
STAR DIAGRAMS AND THE SYMMETRIC GROUP 

R. A. STAAL 

Introduction. The irreducible representations of the symmetric group Sn, 
were shown by A. Young to be in one-to-one correspondence with certain 
arrays of n nodes. E.g. for n = 12 and the partition X = [4, 4, 3, 1] we have 
the array 

X: 

which we call a "Young diagram." The question arises as to the manner in 
which various properties of the representations are reflected in their corres
ponding Young diagrams. 

The study of modular representations [1] has shown that, relative to a given 
prime, p, the ordinary (non-modular) irreducible representations of a group 
gather into "^-blocks". Two irreducible representations of Sn belong to the 
same £-block if and only if their corresponding diagrams have the same 
"£-core" (see 1.8). This was conjectured by T. Nakayama in 1940 [3], and 
proven by R. Brauer and G. de B. Robinson in 1947 [2]. The proof involved 
an auxiliary diagram—the "star diagram" of the Young diagram concerned. 
It is the purpose of the present paper to discuss the construction of the star 
diagram in greater detail, and to place greater emphasis upon it than has 
hitherto been done. 

The distribution into ^-blocks has to do with the power, e{z), to which p 
divides the degree, z, of the representation concerned. Nakayama [4] obtained 
a formula for e(z) in terms of the diagram's "^-series" (see 1.7), namely 

e(z) = e(n\) - 2>(/>*!). 
t 

This formula, however, was not suitable for the proof of his conjecture. 
Nakayama was led to the ^-series of X by the study of the "£-hook" (see 1.4) 
structure of X. Robinson [5] showed (see below) that this £-hook structure 
could be represented by an associated diagram, X*—the "star diagram" of X 
(usually denoted Xp* : we omit the subscript, reserving the space for another 
use later on). The diagram X* is in general skew (see 1.2) and to such a diagram 
corresponds a reducible representation [6] of 5m , where m is the number of 
nodes of the diagram. The following formula [2] was used in the proof of the 
conjecture: 
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80 R. A. STAAL 

A: e(zx) = e(n\) - e((n - A)\) + e(z„). 

(A denotes the number of nodes of the p-core of X, and sx* is the degree of the 
reducible representation corresponding to X*.) 

The proof of formula A, however, was based on Nakayama's formula, which 
involved the ^-series, —an entity not appearing in A. Accordingly it was 
felt that full use was not being made of the star diagram, X*, and it was hoped 
that a proof could be developed in terms of it alone. 

The present paper begins with a proof of the following existence theorem 
for X*: 

B: Given a right diagram, X, and a positive integer, q, there exists a diagram, 
X*, such that there is a one-to-one correspondence between kq-hooks of \ and 
k-hooks of X*. 

An auxiliary theorem, B', shows that X* represents the actual g-hook struc
ture of X, with regard to removal of g-hooks from X. Simple considerations of 
congruence provide a new proof of the fact that X* has at most q disjoint con
stituents. 

The following theorem exhibits the connection between X and X* in a form 
which leads to a new proof of A: 

C : Gather the ô's of X (see 1.9) into classes of 8's which are congruent (mod q). 
For each such class form the diagram whose ft s are those of this class. 
The star diagrams of the diagrams thus formed are the constituents of X*. 

A proof of A is then given which depends only on X*, and pairs the factors 
p of zx and zx* in an explicit manner. (In A we take g to be a prime, p.) 

The diagram X* and the ^-series of X are shown to be related in the following 
way: 

D : Given X, form X*, (X*)* = X2*, . . . , Xr*, where Xr* is a p-core. Suppose 
the p-core of X** has Ai nodes. Then the p-series of X is 

pr, . . . (Ar times); pr~~l, . . . (Ar-\ times); . . . ; p, . . . (A\ times). 

This leads to a new proof of Nakayama's ^-series formula for e(z), based on 
Theorem A. All told, emphasis on the star diagram, rather than the ^-series, 
is seen to recast the theory in a more orderly and understandable manner. 

1. Notation, definitions. We shall find it convenient to collect the numer
ous definitions which are required into a preliminary section. 

1.1 A right (Young) diagram is an array of n nodes with straight top and 
left sides, and whose rows are in non-increasing order of length. A node which 
has no node one row below and one column to the right of it is said to be a 
node of the rim of the diagram. 
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1.2 A skew diagram is what is obtained by removing from the top left corner 
of a right diagram another right diagram which is contained in it. E.g. 

o o 

o 

1.21 • o o o 
o o o 

o 

The circled nodes form a skew diagram. 

1.3 A disjoint (skew) diagram is one which consists of constituents having 
no rows or columns with nodes in common. (See star diagram of 2.1). 

1.4 A right hook of a diagram, X, consists of a node of X, together with all 
nodes directly below it, and directly to the right of it. If it has q nodes, it is 
called a q-hook, or a hook of length q. We shall call the top-right and bottom-
left nodes of a hook its top and bottom nodes, respectively. E.g. 

o o o o-f-

1.41 . o + + + 
. o+ + 

The circle nodes form a 6-hook. (Two of them are marked " + " as well). 

1.5 Each right hook has an associated skew hook, of the same length, consist
ing of all the nodes along the rim from the top node of the given hook to its 
bottom node. (The nodes in 1.41 marked "+" form a skew hook.) A piece of 
the rim is the skew hook of some right hook if, and only if, its top node has 
no node to the right of it (in its row) and its bottom node has no node below 
it (in its column). 

1.6 To remove a hook from X, we erase the nodes of its associated skew hook. 
(The removal of the 6-hook of 1.41 leaves the diagram whose nodes are those 
not marked " + " . ) 

1.7 The p-series of X: Let the longest hook of X whose length is a power of 
p be of length pex. Remove this hook from X. Let the longest hook of the 
remaining diagram whose length is a power of p% but not greater than pe\ be 
of length pe\ Remove this hook and repeat the process until all such hooks 
are removed. The resulting sequence, 

J / I ^2 u.e% 

P , P , P , • > -

is the ^-series of X. (The 2-series of 1.81 is 8,4.) 

1.8 The p~core of X: The result of the successive removal of the hooks of the 
^-series is a right diagram—the p-core of X. It is uniquely determined by p 
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and X, and is obtained also when all &£-hooks (k = 1,2,3,. . .) are removed 
from X in any order whatever [4]. E.g. 

o 

1.81 . . . . 

The 2-core consists of a single node (circle). 

1.9 The h-numbers of X: The lengths of the hooks which begin in the top 
row of X are called the "ô-numbers" or "ô's" of X. They are numbered in the 
order of their lengths, i.e. 5i > ô2 > ô3 > . . . . "à" is also used to refer to the 
hook whose length is ô. This convenient ambiguity causes no difficulties. 
(The ô's of 1.21 are 9, 7, 6, 4, 1 and those of 1.41 are 8, 7, 6, 4, 3.) 

2. Star diagrams. We prove the following existence theorem. 

B. Given the right diagram X, and a positive integer q, there exists a diagram 
X* (called the ustar diagram" of X) such that there is a one-to-one corres
pondence between kq-hooks of X and k-hooks of X*. 

Example : 

2.1 q = 2 X: ' + + X*: + + 

. + . 

It is sufficient and simpler to consider skew hooks (see 1.5) and we shall now 
refer to these simply as "hooks". We shall consider the nodes of a hook to 
be ordered from top to bottom and right to left. A node which has no node 
to the right of it (in its row) we shall call an "H", and a node which has no 
node below it (in its column)we shall call an iiF1\ An F cannot precede (im
mediately) an H. If a node is not an F, then the node which follows it is an H. 

Carrying out Robinson's construction[5], we take the longest (any one of the 
longest) &g-hook, Ji, in X, of length k±q, say, and consider the chain, G, of all 
fcç-hooks having the same top node, Hi, as J\. Suppose the lengths of these 
&g-hooks are kiq, k^q, faq, . . . ksq; we construct the diagram whose 5's are 
fei, &2, • • • , ks (ki > k2 > k% > . . . > k8.) This diagram we take to be the first 
constituent, X*i, of X*. (In 2.1, k\ = 3, k2 = 2.) This gives a one-to-one 
correspondence between the &g-hooks of G and &-hooks of X*i which begin 
in the top row of X*i. More than this follows, however. 

Consider any £-hook, K, of X*i, consisting of the (r + l)th, . . . , (r + fe)th 
nodes of the rim of X*i. Its bottom node is the bottom node of an (r-ffe)-hook 
of X*i, beginning in the top row of X*i: this hook corresponds to an 
(r + £)g-hook of X, beginning at Hi, and whose bottom node, an F, is the 
(r + k)qth node of J\. 
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Suppose the rqth node of Ji were to the right of the (rq + l) th node. Then 
it would be an F, and the first rq nodes of Ji would form an rq-hodk corres
ponding to an r-hook consisting of the first r nodes of the rim of X*i. But the 
(r + l) th node of the rim of X*i is the top node of the hook K, and such a 
node cannot follow the bottom node of a hook. Hence the (rq + l)th node 
of J\ is an H. 

Therefore, corresponding to K there is a kq-hodk of X, beginning at the 
(rq + l)th node of Ji. 

Next, let / be a kq-hodk of X whose bottom node is the tqth node of Ji, which 
is the bottom node of a hook of &. The tth node of the rim of X*i must then 
be an F\ k cannot exceed t, for otherwise J\ would not be the longest hook of X 
whose length is a multiple of q. The top node of I is an H—hence the pre
ceding node is not an F, and the first (t — k)q nodes of J\ do not form a hook. 
Hence the first (t — k) nodes of the rim of X*i do not form a hook, and the 
(t — k + l)th node is an H. 

Hence the k nodes of the rim of X*i which follow the (/ — &)th node form a 
fe-hook corresponding to / . 

So far we have a one-to-one correspondence between k-hooks of X*i and kq-hooks 
of X whose bottom nodes are bottom nodes of hooks of &. For each &-hook of 
X*i there is a ô-hook of X*i having the same bottom node: the corresponding 
kq-hodk of X has the same bottom node as the hook of X corresponding to this 
Ô-hook. 

Continuing Robinson's construction, we take the longest &g-hook, J2, of X 
which is not already represented in X*i and repeat the previous construction, 
obtaining X*2. We continue in this way until all the kq-hodks of X are used up, 
obtaining diagrams X*i, X*2, . . . X*™, which we arrange disjointly to form X*. 

It remains to show that a given &g-hook, M, of X is represented in only one 
constituent of X*. Let X*a, X*&, a 5* b, correspond to the chains Ca, Cb of 
feg-hooks. It is sufficient to show that the bottom node of M cannot be the 
bottom node of a hook of Ca and a hook of C&. 

Suppose it were, and suppose the top node of Ja were m nodes above the 
top node of /&. Then m would be divisible by q, and the hook running from 
the top of Ja to the bottom of J& would belong to Ca. But then Jb would be 
represented in X*a, and also a > b, since Ja would be longer than Jb: thus Jb 
would already have been represented, contrary to hypothesis. 

Hence the correspondence is one-to-one, and the theorem is proven. 
The following theorem shows that if corresponding hooks are removed from 

X and X*, the relationship between them is unaltered. 

B \ If a k-hook is removed from X*, leaving X*, and the corresponding kq-hook 
is removed from X, leaving X, then (X)*= X*. 

Nakayama showed that the removal of a &g-hook can be accomplished by 
the successive removal of k g-hooks. Hence it is sufficient to consider the 
removal of a single node from X*. This will affect only the constituent, X*», 
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in which it appears. If it is the top node of X*;, it will (when removed) reduce 
all the ô's of that constituent by 1: if it is not the top node, it will reduce 
exactly one ô by 1—namely the ô of which it is the bottom node. Let B be 
the g-hook of X corresponding to the node removed from X*, and let h J be its 
top and bottom nodes respectively. Consider the effect of removing B from X. 

When B is removed, the node (if there is one) preceding h (on the rim of X) 
becomes an F. (It was not previously an F.) Any other nodes preceding B 
remain unaffected. The node following/ (if there is one) becomes an H. (It 
was not previously an H.) All other nodes following B remain unaffected. 
If there are nodes preceding B and nodes following B, then when B is removed, 
q new nodes become members of the rim in its place. These are the nodes 
situated one space diagonally up and to the left of the nodes of B : they form 
a piece of rim identical in shape to B. The node corresponding to h is not an 
H (of X), however, and the node corresponding t o / is not an F. Otherwise 
these q nodes are H's or F's, or both, according as the corresponding nodes of 
B are H's or Fs or both. If there are no nodes preceding B, then there may 
be less than q new nodes becoming part of the rim of the diagram: the same 
thing may happen if there are no nodes following B. In any case, however, 
the above remarks apply to as many new members of the rim as there may be. 

Consider first the case where the node removed from X** is the top node of 
\*i. When it is removed, all the ô's of X*\ are reduced by 1. We must check 
and see that the hooks of d are all reduced by q, and that the other chains re
main unaffected as to the lengths of their hooks. B in this case will be the 
smallest hook of d, and h will be the top node of the hooks of d. The node 
corresponding to h (see above) if there is one at all, is not an H, and the node 
following/, if there is one, becomes an H. Thus we have a chain of X whose 
node is q nodes below h, and the bottom nodes of the hooks remain unaltered. 
This reduces the lengths of the hooks of C by 1, as required. 

Let Cj, j 5* iy be a chain with top node c. Then c cannot coincide with h. 
If it lies above h it is unaffected by the removal of B. (It remains an H.) 
Those bottom nodes of hooks of Cj which lie below B are unaffected. If a 
bottom node b of a hook of Cj is a node of J3, then it lies at least one column 
to the right of the column of/, and since c is at least one row above h, and hence 
above 6, b is not in the first row of X. Hence there is a node corresponding 
to b—one row above and one column to the left, and this node will be an F. 
Thus the lengths of the hooks of Cj are unchanged. (More precisely, if X 
has a chain Cj, then X has a chain of hooks of the same lengths.) Exactly 
similar arguments deal with the other possible locations of c. 

Any chain of X corresponds to some chain of X, for a bottom node of one 
of its hooks is either an F of X, corresponding to a node of B, or is the node 
preceding h on the rim of X. In the last case the chain corresponds to the 
chain Cu and in the other cases it corresponds to the chain of which it (or its 
corresponding node) is a bottom node. Thus the star diagrams (X)* and X* 
are identical. 
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Exactly similar arguments deal with the case where the node removed from 
X* is not the top node of X**, completing the proof of the theorem. 

3. Classes of congruent ô's. A diagram is completely determined by its 
ô's, and these will be our primary concern in the sections to follow. In this 
section we make some remarks concerning the congruent (mod q) classes of 
ô's of a right diagram. 

Consider the chain, Ct, of kq-hooks corresponding to X*;. Suppose Hu the 
top node of these hooks, is the (m + l)th node of the rim of X. The lengths 
of the hooks are all divisible by q, and their bottom nodes are bottom nodes of 
ô's of X. The lengths of these ô's are just m greater than the lengths of the 
hooks of d. Hence they are all congruent (mod q). We shall refer to them 
as ô*'s. 

A ô* cannot be congruent (mod q) to a ô\ i ^ j , for suppose it were, and 
suppose i > j . Then the bottom node, / , of the dl would lie c nodes (along 
the rim) below the bottom node of the dj

y where c = 0 (mod q), and/would be 
the bottom node of a hook of Cy. But / is also the bottom node of a hook of 
d, and this cannot be, as was seen in §2. Hence the ô*'s are not congruent to 
the ôy's, i ?± j . 

Since there can be at most q different classes of numbers congruent (mod g), 
we have immediately 

3.1 The number of constituents of ô* is at most q. 

This was formerly proven by Robinson, using a theorem of Nakayama's, 
and by consideration of the removal of hooks from X. 

The following theorem is used in the proof of Theorem A. 

C. Gather the è's of X into classes of ô's which are congruent (mod q). For 
each such class of congruent ô's form the diagram whose ô's are the ô's of 
this class. The star diagrams of the diagrams thus formed will be the 
constituents of X*. 

To illustrate the theorem let q = 3 and consider the diagram 

3.2 X: 

The ô's are 9, 7, 5, 4, 2, and the classes of congruents ô's are {9}, {7, 4} ,{5, 2}, 
which yield the diagrams 
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with star diagrams . , . . null. 

Thus X* is 

To prove C, consider a class, K, of congruent Ô's, and let /x be the diagram 
whose ô's are the members of K. We have just seen that the 5's of X which 
have bottom nodes in common with hooks of a chain, d, are all congruent 
(mod q). We will show that, if K is the class of all ô's congruent to those 
associated in this way with some Ci, then /x* = X*t: otherwise /z* is null. 

Suppose that the hooks of d, are of lengths k\q, k2q> . . . , k8q, and that 
their common top node, Hi, is the (w + l) th node of the rim of X. Then the 
members of K are kiq + m, k2q + rn,. . . , ksq + m and possibly some of m — q, 
m — 2q, . . . as well: these will be the 5's of /x. We wish to show that the 
(w + l)th node of the rim of /x is an H, but that the (rn + 1 — q)th, (m + 1 
— 2g)th, . . . nodes are not H's. This will yield a chain of hooks of /n of lengths 
kiq, k^q, . . . , ksq, as required. 

The rath node of the rim /x is not an F, for suppose it were: then the rath 
node of the rim of X would be an F also, but this could not be, since the 
(m + l)th node, Hi, is an H. Hence the (m + l)th node of the rim of \i is an H. 

The (w + 1 — bq)th node, g, of the rim of X is not an H, for if it were then 
there would be a chain of fcg-hooks beginning at g, and the hooks of C» would 
already have been represented in the constituent of X* corresponding to this 
chain, contrary to assumption. Hence the (m — bq)t\\ node is an F, and so 
is the (m — bq)th node of the rim of ju. Hence the (m — bq + l)th node of 
the rim of fx is not an H. 

Therefore /z has a chain of &g-hooks identical with C». It can only have one 
chain, since all the 5's of /x are congruent (mod q). Hence /x* = X**. 

Finally, suppose that the members of K have no bottom nodes in common 
with hooks of d, for any i. Then \i has no feg-hooks, for, suppose the (p + l)th 
and (p + &g)th nodes of its rim are an H and an F respectively. The (p+kq)th 
node of the rim of X is then an F. The £th node of the rim of /x is not an F, 
since the (p + l)th is an H; hence the pth node of the rim of X is not an F, 
and hence the (p + l) th node is an H. But this results in a &g-hook of X 
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which shares its bottom node with a ô of K, contrary to assumption. Hence 
M* is null. 

4. The determination of e(zx). We shall henceforth require q to be a prime, 
p. The degree of the irreducible representation corresponding to X is 

n ( ô s - ôt) 
4.1 Zx=n\ï±l  

no*! 
i 

The degree of the reducible representation corresponding to X* is 
B\ 

4.2 zx* = . z x * x . . . Zx*k 

where Bi denotes the number of nodes in X*;, B = ^Bi, k is the number of 
i 

constituents of X*, and zx*i is given by 4.1 applied to X**. 
We shall prove 

A: e(zx) = e(n\) - « ( ( » - A) I) + e(zx*) 

by pairing off factors p from sx and zx*. First we deal with the particular 
case where (1) X* has exactly one constituent, and (2) the &£-hooks of the 
corresponding chain all begin at the top node of X—that is, they are all 5's of 
X. The general case is reduced to this special case by (1) Theorem C, which 
reduces the problem to consideration of a single constituent, and (2) Lemma 
4.3 which enables us to remove rows from the top of X until the row at which 
the &g-hooks begin is reached. 

4.3 LEMMA. Suppose X has no Kp-hook beginning in the first row, and suppose 
the first row of X is removed, leaving X of n nodes. Then 

e(zx) - e(zi) = e(nl) - e(n\). 

Let us assume X to have the form 

k 

so that the first row is k nodes longer than the second row, where k = 0. 
We wish to compare 

n (ôi- ÔJ) . n (ôf-ôg). n (ôa-ôb) 
z x= n\^- f<g ^  

n(ôs + fc + l)!fe! (* - l ) ! . . .3 !2! l 

_, n (h- ôt) 
with 2x = n\ u(èsl) 
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where (a) ô{, ôj of X have their feet (bottom nodes) in X (and in X). 

(b) 5/, 8g of X have their feet in the first row of X. (Hence in the last 
k nodes of this row.) 

(c) ôa of X has its foot in X (and in X), 5& of X has its foot in the first 
row of X. 

(d) ~ôs,~ôt are ô's of X. 

Note that (d8 + k + 1), as s varies, and k, (k — 1), . . . , 3, 2, 1 are just the 
ô's of X. 

(i) (hi— ôj) depends only on the feet of ôt-, ôj, hence II (ô{ — ôj) = II (ôs — fo) 
a n d e ( n ( ô ~ ô i ) = e(Il~ôs-ôt) ) . i<j s<i 

i<j s<t 

(ii) k < p, for otherwise there would be a Kp-hook in the first row of X, 
contrary to assumption. Hence ôf < p, ôg < p, and e(U (ôf — ôg) ) , 
e( (k)\ (k - l)\ (k - 2)\ . . . 3!2!1) are both zero. f<8 

(iii) (às+k + l)\ = ( ^ + k + 1 } ( ^ + k) ( - s + 1 ) ; ( ^ + fc + 1 } ig n Q t 

divisible by p, since X was assumed to have no Kp-hook. beginning in the first 

row. Hence e(^s+}^ ^ l \ = e{ (ô9+ 1) . . . (ôs+ k) ), and we note that 

(ô s+ k), . . . , (ô s+ 1) are the terms of II (ôa— ôb) with a given ôa= ô s + Jfe + 1. 

rn(^+^ + !)n fl<& 

Hence e __ - . = e( II (ôa — ô&) ). Thus all contributions cancel 
L s H Ôs- J a<6 

except those of n\ and n !. These yield the required result. 
4.4 LEMMA. If \ is a p-core, then e(zx) = e(n\). 

This is proven by removing rows until the last row is reached, and applying 
4.3 on the removal of each row. 

4.5 COROLLARY. If \ is a p~core, then e 
"n(ôs - ôty 
s<t  

Uôil 
= 0. 

The following two lemmas are given without proof. 

4.6 LEMMA. e( (pa)\) — e(a\) = a> a any integer. 
k 

4.7 LEMMA. If X has k columns, then £ ô{= n + -g-fe (fe — 1). (A well-known 
result.[4]) i==1 

We are now in a position to prove an important special case of the main 
theorem. 

4.8 If X* has exactly one constituent, and each ô of X* represents a ô of X then 

e(zx) = e(«!) - e( (n - A)\) + e(zx*), 
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where zx is given by 4.1. We observe that 8S — 8t makes no contribution to 
e(zx) unless 8S = 8t (mod p). Hence we may write 

zx = n\U 
" n («.*'-vy 
s<t  

nô/! J 
K 

where the 8l's are a class of congruent ô's and II is taken over these classes, 

and K makes no contribution to e(zx). Since X* has only one constituent, 
just one class of ô's yields a diagram which is not a p-core. (See C.) For the 
other classes, 4.5 tells us that 

n (8S
{- 8t

{y 

nô/! 
j 

Hence the contributing part of zx is just 

n («v 
n\ 

| S<t 

= 0. 

•i°t) 

n 5°,! 

where the ô°'s are the ô's corresponding to the 5's of X*. Let us denote a S 
of X* by 5*. Each ô* represents a 5 of X, by assumption, and ô = pô*. Hence 
we may write 

n (pS*.-pP,).(pB)\ 
C = nl ±±i 

n (ja*i)\ {pB)\ 
i 

where the extra unit factor is added for later convenience, and 
n (8*8-8*t) 

zx„ = J3 ! m . (B defined as in 4.2.) 
n 8*\ 
i 

It remains to show that 
e(C) = e(n)\ - e((n - A)\) + e(z„). 

By Theorem B', if a ^-hook is removed from X*, and the corresponding feg-hook 
is removed from X, then the relationship of diagram to star diagram is pre
served. This leads directly to the fact that pB = n — A, which accounts for 
the term e(n\) — e( (n — A)l). For the remainder, consider: 
(1) e[ n (p8*s- p8*t)} - e[ n («*.-«*,)]. 

This is seen to be equal to the number of differences (8*s — 8*t)f which is 
jz k(k — 1), where k is the number of columns of X*. 

(2) e((pB)l) - e(B\) = B, by 4.6 

(3) e[ n ((pi*i) !)] - e[ U (ô*t-!)] = Eô*i by 4.6 

= B + \k(k - 1) by 4.7. 

Then (1), (2) and (3) yield the required result. 
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Next we extend 4.8 by means of 4.3. 

4.9 / / X* has exactly one constituent, then the result of 1^.8 holds. 

Let H be the top node of the fcp-hooks of X which correspond to ô's of X*. 
Remove rows until the row of H is reached. Denote the succession of diagrams 
obtained by Xi, X2, X3, . . . ,Xr, and the number of nodes in X* by n^ 

Xr satisfies the conditions of 4.8, and X*r = X*. Suppose the p-core of Xr has 
Ar nodes. 

e(zx) - e(zXr) = e(zx) - e{zx) + e{zx) - . . . + e(zXr_x) - e(zXf) 

= e(n\) - e(«i!) + e(ni\) - . . . + e(nr-i\)-e(nr\), by 4.3 

= e(n\) — e(nr\). 

Since X*r = X*, 4.8 yields 

e(zXr) = e(nr\) - e( (nr - Ar)\) + e(zx*). 

Butn — A = pB = nr — Ar, since X*r = X*, hence 
e{zx) = e(n\) - e(nr\) + e{zXf) = e(n\) - e((n - A)I) + e(zx*). 

We can now prove the main theorem. 

A: e(zx) = e(n\) - «( (n - A)\) + e(sx*). 

/n(«/ -« / ) \ 
n\ n ^ :  

i \ n ( « / ) ! / 
We have zx = n\ II ^ : . K 

i\ n(«/)! / 
j 

where Hi is taken over classes of congruent ô's and K & 0. Each class {ô1} 
is the class of ô's of a diagram, Xi, with ni nodes and a p-core of Ai nodes, say. 

If Xi is a p-core, then, by 4.5 

= 0. 

Hence we need only consider II to range over classes {ô1} for which X; is 

not a p-core. We now apply Theorem C, proven in 3. This tells us that the 
(X*t)'s are just the constituents of X*, and we may suppose the X/s to be 
numbered correspondingly. We have 

i \ M j ! / 

;w) - e((m -Ai)\) +e(zx*i) by 4.9 

= -« ( (pB*)! ) + e(«x*,). 

Also, (4.2), zx* = - ^ - n z x * i . . 
U.L>i\ i 
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Hence e(zx) = «(n!) - 2>( (/>£;)!) + E«fow) 

e(zx.) = e(B!) - £«(B<!) + E f o . , ) . 
i i 

Hence e(zx) - «&•) = «(»!) - «(5!) + £ e(Bf!) - e ( (pBi)\) 
i 

= «(»!) - e(B\) - ZBt by 4.6 
% 

= «(»!) - «( (pB)\) + e{ (pB)\) - e(B\) - B 

= «(»!) - e((n - A)\) by 4.6. 

5. Star diagrams and the p-series. We have derived Robinson's formula 
for e(zx) without making use of the ^-series of X. To make the story complete, 
however, we should reverse the original procedure carried out by Robinson, 
and derive the ^-series formula for e(z\) from that which we have just proven. 
The main task is to find a connection between the star diagram and the ^-series. 

Let us repeat the operation of forming star diagrams. That is, we form X*, 
then we form the star diagrams of the constituents of X*, arrange these in 
order, forming (X*)*, and so on. Denote the sequence of diagrams thus formed 
by X, X*, X2*, . . . , Xr* and the number of nodes in their p-cores by A, Au Ai, 
. . . , Ar, where Xr* is a p-core. A node removable from X** represents a p-hook 
removable from X(ï_1)*: continuing back to X we see that it represents a £*-hook 
removable from X. 

Consider the last diagram, Xr*. Each node removable from it represents a 
£r-hook of X, and this must be the longest />*-hook of X, for otherwise Xr* would 
have a p-hook and would not be the last diagram of the sequence. Let us remove 
a node from Xr*, and the corresponding hooks from X^""^*, . . . , X*, X. The 
result is the removal of a £r-hook from X. When all Ar nodes of Xr* have been 
removed, we will have removed Ar £r-hooks from X, and no more £r-hooks 
remain on X. We will also have removed all nodes from X(r-1)* except its j^-core. 
Removing these one at a time, we remove Ar-\ / ^ - h o o k s from what is left of X. 
And so on, until all nodes have been removed from X*, and only the p-core of X 
remains. What we have done is to remove the hooks of the ^-series from X. 
Hence the ^-series of X is 

pr, . . . (Ar times) ; pr~l, . . . 04,—1 times) ; . . . ; p, . . . (Ai times) 
which proves Theorem D. 

Next we prove Nakayama's formula for e(3\)> namely 

5.2 e(zx) = e(n\) - £ At*(p% 

Let the number of nodes in X** be »». By removing all the nodes from 
X(i+1)*, and the corresponding £-hooks from X** we see that ni— Ai = pni+\. 

5.21 n = Ai + pA2 + p2Az + . . . + pr~lAr. 
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Proof: tii — A\ = pn2 

= p(A2 +pnz) 

= PA2 + £2i48 + ^ 4 + • • • +pr~lAr 

by a simple induction. 

The proof of 5.2 is based on an induction over n. Since each JB* is less than 
n, we may assume the theorem for each of the constituents of X*. The ^-series 
for X* is just the sum of the ^-series of its constituents, and hence we may 
assume the theorem true for X*. The ^-series of X* is 

p, . . . (A2 times) ; p2, . . . (A$ times) ; . . . ; pr . . . (Ar+i times). 

Hence induction over n implies that 

e(zx*) = «(m!) - [A2e(p\) + Aze(p*\) + ...+ Are(pr^\)]. 

By Theorem A, e(zx) = e(n\) — e ( (n — A)\) + e(zx*) 
= «(«!) - e ( (p«i)!) + e(sx*)« 

Using the above expression for £(zx*), we have 

e(sx) = e(n\) - e{ (pm)\) + e(»i!) - U2e(£!) + Ade(p*\) + . . . + i M / r " M ) ] 
= «(»!) - »i - [il2e(p!) + . . . + Are{pr~^] 
= «(n!) - U i + pA2 + . . . + pr~lAr} by 5.21 

- [A2e(p\) + . . . + Areip*-".)] 
= «(*!) - [ill + ^2(e(£2!) - e(£ !) + . . . ] 

- [A2e(p\) + . , . + ^ r e ( ^ ~ 1 ! ) ] 
= «(»!) - [Aie(pl) + A2e(p*\) + . . . + Are(pr\)}. 

The theorem is easily established for n = 1, or other small values, which 
is sufficient to start the induction. 
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