next round is a toll Tn. It is natural to
consider efficient algorithms, where Tn is of order n. Thus, it costs Tn to generate a specific
subset of candidates, of size Kn. We call the selection algorithm a splitting protocol, and call
the set chosen to proceed to the next round the advancing set. We shall study the distribution
of the duration of an individual contestant and the total time or cost of the competition.
We define these two parameters in the two following subsections.

2.1. Duration of a contestant

Let Dn,j be the number of rounds, or the time duration, that the j th contestant survives.
Under a fair splitting policy, all contestants are equally likely to be selected to advance, and
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we have Dn,j
d= Dn,1 (here

d= denotes equality in distribution). So, we shall develop results
for Dn := Dn,1, dropping the second subscript to keep the notation simple. Thus, Dn has the
distribution of the duration of a randomly selected contestant too.

We have a stochastic recurrence for Dn, ensuing as follows. Contestant 1 either advances
to the next round with probability (conditioned on Kn) equal to

(
n−1

Kn−1

)
/
(

n
Kn

) = Kn/n, by the
fairness of the selection algorithm, or loses the contest and gets eliminated in one step, if she
is not selected in the advancing set (with conditional probability 1 − Kn/n). The algorithm
repeats recursively on the set chosen to advance. Thus, for n ≥ 2, and for a given Kn, we have
a stochastic recurrence equation:

Dn
d=

{
1 + DKn with probability Kn/n,

1 with probability 1 − Kn/n.

The initial conditions are D0 = D1 = 0. Let U be a random variable uniformly distributed on
(0, 1). Equivalently, we can write the latter recurrence as

Dn
d= 1{U<Kn/n}DKn + 1, (1)

where, for any n ≥ 2, Kn is a random variable with a given distribution on 0, . . . , n, and Kn,
U , and Di are independent for all i < n. All the random variables are defined on the same
probability space. So, if P(Kn = n) < 1, this gives a recursive definition for the distribution
of Dn.

2.2. The total cost

Let Xn be the total cost till termination (i.e. till a winner is chosen or the moderators declare
there are no winners). It takes a toll of Tn in the first round to produce the set that will advance
to the second round, and then the algorithm is applied recursively on this set of remaining
contestants. The toll can be taken to be the time it takes to generate the advancing set measured
in suitable units, such as the number of algorithmic steps or machine instructions when the
algorithm is executed on a computer, or the number of coin flips in coin flipping variants.
We shall say more about these tolls in particular contexts in the following text.

For n ≥ 2, we have a stochastic recurrence equation for the total underlying cost till
termination:

Xn
d= XKn + Tn, (2)

with initial conditions X0 = X1 = 0. Here, for any n ≥ 2, again Kn is a random variable with
a given distribution in the set {0, . . . , n}, and (Kn, Tn) is independent of X0, . . . , Xn−1. All the
random variables are defined on the same probability space. So, if P(Kn = n) < 1, this gives
a recursive definition for the distribution of Xn.

Under suitable normalization, a random variable satisfying a distributional recurrence of
type (2) usually leads to a stochastic fixed-point equation

X∗ d= K∗X∗ + T ∗,

with X∗ independent of (K∗, T ∗), and with the latter pair having the limiting distribution
of (Kn/n, Tn/n). In the context of a leader election, T ∗ is integrable and X∗ will also be
integrable. A random variable satisfying the latter distributional equation is called a perpetuity,
a construct that appears in insurance and the mathematics of finance [4], in stochastic recursive
algorithms (see [1], which is quite relevant to our work), and in many other areas.
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The rest of the paper is organized as follows. In Section 3 we give the main results in two
subsections: Subsection 3.1 is for a set of regularity conditions to derive the main theorems,
which are presented in Subsection 3.2. Section 4 is dedicated to the technical proofs of the
main results. We end the paper in Section 5 with five illustrative examples, presented in five
subsections, one example per subsection.

3. Main results

We impose sufficient regularity conditions, of broad applicability, to derive a geometric limit
distribution for Dn, and a perpetuity representation for a suitably scaled version of Xn.

3.1. A set of regularity conditions

When we say that a sequence of random variables Yn is OL1(g(n)), we mean there exist
a positive constant C and a positive integer n0 such that E[|Yn|] ≤ C|g(n)| for all n ≥ n0.
We shall assume the following set of regularity conditions, for some α ∈ (0, 1) and random
variables all defined on the same probability space:

(i) The advancing set size satisfies

K∗
n := Kn

n
= K∗ + OL1

(
1

nα

)

for some limiting random variable K∗, with distribution supported on [0, 1], and mean
E[K∗] < 1.

(ii) The toll function satisfies

T ∗
n := Tn

n
= T ∗ + OL1

(
1

nα

)

for some integrable limiting random variable T ∗.

The rationale for condition (i) is clear—the size Kn of the advancing set is always a proportion
of n, and we deal with cases where Kn/n converges in the L1 norm to a limit K∗ at a fast
enough rate to aid the convergence of the duration and scaled cost. If Kn/n does not converge,
there may be no convergence at all for the distributions of Dn and Xn.

The rationale for condition (ii) is that we are considering only efficient selection algorithms
that do not perform superfluous steps. It is possible for most familiar distributions of Kn

to generate equally likely subsets of size Kn to advance to the next round (with cost Tn) in
time asymptotically proportional to Kn, as we shall see in a number of illustrating examples.
In general, it is possible to generate the advancing set in O(n) time. For the total cost, we
require convergence of Tn/n for reasons similar to the rationale of (i).

Remark 1. The regularity conditions (i) and (ii) are not too restrictive in practice. Natural
splitting protocols easily meet these constraints, as we shall see in several illustrative examples
in Section 5.

Remark 2. Regularity condition (i) implies that supn≥ν E[(K∗
n)1−α] < 1 for some ν ≥ 1, a

technical point that is instrumental in building induction proofs of convergence.
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3.2. The main theorems

The first main result is represented using the notation Geo(p), for the geometric random
variable with success probability p. We use the symbol

d−→ to denote convergence in distribution.

Theorem 1. Suppose we conduct a leader election among n contestants, in which a fair
selection of a subset of contestants of a random size Kn advance to the next round, and the
algorithm is applied recursively on that subset until one leader is elected or no one is elected.
Assume that Kn follows regularity condition (i). Let Dn be the duration (number of rounds) a
contestant stays in the competition. We then have

Dn
d−→ Geo(1 − E[K∗]).

Remark 3. The only aspect of K∗ that enters the picture in the limit is its mean. All distributions
of K∗ that have the same mean, will have the same limit geometric distribution for the duration
of a contestant. This shows that fair leader election is a robust algorithm across a wide variety
of splitting protocols. For instance, we shall see that uniform splitting, binomial splitting (with
an unbiased coin), and certain ladder contests, in spite of remarkable differences among these
splitting protocols, all have Geo( 1

2 ) as limit for the duration of participants.

Theorem 2. Suppose we conduct a leader election among n contestants, in which a fair
selection of a subset of contestants of a random size Kn advance to the next round, and
the algorithm is applied recursively on that subset until one leader is elected or no one is
elected. Assume that Kn follows regularity condition (i). Suppose, moreover, that generating
the advancing set of size Kn costs Tn, with Tn satisfying regularity condition (ii). Let Xn be the
total cost of the algorithm (over all rounds till termination). We then have

Xn

n

d−→ X∗,

where X∗ is a perpetuity given by

X∗ d= S∗
1 +

∞∑
j=1

S∗
j+1

j∏
i=1

V ∗
i ,

with {(V ∗
i , S∗

i )}∞i=1 being a totally independent set of random vectors distributed like (K∗, T ∗).

4. Proofs

The Wasserstein distance of order k between two distribution functions F and G is defined
by

�k(F, G) = inf ‖W − Z‖k,

where the infimum is taken over all coupled random variables W and Z (defined on the same
probability space) having the respective distribution functions F and G (with ‖ · ‖k being the
usual Lk norm). In what follows we use FY for the distribution function of a random variable Y .
It is well known [2] that, for a sequence of random variables Wn, the convergence of first-order
Wasserstein distances between FWn and FW to 0 implies the convergence Wn

d−→ W , as well as
convergence of the first absolute moment.
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Before giving the proof of Theorem 1, we note that, in view of regularity condition (i),
the structure of the stochastic recurrence (1) suggests that Dn converges to a limiting random
variable, say D∗, satisfying the distributional equation

D∗ d= 1{U<K∗}D∗ + 1, (3)

with D∗ and 1{U<K∗} being independent and U and K∗ also independent.
The strategy of the proof is to first show, in Theorem 3, that the first-order Wasserstein

distance between Dn and D∗ converges to 0. Then, in Lemma 1, we elicit the nature of the
limit, which turns out to be a geometric random variable.

Theorem 3. (The coupling theorem.) Let Dn be as in Theorem 1. Then

Dn
d−→ D∗,

where D∗ satisfies (3).

Proof. Let (Dn, D
∗) be optimal couplings for all n ≥ 0. Let

bn := E[|(1{U<Kn/n}DKn + 1) − (1{U<K∗}D∗ + 1)|].
We show that bn → 0; subsequently, we have �1(FDn, FD∗) ≤ bn → 0, i.e. Dn

d−→ D∗. Since
Dn and D∗ are an optimal coupling defined on the same space, they have a joint distribution,
and bn is well defined. By regularity condition (i), 1{U<Kn/n} = 1{U<K∗} + OL1(n

−α), so

bn ≤ E[|1{U<Kn/n}(DKn − D∗)|] + E

[∣∣∣∣D∗ × OL1

(
1

nα

)∣∣∣∣
]

= E[|1{U<Kn/n}(DKn − D∗)|] + E[D∗] × E

[
OL1

(
1

nα

)]
;

the separation of the expectations of the OL1 term (coming from K∗
n −K∗) and D∗ follows from

their independence. It is immediate from (3) that D∗ has mean 1/(1 − E[K∗]). Condition (i)
guarantees that this mean is finite. By regularity condition (i), there exists a positive integer n0
and a positive real constant A, such that

E[|K∗
n − K∗|] ≤ A

nα
for all n ≥ n0. (4)

By the finiteness of E[D∗], we see that A′ = A/(1 − E[K∗]) is a positive number. We use
conditional independence to write

bn ≤
n∑

k=0

k

n
E[|Dk − D∗|]P(Kn = k) + A′

nα

= bnP(Kn = n) + 1

n

n−1∑
k=0

kbkP(Kn = k) + A′

nα
.

According to Remark 2, the probability P(Kn = n) is less than 1 for all n ≥ ν ≥ 1. So, for all
n ≥ n′

0 = max{ν, n0}, we can now write

bn ≤ (1/n)
∑n−1

k=0 kbkP(Kn = k) + A′/nα

1 − P(Kn = n)
.
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Let us start an induction to show that bn ≤ h/nα for some constant h > 0. (One may be
able to weaken the regularity conditions to ones without rates (in this context, assuming rates
of convergence leads to constructive and transparent proofs). It may be possible to find a proof
(probably more involved) that does not assume such rates.) For 1 ≤ n ≤ n′

0, we have

bn ≤ max
1≤j≤n

bj ≤ (n′
0)

α max1≤j≤n′
0
bj

nα
=: h1

nα
.

This can be a basis of induction, if h is taken at least as large as h1.
Assume, for some n ≥ n′

0 and all k ∈ {1, . . . , n − 1}, that bk ≤ h/kα . We have

bn ≤ (1/n)
∑n

k=0 khP(Kn = k)/kα − hP(Kn = n)/nα + A′/nα

1 − P(Kn = n)

= hE[(Kn/n)1−α]/nα − hP(Kn = n)/nα + A′/nα

1 − P(Kn = n)
.

The induction step will be complete if, for all n ≥ n′
0,

hE[(K∗
n)1−α] − hP(Kn = n) + A′

1 − P(Kn = n)
≤ h.

Indeed, such a bound holds if h is chosen high enough. Specifically, after rearrangement, we
see that the bound holds if

h ≥ A′

1 − E[(K∗
n)1−α] for all n ≥ n′

0,

which is the case if

h ≥ A′

1 − supn≥n′
0
E[(K∗

n)1−α] =: h2.

Take h = max{h1, h2}, and by induction bn ≤ h/nα for all n ≥ 1. Thus, �1(FDn, FD∗) ≤
bn → 0. This completes the proof of Theorem 3.

Lemma 1. A random variable D∗ satisfying (3) has a geometric distribution with parameter
1 − E[K∗].

Proof. Letφ∗(t)= E[eD∗t ]be the moment generating function ofD∗, with t < ln(1/E[K∗]).
Condition on the indicator random variable to write

φ∗(t) = E[e(1{U<K∗}D∗+1)t ]
= et

P(1{U<K∗} = 0) + E[e(D∗+1)t ]P(1{U<K∗} = 1)

= et (1 − E[K∗]) + et φ∗(t)E[K∗].
The solution to this equation is

φ∗(t) = (1 − E[K∗])et

1 − E[K∗]et
,

which is the moment generating function of Geo(1 − E[K∗]) and so Lemma 1 holds.
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Proof of Theorem 1. Theorem 3 and Lemma 1 establish a proof for Theorem 1.

The tool we shall use to prove Theorem 2 is the contraction method. This method was
introduced by Rösler [18] to analyze the Quick Sort algorithm. Soon thereafter, it became a
popular method because of the transparency of structure it provides in the limit for processes
with complicated distributional recurrences. A broad theory is developed in [15], an exposition
in the context of recursive algorithms is given in [17], and [20] provides a survey.

The proof will be in three parts: Theorem 4, Lemma 2, and a concluding argument. In the
theorem we prove that X∗

n converges to a limit. The proof of this theorem runs along very
similar lines to those in the proof of Theorem 3. We shall be brief in our sketch, and argue
points only where there is a divergence from the proof of Theorem 3. In forthcoming Lemma 2
we shall show that the limit represents a contraction mapping in the first-order Wasserstein
metric space. Thus, it must have a unique fixed point (distribution function). We cannot use
a direct technique like that in Lemma 1 because K∗ and T ∗ are, in general, dependent and
it is not straightforward to get an explicit solution for the functional equation of the moment
generating function, whereas in (3) the counterpart of T ∗ is 1, which is independent of 1{U<K∗},
and an explicit unique solution for the moment generating function is attainable. A concluding
argument establishes the unique limit as a perpetuity. In other words, Theorem 1 did not need
the full power of the contraction method. It does not need a uniqueness argument at the end,
as the uniqueness is in the nature of the limiting equation itself.

Before giving the proof of Theorem 2, let us write recurrence equation (2) in normalized
form:

X∗
n := Xn

n

d= XKn

Kn

Kn

n
+ Tn

n
= K∗

nX∗
Kn

+ T ∗
n . (5)

In view of regularity conditions (i) and (ii), the structure of this normalized equation suggest
that X∗

n converges to a limiting random variable, say X∗, satisfying distributional equation

X∗ d= K∗X∗ + T ∗, (6)

with X∗ independent of (K∗, T ∗), and the latter pair has the limiting distribution of (K∗
n , T ∗

n ).

Theorem 4. Let X∗
n be as defined in (5). Then

X∗
n

d−→ X∗,

where X∗ satisfies (6).

Proof. Let us take the pairs (K∗
n , K∗), for n ≥ 0, to be independent. We consider the

same for (T ∗
n , T ∗) and for (X∗

n, X
∗). We assume these conditions, together with regularity

conditions (i) and (ii), and also that (X∗
n, X

∗) are optimal couplings for all n ≥ 0. Use these
variables as realizations in the right-hand sides of (5) and (6). We have

gn := E[|(K∗
nX∗

Kn
+ T ∗

n ) − (K∗X∗ + T ∗)|]
≤ E[|K∗

nX∗
Kn

− K∗X∗|] + E[|T ∗
n − T ∗|].

Since all the random variables are defined on the same space, and we are dealing with an
optimal coupling, Xn and X∗ have a joint distribution, and gn is well defined. By regularity
condition (ii), there exist a positive integer n′′

0 and a positive real constant A′′ such that

E
[|T ∗

n − T ∗|] ≤ A′′

nα
for all n ≥ n′′

0.
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Recall here the bound on E[|K∗
n − K∗|] (established in (4)). In addition, from (6), E[X∗] =

E[T ∗]/(1 − E[K∗]), which, in view of the regularity conditions, is a well-defined positive
number. Combining the bounds, we see that

gn ≤ E

[∣∣∣∣K∗
nX∗

Kn
−

(
K∗

n − OL1

(
1

nα

))
X∗

∣∣∣∣
]

+ A′′

nα

≤ E[|K∗
n(X∗

Kn
− X∗)|] + E

[∣∣∣∣X∗OL1

(
1

nα

)∣∣∣∣
]

+ A′′

nα

= E[|K∗
n(X∗

Kn
− X∗)|] + E[X∗]E

[
OL1

(
1

nα

)]
+ A′′

nα

≤ E[|K∗
n(X∗

Kn
− X∗)|] + E[T ∗]A

(1 − E[K∗])nα
+ A′′

nα

for n ≥ max{n0, n
′′
0} (where n0 is the integer we used in the proof of Theorem 3). Recall that

T ∗ is integrable, and let A′′′ = AE[T ∗]/(1 − E[K∗]) + A′′. We have

gn ≤ gnP(Kn = n) + 1

n

n−1∑
k=0

kgkP(Kn = k) + A′′′

nα
.

According to Remark 2, the probability P(Kn = n) is less than 1 for all n ≥ ν. So, for all
n ≥ n′′′

0 = max{ν, n0, n
′′
0}, we can now write

gn ≤ (1/n)
∑n−1

k=0 kgkP(Kn = k) + A′′′/nα

1 − P(Kn = n)
.

Next we carry out an induction to show that, gn ≤ h′/nα , if h′ is chosen such that, for all
n ≥ n′′′

0 ,

h′ ≥ A′′′

1 − E[(K∗
n)1−α]

≥ A′′′

1 − supn≥n′′′
0

E[(K∗
n)1−α] ,

and by Remark 2, the right-hand side in the last inequality is a well-defined positive number.
For large enough h′, covering initial conditions at the basis, the induction is complete. Hence,
X∗

n

d−→ X∗. This completes the proof of Theorem 4.

Lemma 2. (Contraction.) There is a unique distribution satisfying (6).

Proof. The conditions

E[|K∗|s] < 1 and E[|T ∗|s] < ∞
for some s ∈ [1, ∞) guarantee E[|X∗|s] < ∞; see [4, p. 458]. In our case, these conditions are
satisfied for s = 1. Regularity condition (i) guarantees the former, and the fact that our class
of toll functions Tn is O(n) guarantees the latter.

View the right-hand side of (6) as a mapping from the Wasserstein metric space of order 1
(of distribution functions under the Wasserstein distance of order 1) into itself. Let X∗ and Y ∗
be two (integrable) random variables satisfying (6), with distribution functions FX∗ and FY ∗
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such that X∗ is independent of (K∗, T ∗) and Y ∗ is independent of (K∗, T ∗). Start with the
calculation

E[|(K∗X∗ + T ∗) − (K∗Y ∗ + T ∗)|] = E[K∗]E[|X∗ − Y ∗|].
Condition (i) ensures that E[K∗] is strictly less than 1. Taking the infimum of every version
X∗ and Y ∗ having the respective distribution functions FX∗ and FY ∗ , we find that

�1(FK∗X∗+T ∗ , FK∗Y ∗+T ∗) < �1(FX∗ , FY ∗).

Thus, the mapping is contracting. As the mapping is a contraction in a complete metric space,
there is a unique fixed point (i.e. distribution function) satisfying (6). This completes the proof
of Lemma 2.

Proof of Theorem 2. Having established, in Lemma 2, the uniqueness of the distribution of
X∗, we proceed to argue that X∗ is a perpetuity. It is shown in [4, pp. 457–459] and [21]
that distributional equations of the form (6) unwind into a sum of products of independent
random variables (i.e. a perpetuity) as in Theorem 2, provided that −∞ ≤ E[ln |K∗|] < 0 and
E[ln+ |T ∗|] < ∞. These conditions are satisfied in our case because K∗ is supported on [0, 1]
and is not a mass at 1, and we are considering only efficient splitting, dealing with, at most,
linear toll functions. Theorem 4, Lemma 2, and the above concluding argument complete the
proof of Theorem 2.

Remark 4. We can iterate (3) to obtain the perpetuity

Dn
d−→ 1 + B1 + B1B2 + B1B2B3 + · · · ,

where {Bi}∞i=1 are totally independent identically distributed (i.i.d.) Bernoulli random variables
with success probability E[K∗]. Of course, the representation of the limit as a geometric random
variable in Theorem 1 appeals to a more standard distribution. However, the latter perpetuity
representation reinforces the notion that perpetuities may come about in the distribution of
several characteristics of leader election algorithms, like Dn and Xn.

5. Examples

We give a few examples arising from practical applications that illustrate the asymptotic
theory presented. For some of these examples we shall be able to say a word that goes a bit
beyond asymptotics into areas such as exact moments or rates of convergence. We shall present
the first example in some detail. The presentation will be briefer for the rest.

5.1. Uniform splitting

In this example we study the behavior of Dn and Xn when the splitting protocol generates a
set of size Kn following a discrete uniform distribution on the set {1, 2, . . . , n}. In this example,
we can find some exact moments and say something about rates of convergence. We derive
a functional equation for φn(t), the moment generating function of Dn, from distributional
equation (1)

E[etDn | Kn] = et

(
1 − Kn

n

)
+ etetDKn

(
Kn

n

)
,

with an unconditional expectation satisfying

φn(t) := E[etDn ] = et

n
E[KnetDKn ] + et − et

n
E[Kn],
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valid for n ≥ 2. Using the fact that Kn is uniformly distributed on the set {1, 2, . . . , n}, we
have the recurrence

φn(t) := et

n

n∑
k=1

kφk(t) + et − 1

2
(n + 1)et .

This full-history recurrence involves a telescopic sum. The recurrence is simplified if we
subtract from it a version written with n − 1 replacing n, yielding

φn(t) = (n − 1)2φn−1(t) + (n − 1)et

n(n − et )
,

valid for n ≥ 3. Under the initial condition φ2(t) = et /(2 − et ), it can be shown by induction
that

φn(t) = et

2 − et
− et

n(2 − et )
+ et�(2 − et )�(n)

n�(n + 1 − et )
, (7)

valid for n ≥ 2, and t < ln 2. (Such results are first conjectured with the aid of a symbolic
manipulation system such as MAPLE®. Once the form is obtained, induction follows easily.)

Derivatives of (7), evaluated at t = 0, give us exact moments. The following proposition
uses the notation H

(r)
n = ∑n

s=1 1/sr for the nth harmonic number of order r (with H
(1)
n written

customarily as Hn).

Proposition 1. For n ≥ 3, we have

E[Dn] = 2 + Hn

n
− 1

n
− 1

n2 ,

var[Dn] = 2 − 1

n
− 2

n − 1
+ 2

n2 − 2

n3 − 1

n4 − 3Hn

n
+ 2Hn

n − 1
+ 2Hn

n3

− 2Hn−1

n(n − 1)
+ H 2

n

n
− H 2

n

n2 + H
(2)
n

n
.

So, the mean and variance of Dn are asymptotically equivalent to 2. Let U be the standard
(continuous) uniform random variable on (0, 1). On a suitable probability space, Kn = 
nU�.
Thus, Kn/n = U+O(1/n), and condition (i) is satisfied (we can take α = 1

2 ). And so, K∗ = U

with mean E[K∗] = 1
2 . According to Theorem 1, we have

Dn
d−→ Geo

( 1
2

)
.

The limit distribution can also be obtained from the exact moment generating function, via
Stirling’s approximation of the gamma function. This approach gives rates of convergence.
For instance, for all t < 1

2 ln 2, φn(t) approaches the limiting geometric moment generating
function at a rate of O(n−(2−ln 2)). Let us take the time of the execution of machine instructions
to perform the steps of the loop body of the generating algorithm as the unit of time. Whence,
Kn+c can be taken as the toll Tn (to generate a set of size Kn), where c is the fixed overhead of the
algorithm (defining variables, setting up loops, etc.). Thus, we have Tn/n = 
nU�/n + c/n =
U + O(1/n). Note that here T ∗ = U . Condition (ii) is satisfied (with α = 1

2 ), yielding a
limiting perpetuity

X∗
n

d−→ U1 + U1U2 + U1U2U3 + · · · ,

and {Ui}∞i=1 are totally i.i.d. continuous uniform (0, 1) random variables. (Note, the limiting
perpetuity also has Dickman’s distribution.)
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5.2. Power distribution splitting

The uniform distribution is a member of a class called power distributions. A power
distribution with parameter θ ≥ 0 has a probability mass function

P(Kn = k) = kθ∑n
j=1 jθ

, k = 1, 2, . . . , n.

The discrete uniform distribution is in fact a special case of the power distribution with θ = 0.
A calculation shows that Kn/n converges in distribution to the continuous random variable K∗,
which has a Beta(θ + 1, 1) distribution, with mean value (θ + 1)/(θ + 2). All the regularity
conditions for Theorems 1 and 2 are satisfied and, as n → ∞, we have

Dn
d−→ Geo

(
1

θ + 2

)
,

X∗
n

d−→ V1 + V1V2 + V1V2V3 + · · · ,

and {Vi}∞i=1 are i.i.d. beta(θ + 1, 1) random variables.

5.3. Binomial splitting

This is a classic example and several of its properties have been studied; see [5], [7], [9],
and [16]. The mechanics of the splitting have been discussed in the introduction. In the crudest
variation, if all candidates flip Tails, they are eliminated, resulting in no winner. In this variation,
Kn has the binomial distribution underlying n independent identically distributed experiments,
with success probability p per experiment. The conditions for Theorem 1 are all met and, as
n → ∞, we have

Dn
d−→ Geo(q).

This result appears in [9], where the authors further show that the lower-order asymptotics in
the distribution function may have oscillations.

The total cost or speed of the algorithm is measured by the number of independent coin flips.
In a serial environment, where all the contestants share one coin, which they pass from one to
the next, the cost of the first round is n (coin flips). So, Tn/n ≡ 1, and all the conditions for
Theorem 2 are met. We have the first-order asymptotic

Xn

n

p−→ 1 +
∞∑

j=1

j∏
i=1

p = 1

q

as given in [9]. Second-order asymptotics are also given in [9], specifying a rate of convergence
for this weak law in the form of a central limit theorem.

5.4. An example with a splitting distribution with atoms

Suppose that, after the first round, the advancing set has a size distributed as

Kn =

⎧⎪⎨
⎪⎩

0 with probability 1
3 ,

k ∈ {1, 2, . . . n − 1} with probability 1/3(n − 1),

n with probability 1
3 .

Let U be a continuous uniform (0, 1) random variable. So, Kn/n converges in L1 to K∗,
a mixture of three variables of values 0, U , and 1, where each of the three variables has 1

3
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probability of being the outcome. We can generate such a mixture from two independent
uniform (0, 1) random variables U and V by letting

Kn = 1{1/3<V ≤2/3}
(n − 1)U� + 1{2/3<V <1}n,

where 1E is the indicator function that takes the value 1 if E occurs, and 0 otherwise. Thus, we
have

K∗
n = Kn

n
= 1{1/3<V ≤2/3}U + 1{2/3<V <1} + O

(
1

n

)
=: K∗ + O

(
1

n

)
.

The limit distribution K∗ has atoms (i.e. jumps in the distribution function) of magnitude 1
3 at

0 and at 1. Here E[K∗] is 1
2 . The conditions for Theorem 1 are met, and we have, as n → ∞,

Dn
d−→ Geo

( 1
2

)
.

We also have Tn = Kn + c (where c is a constant overhead). That is, T ∗
n = K∗

n +O(1/n) =
K∗ + O(1/n). The conditions for Theorem 2 are met, giving a limiting perpetuity

Xn

n

d−→ V1 + V1V2 + V1V2V3 + · · · ,

where {Vi}∞i=1 is a set of totally i.i.d. random variables, all having the mixed distribution function

F(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x < 0,
1
3 if x = 0,
x

3
+ 1

3
if 0 < x < 1,

1 if x ≥ 1.

5.5. An almost-deterministic ladder example

Many real-life tournaments, such as the Wimbledon Championship, are organized in ladders.
Of course, in these tournaments, advancing to later rounds is based on skill. However, many
other tournaments and games in local communities are organized in ladders, where advancing
to later rounds is based on luck. In these contests, n is not always guaranteed to be a power
of 2. An instance of such a ladder is the following. Suppose that n is even, then a ladder
can be created by asking contestants i and i + 1 to compete, for i = 1, 3, . . . , n − 1, with
only one of them advancing to the next round. For instance, say a moderator flips an unbiased
coin and chooses contestant i if the toss is heads, and chooses i + 1 if the toss is tails. If n

is odd, one contestant gets through first without competing (sometimes called a bye), and the
contestants are renumbered 1, . . . , n−1 (even), and the procedure above for an even number of
contestants is applied. As we are committed in this manuscript to fair leader election algorithms,
we construct our ladder to advance 
 1

2n� contestants, and if n is odd, the bye is generated by a
moderator uniformly at random from among the n participants, and thus all contestants have an
equal chance to win the contest. In this example, the size of the advancing set is deterministic,
but elements of randomness appear in the content of that set.

In our fair ladder, Kn = 
 1
2n�, and so Kn/n = 1

2 + O(1/n). It is easy to check that all the
conditions for Theorem 1 are met; the duration of any contestant in the competition converges
in distribution

Dn
d−→ Geo

( 1
2

)
.
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The advancing set is created in time Tn =  1
2n� + O(1). Thus, Tn/n = 1

2 + O(1/n), and
all the conditions for Theorem 2 are met. The scaled overall cost converges to a perpetuity

Xn

n

p−→ 1

2
+ 1

2

∞∑
j=1

j∏
i=1

1

2
= 1.

Acknowledgements

Professor Dr Uwe Rösler has patiently read several drafts of this manuscript. The authors
are very thankful to Uwe, whose many insightful comments not only added accuracy and rigor
but also improved the presentation and rid the manuscript of some ambiguous notation. Uwe
carefully guided us to fine-tune some of the techniques, for which we are most grateful. We
also thank an anonymous referee for many constructive comments.

References

[1] Alsmeyer, G., Iksanov, A. and Rösler, U. (2009). On distributional properties of perpetuities. J. Theoret.
Prob. 22, 666–682.

[2] Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9, 1196–1217.
[3] Elmasry, A. and Mahmoud, H. (2011). Analysis of swaps in radix selection. Adv. Appl. Prob. 43, 524–544.
[4] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events. Springer, Berlin.
[5] Fill, J. A., Mahmoud, H. M. and Szpankowski, W. (1996). On the distribution for the duration of a randomized

leader election algorithm. Ann. Appl. Prob. 6, 1260–1283.
[6] Itoh, Y. and Mahmoud, H. M. (2003). One-sided variations on interval trees. J. Appl. Prob. 40, 654–670.
[7] Janson, S. and Szpankowski, W. (1997). Analysis of an asymmetric leader election algorithm. Electron. J.

Combin. 4, Research Paper 17.
[8] Janson, S., Lavault, C. and Louchard, G. (2008). Convergence of some leader election algorithms. Discrete

Math. Theoret. Comput. Sci. 10, 171–196.
[9] Kalpathy, R., Mahmoud, H. M. and Ward, M. D. (2011).Asymptotic properties of a leader election algorithm.

J. Appl. Prob. 48, 569–575.
[10] Kirschenhofer, P. and Prodinger, H. (1998). Comparisons in Hoare’s Find algorithm. Combin. Prob. Comput.

7, 111–120.
[11] Louchard, G. and Prodinger, H. (2009). The asymmetric leader election algorithm: another approach. Ann.

Comb. 12, 449–478.
[12] Louchard, G., Martínez, C. and Prodinger, H. (2011). The Swedish leader election protocol: analysis and

variations. In ANALCO11—Workshop on Analytic Algorithmics and Combinatorics, SIAM, Philadelphia, PA,
pp. 127–134.

[13] Louchard, G., Prodinger, H. and Ward, M. D. (2012). Number of survivors in the presence of a demon.
Period. Math. Hungar. 64, 101–117.

[14] Mahmoud, H. M. (2010). Distributional analysis of swaps in Quick Select. Theoret. Comput Sci. 411,
1763–1769.

[15] Neininger, R. and Rüschendorf, L. (2004). A general limit theorem for recursive algorithms and
combinatorial structures. Ann. Appl. Prob. 14, 378–418.

[16] Prodinger, H. (1993). How to select a loser. Discrete Math. 120, 149–159.
[17] Rachev, S. T. and Rüschendorf, L. (1995). Probability metrics and recursive algorithms. Adv. Appl. Prob. 27,

770–799.
[18] Rösler, U. (1991). A limit theorem for ‘Quicksort’. RAIRO Inform. Théor. Appl. 25, 85–100.
[19] Rösler, U. (2004). QUICKSELECT revisited. J. Iranian Statist. Soc. 3, 271–296.
[20] Rösler, U. and Rüschendorf, L. (2001). The contraction method for recursive algorithms. Algorithmica 29,

3–33.
[21] Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible

random variables. Adv. Appl. Prob. 11, 750–783.

https://doi.org/10.1239/aap/1396360110 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1396360110

	1 Introduction
	2 The technical setup
	2.1 Duration of a contestant
	2.2 The total cost

	3 Main results
	3.1 A set of regularity conditions
	3.2 The main theorems

	4 Proofs
	5 Examples
	5.1 Uniform splitting
	5.2 Power distribution splitting
	5.3 Binomial splitting
	5.4 An example with a splitting distribution with atoms
	5.5 An almost-deterministic ladder example

	Acknowledgements
	References

