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Abstract

In this paper, we develop a discretisation algorithm with an adaptive scheme for solving a
class of combined semi-infinite and semi-definite programming problems. We show that
any sequence of points generated by the algorithm contains a convergent subsequence;
and furthermore, each accumulation point is a local optimal solution of the combined
semi-infinite and semi-definite programming problem. To illustrate the effectiveness of the
algorithm, two specific classes of problems are solved. They are relaxations of quadratically
constrained semi-infinite quadratic programming problems and semi-infinite eigenvalue
problems.

1. Introduction

Let 5" denote the set of real symmetric n x n matrices. The standard inner product

on 5" is A • B = tt{AB] = £\y . ay by. By X > 0, where X e S", we mean that the

matrix X is positive semi-definite and ||X \\ F, or simply \\X\\, is the Frobenius norm of

matrix X : \\X\\F = (X • X)l/2. Here S" denotes the set of all positive semi-definite

matrices in 5".

We consider the following combined semi-infinite and semi-definite programming

problem (SISDP):

sup C • X s.t.

A , »X = ait i = 1,2, . . . , / ,

B(t) mX< b{t), t 6 T,

X > 0 .
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Here, T is a nonempty compact set in & and C, A,, i — 1, 2 , . . . , /, and B(t), t e T,
are all fixed matrices in S". Let a,, i = 1,2,.. . ,/ , b(t) € &, t € T, be fixed real
numbers, and let X e S" be the decision matrix to be optimised upon.

Three important special cases of problem (SISDP) are given as follows.

EXAMPLE 1.1. Suppose that T is a finite set. Then problem (SISDP) becomes a
general semi-definite programming problem (SDP):

sup C • X s. t.

A( * X — a,-,

Bitj).X<l

1 = 1,2,. . . , / ,

tj e T = [ti,...,tm),

X >0.

Some relevant references for (SDP) are [1, 27, 15] and [6.].

EXAMPLE 1.2. Suppose that

B(t) =

, 1 = 1 ,2 , . . . , / ,

, V teT, and X =
<*U • ' • x\n

\-^nl ' * ' Xnni

Then problem (SISDP) is reduced to a semi-infinite linear programming problem
(SILP):

sup cTx s.t.
(g')Tx=al,

r * < b(t), t e T,

x>0,

where x = (xu, ... ,xnn)
T, c = (ci, c2, . . . , c n ) r , g ' = (g{, . . . , ^ ) 7 " , i = 1 , . . . , / ,

a n d / i ( O = ( M O . M O , . . . , M O ) r .

Obviously, if x* = (**,, . . . , x*nn)
T e Sf," is a solution of (SILP), then the matrix

r*r, o
e 5"

0

is a solution of (SISDP). Conversely, if X' = ix*j)nxn e 5" is a solution of (SISDP),
then the point x* = (**,, *2*2, . . . , jcn*n)

r e ^?" is a solution of (SILP).
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EXAMPLE 1.3. We consider a quadratically constrained semi-infinite quadratic pro-
gramming problem (Q2P):

max x + + a0

t e T,

where T is a nonempty compact set in &, a(t) and b(t), t e T, are real numbers in &
and <2o and Q{t), t e T, are all symmetric matrices in S". Here the objective function
and the constraints are not necessarily convex. Clearly, the feasible set of (Q2P) can
be a very "nasty" set, and hence this problem is, in general, very hard to solve. For
more details, see [17, 28].

Let/>o = [;°!]and/>(O =
is iQ2P)y:

maxyTPoy s.t.

- Then an equivalent formulation of (Q2P)

yTP(t)y < b{t), t e T,

y = (yo,xT)T)T

It is clear that if (1, (x*)T)T is optimal to (Q2P)y, then x* is optimal to (Q2P) and
the values of (Q2P) at x* and (Q2P)y at (1, (x*)r)r are equal. Since the values of
(Q2P)y at (1, (;c*)r)rand (—1, —(x*)T)T are equal, we may consider that the optimal
values of ((22f) and (Q2P)y are equal. The equivalent formulation simplifies the
notion and opens the way to the semi-definite relaxation since we can rewrite (Q2P)y

in the form of (SISDP) as

max Po • Y s. t. P(t) • Y

rank(K)

f e 7\
> 0,

where Eoo is the zero matrix with 1 in the top left corner. Dropping the constraint of
rank(K) = 1 leads to a relaxation of (Q2P):

max Po • Y s. t. Pit) • Y < bit), t e T, iP)

Thus we see that problem (SISDP) includes the semi-definite programming problems
and the semi-infinite linear programming problems as special cases. Moreover, the
problem (SISDP) can also be considered as a relaxation of a class of quadratically
constrained semi-infinite quadratic programming problems.
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Conversely, let Vj, j = 1, . . . , h be an orthonormal basis for the linear space of
n x n symmetric matrices, where h = (n/2) x n. Let (see [13])

teT,

and v(s) = (vi(s),..., Va(s))T, with Vj(s) = -sTVjs, where 5 e &n. Because of
the fact that X is positive semi-definite if and only if sTXs > 0 for any s e &", the
problem (SISDP) is the same as the following semi-infinite programming problem:

sup cTx s. t.

(h')Tx=ah i = 1 ,2 , . . . , / ,

g(t)Tx < b(t), t 6 T,

v(s)Tx < 0, s e T, = {s e 3?" | ||s|| = 1},

that is, the problem (SISDP) can be transformed into a semi-infinite linear program-
ming problem. However, the dimension of the index set of the semi-infinite linear
programming problem is (n + 1), where n is the dimension of the decision variable
of the original problem (SISDP) with the index set of dimension 1. In practice, n
can be large, say n = 10. For this situation, it does not appear possible to develop
a practically feasible method, based on currently available results and approaches,
for solving this semi-infinite programming problem with an index set of such a large
dimension. On the other hand, the original problem (SISDP) with n = 10 is only
a small scale problem, which can easily be solved by the methods developed in this
paper. Thus it is much more natural to consider the problem (SISDP) as formulated
in this paper.

There are many good reasons to study (SDP). First, (SDP) problems directly arise
in a number of important applications, for example, structural optimisation, discrete
(combinatorial) optimisation, robust filter design in signal processing, systems and
control problems. Second, many convex optimisation problems, such as linear pro-
gramming problems and convex quadratic programming problems, can be cast as
semi-definite programming problems. We know that (SDP) is a generalisation of lin-
ear programming problems. In [2], simplex-like methods for (SDP) were discussed.
In [2] and [5], simplex-like methods were obtained to solve the problem (SIP), which
includes (SDP) as a special case. It is known that the primal (SDP) and its dual
(SDP) may have a nonzero duality gap and that the interior point method is an effi-
cient method to solve semi-definite programming problems up to any tolerance e, in
a polynomial number of arithmetic operations. See [1, 6, 8, 16, 21, 24] and [29].

https://doi.org/10.1017/S1446181100013511 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013511


[5] A solution method for combined semi-infinite and semi-definite programming 481

Semi-infinite programming (SIP) arises in various fields of engineering such as
control system design, general approximation, resource allocation in decentralised
systems, decision making under competition, multi-objective optimisation, and opti-
mum filter design in signal processing. See [7] and [23]. There are many solution
methods (see [30, 31] and [7]) for solving (SIP) problems. Some outer approxima-
tion methods were obtained in [22] for nonlinear (SIP) problems with an adaptive
scheme. Relevant convergence results were also established in [22]. In [25], an inner
approximation method is developed for solving nonlinear (SIP) problems.

Motivated by the work reported in [22] and [25], we develop a discretisation
algorithm with an adaptive scheme for solving the problem (SISDP), where each (SDP)
subproblem is solved by an interior point method. We establish the convergence of
the algorithm. Finally, we apply this algorithm to solve two important specific classes
of problems: relaxation problems of quadratically constrained semi-infinite quadratic
programming problems and semi-infinite eigenvalue problems.

The rest of the paper is organised as follows. In Section 2, the Lagrangian dual
problem is introduced for the problem (SISDP). An algorithm for solving the prob-
lem (SISDP) is given. In Section 3, the convergence property of the algorithm is
established. In Section 4, numerical results are presented.

2. Discretisation algorithms

Let us first introduce some notation. For a nonempty compact interval T in &, let
= Y\T<ffi denote the product space equipped with the product topology, which is

a locally convex Hausdorff topological vector space; see [12]. Then the topological
dual space of &T is the generalised finite sequence space consisting of all functions
g : T -> £& with a finite support. The set 3$1 = Y\T^+ denotes the convex cone of
all nonnegative functions on T. Then the dual cone of ĵ?£ is defined by

= \y = [y(t))ieT
(3 a finite set F c 7)(Vr e T\F) y(t) =
and (W e F) y(t) > 0

For this result, see [9].
For the programming problem (SISDP), we introduce the Lagrangian dual problem

(DSISDP) as follows:

~ - Z = C, y e AT,

ieT

s-1- •
zef , Z >: 0,

where a = (ait..., at)
T and z = ( z i , . . . , zi)T•
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When the parameter set T is finite, (SISDP) and (DSISDP) become a pair of primal
and dual semi-definite programming problems. See [29] for reference. In this paper,
we assume throughout that the problem (SISDP) and its dual problem (DSISDP) have
optimal solutions and that their optimal values are equal. This assumption is satisfied
under the situations considered in the following remark.

REMARK 2.1. Let Z?(r) = I "ft _°(/)l- Suppose that {B(t) | t e T) is a compact set,
the Slater condition holds (that is, there exists an Xo >: 0 such that B{t) • Xo < b(t),
Vr e T and At • Xo = ah i = 1, ..., I), (SISDP) has an optimal solution and the
optimal objective function value is finite. Then by [4, Theorem 2.2] and relevant parts
in the proof of [4, Theorem 2.3], it follows that (SISDP) and (DSISDP) have optimal
solutions and their optimal values are equal.

In view of Remark 2.1, we see that under appropriate constraint qualifications, we
can guarantee that the optimal values of (SISDP) and (DSISDP) are equal. For more
detailed discussion, see [3, 21] and [26].

Assume that T = [Tu T2]. Then the problem (SISDP) becomes the following
combined semi-infinite and semi-definite programming problems:

sup C • X s. t.
Aj • X = ait i = 1, 2 , . . . , / ,

B(t).X<b(t), te[TuT2],

X xO.

In this section, we develop a discretisation method with an adaptive scheme for
solving problem (Po). A sequence of discretised subproblems is obtained, and each
semi-definite programming subproblem is solved by an interior point method [6].

The feasible set of (Po) is denoted by

& = [X € 5 ; : A , • • X = ah i = 1, 2 , . . . , / , B(t) • X < b{t), t e [Tu T2]).

We consider the following discretisation scheme: Given an integer N > 0, let

We introduce the following discretised problem:

sup C • X s.t. B(tj)»X<b(tj), tjenN, (PN)
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The feasible set of (PN) is denoted by

&N = {X e S ; : Ai • X = ah i = 1, 2 , . . . , / , 5(r;-) • X < b(tj), tj e QN}.

We have the following lemma.

LEMMA 2.1. Consider the problems (Po) and (PN). Then & C &N.

A direct method for solving the problem (Po) is to solve a sequence of discretised
problems (P/v). The solution XN of (/>#) is used as an approximate solution of the
problem (Po)- However, the above discretised problem (PN) is, in general, a good
approximation of the original (Po) only if the integer N is large enough. Obviously,
such a simple approximation of [TJ, T2] by the discretised subset £lN with a large
number N leads to the problem (PN) with a large number of inequality constraints. In
order to overcome the difficulty of solving the discretised problem (PN) with a large
number of inequality constraints, we introduce an adaptive scheme strategy. More
specifically, in each iteration, we add only one additional constraint. Moreover, in
solving each subproblem, we need only to obtain an inexact optimal solution instead
of an exact solution of the subproblem. The implemented algorithm for solving the
problem (SISDP) is stated as follows.

DISCRETISATION ALGORITHM. Let {e*} be a strictly monotone decreasing sequence
with it -> 0 (as k -> oo) and let [Nm] be a strictly monotone increasing integer
sequence with Nm —*• oo (as m —> oo).

Step 1. El = QuMl = &uk = k = l,m = l.

Step 2. Find a feasible solution Xk e Mk of the following problem (Pk) (that is, Xk

satisfies the constraints of problem (Pk)) and a feasible solution (zk, yk, Zk) of the dual
problem (Dk) (that is, (zk, yk, Zk) satisfies the constraints of the dual problem (Dk))
such that

(2.1)

where

supC«X s.t.XeM*, (Pt)
/

inf aTz + y^y(t)b(t) s. t.
ieEt

z e &', y(t) > 0, t e Ek, Z > 0.

Increase k to k + 1 and construct Slk+]. Go to Step 3.
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Note that the constraint (2.1) is to ensure that the difference between the two objective
function values is less than or equal to the tolerance ek. The solutions Xk and
(zk, yk, Zk) of the respective problems (Pk) and (Dk) with the condition (2.1) being
satisfied up to the tolerance ek are called inexact optimal solutions up to the tolerance ek.
Step 3. Find a tk such that B(tk) »Xk- b(tk) = max,en,+l (B(t) »Xk- b(t)).
Step 4 If B(tk) • X* - b(tk) > 0, go to Step 5.
If B(tk) *Xk — b(tk) < 0 and k < Nm, set k = it + 1. Increase ktok + l and construct
Slk+X. Go to Step 3.
If B(tk) • Xk — b(tk) < 0 and k > Nm, increase mtom + 1 and k to k + 1 and give
Nm+X and ek+x, respectively. Set Mk+X = Mk. Go to Step 6.
Step 5 Set

Mk+] = {XeSn
+\A,»X = a,, i = l I, B{f) « X < b(t), t g Ek+l),

where Ek+X = Ek \J{tk).
Increase m t o m + 1 and k to k + 1 and give Nm+X and ek+x, respectively. Go to Step 6.
Step 6. Set/fc = /t + 1, k = k+ I, m = m+ 1 and go to Step 2.

For practical implementation, we will include a stopping criterion: We choose an
integer N and a real number e > 0, and we will terminate the algorithm when Nm > N
and en < e. For example, we can take N = II and e — 0.0001.

Now we discuss the idea of the discretisation algorithm in detail as follows. Suppose
that k = k = 1 and m = 1. For the kth iteration, we assume that the optimal value
of (Pk) is equal to that of (Dk). By a primal and dual interior point method for semi-
definite programming, we find feasible solutions Xk and (z*, yk, Zk) of the respective
problems (Pk) and (Dk) with the condition (2.1) being satisfied up to the tolerance ek,
where we take ek = 10"*. They are referred to as inexact optimal solutions of (Pk)
and (Dk) up to the tolerance ek. Next, we find a tk e £lk+i such that

B(tk) * X k - b(tk) = m a x (B(t) • X k - b(t)).

There are two cases to consider:
Case 1. B(tk) • Xk - b(tk) > 0, that is, Xk <£ &-k+x. Take Ek+X = Ek{J{tk]

and construct Mk+X, which is the feasible set of (Pk+X). Set k — k+l,ic = k+l
and m = m + 1. Then we solve the problems (Pk) and (Dk) until the condition
(2.1) is satisfied up to the tolerance €k by a primal and dual interior point method for
semi-definite programming.

Case 2. B(tk) • Xk — b(tk) < 0, that is, Xk e &k+x. Suppose that we also construct
Mk+X by taking Ek+X = Ek[J[tk} and then solve the problems (Pk+X) and (Dk+X).
Then Xk and (zk, yk, Zk) are also inexact optimal solutions of the respective problems
(Pk+X) and (£>i+i) with the condition (2.1) being satisfied up to the same tolerance ek.
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Clearly, it does not give us any further information. Therefore, for this situation, we
need to increase the partition number k of T, that is, k = k + 1. Then we find tk from
a finer discretisation set Qk+i

 s u c n that

B(tk) •Xk- b(tk) = max (5 (0 • Xk - b(t)).

If B{tk) »Xk- b(tk) > 0, repeat Case 1.
If B(tk)»Xk—b(tk) < 0, repeat Case 2. Ifthe algorithm repeats Case 2 continuously,

it means that the partition number it of T increases continuously. When the partition
number is suitably large (for example, k > Nm, where we may take Nm = 4m), we
shall decrease the tolerance and solve the problems (Pk+i) and (Dt + 1) up to the new
tolerance. Namely, when k > Nm, take k = k+l,k = k + l and m — m + 1. Then
we solve the problems (Pk) and (Dk) until the condition (2.1) is satisfied up to the new
tolerance ek. By repeating this process, a sequence [Xk] is obtained.

REMARK 2.2. Many computational methods are now available for solving general
semi-infinite programming problems. These methods are based on exchange meth-
ods, cutting plane methods or discretisation methods. For details, see [5, 7] and
[11]. Specific features of our algorithm, which is a discretisation method, are as
follows.

(1) In view of the Introduction, we can transform the problem (SISDP) into a semi-
infinite programming problem. However, if the problem (SISDP) contains decision
variables of n dimensions and the index set is of 1 dimension, the index set of the semi-
infinite programming problem is of {n -f-1) dimensions. For large n, the discretisation
of the new index set is computationally a formidable task. Our algorithm solves the
problem (SISDP) directly. Thus, we only need to partition the one-dimensional index
set T.

(2) When the set Qk of the discretisation points changes to Qk+\, the number of
points in Ek+\ does not necessarily increase. Only when B(tk) »Xk- b(tk) > 0 do we
increase a point in Ek+\, that is, Ek+X = Ek \J{tk}. In Step 3, the optimisation problem
is solved within the finite set &k+i, rather than within the infinite set T. Therefore we
only check the feasibility of Xk in the final iteration.
(3) In solving each subproblem, we obtain only inexact optimal solutions of (Pk)

and {Dk) up to the tolerance ek, where ek —*• 0, as k -> oo.

REMARK 2.3. In this paper, we only consider a solution method for the problem
(SISDP), in which T is a one-dimensional interval. When T is a box interval in &n,
in which the dimension m is small, for example, m = 4 or 5, we can still construct
grids of the box interval T. Regarding the set of these grid points as the discretisation
set £2 of T, our algorithm can also be used to solve this problem (SISDP) with such
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a multi-dimensional index set. However, when the dimension m of T is large, for
example, m > 10, the method is no longer an efficient solution method for solving the
problem (SISDP).

3. Convergence analysis

In this section, we shall study the convergence property of the discretisation algo-
rithm.

THEOREM 3.1. Suppose that &\ is a compact set. Then there exists an accumu-
lation point of the sequence {Xk} generated by the discretisation algorithm and any
accumulation point is an optimal solution of

PROOF. Since Xk e Mk, by the compactness of &u there exists an accumulation
point of the sequence {Xk}. Let X be an accumulation point of the sequence {Xk}.
Then there exists a subsequence {Xkj} of [Xk] such that [Xkj] converges to a point
X. It follows from the closedness of 5" that X e 5^. Suppose that X* is an optimal
solution of (Po) and v(Pk) and v{Dk) are optimal values of (Pk) and (Dk), respectively.
It follows that X* e Mk and v(Pk) > C • X*. Since

= v(Pk)> C.Xk

and

\az + > yk(t)b(t) ] — C • Xk < ek,

we have C • Xk + €k > v(Pk) > C • X*, Wk. Thus C • Xk. + akj > C • X*, Vj. As
j —> oo, we have

C«X>CX*. (3.1)

There are two cases to be considered.
Case 1. There exists a subsequence {Xkl } of {X^} such that

B(tkl_)*Xklj -b(tkl.)>0,

that is, the algorithm goes to Step 5 from Step 3 as an infinite loop. Suppose that the
algorithm goes to Step 5 at k + 1 = kj (as j —>• oo). Since Qk —> T (as j —> oo),
for each £ 6 T, we can find & e fi^ with & —> | (asy —> oo). Thus
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By the compactness of T, we can assume, without loss of generality, that the sequence
[tkr } is a convergent one with the limiting point t. Therefore we obtain

B{t) • X - b(t) > B(£) • X -

By the construction of Ekj+l and Mkj+I, we have B(tkj) • Xkj+I — b{tk.) < 0. So

X -b(i) < 0 and fi(£) • X - fc(§) < 0.

By X .̂ e M*,, we have A, • X*; = ah for i = 1, 2 , . . . , I. It follows that A, • X = a,,
for/ = 1 ,2 , . . . , / , X eJ? and

CX*>CX. (3.2)

From (3.1) and (3.2), we have C • X* = C • X.
Case 2. There does not exist any subsequence {Xkl } of {Xkj} such that

S(^).X,,; -b(tklj)>0.

Then by the algorithm and the convergence of Xkj, there exists a subsequence {Xkq }
such that B(49.) • Xkr — b{tkq ) < 0, that is, the algorithm goes to Step 6 from Step 3
as an infinite loop. Suppose that the algorithm goes to Step 6 at k + 1 = kj. Since
Q.-k —> T (as j —> oo), for each £ € T, we can find ^ € Qk. with ^ . —> i- (as
j ^> oo). Thus B{tkq.) • X^. - M4,.) > B ( ^ ) • Xkq. - b^-kj)- By the compactness
of T, we can assume, without loss of generality, that the sequence {tkq } is a convergent
one with the limiting point F. Therefore we obtain

B{t) mX- b(i) > B ( f ) • X -

By the conditions of Case 2, we have B(f^.) • Xkq — b(tkq ) < 0. So

B(J) • X - b(i) < 0 and fl($) • X - &(f) < 0.

Similarly, we have X e # and C • X* = C • X. Thus, by the conclusions obtained
for Cases 1 and 2, the proof is complete.

REMARK 3.1. If the conditions in Remark 2.1 hold, then (SISDP) and (DSISDP)
have optimal solutions and their optimal objective function values are equal. It is clear
that the discretisation problems (Pk) and (Dk) also satisfy these conditions. Thus their
duality gap also vanishes.
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4. Numerical results

The discretisation algorithm is implemented under the MATLAB environment and
run on a Genuinelntel PHI 800M. We will solve a relaxation of a quadratically con-
strained semi-infinite quadratic programming problem and a semi-infinite eigenvalue
problem. Before presenting numerical results, we make a remark on the partition
of the parameter interval T = [T\, T2]. The 7Vth partition scheme of the parameter
interval [T\, T2]is

UN — j f, — / i H — . i = U, 1, . . . , 2

It is worth noting that the set of partitions in one iteration is included in the set of
partitions in the next iteration.

4.1. A quadratically constrained semi-infinite quadratic programming problem
We show how the combined semi-infinite and semi-definite relaxation problems of
quadratically constrained semi-infinite quadratic programming problems can be effi-
ciently solved by using a combination of the discretisation method and the interior
point method.

Consider the (Q2P) problem:

max x T Qox + 2g£x + a0

s. t.xTQ(t)x + 2g(tfx + a(t)< b{t), t e T,

and its equivalent formulation (Q2P)y:

max yrP0;y s.t. •

yTP{t)y < b{t), t 6 7,

Vo = 1,

Recall that the relaxation of iQ2P) is

max Pa • Y s. t.

Em»Y=l,

Pit)* Y< bit), teT, iP)

REMARK 4.1. Note that problem (/>) is a relaxation of iQ2P). However, suppose
that the following conditions are satisfied: T is a compact set, Qo and Qit), teT,
are positive semi-definite matrices and X* is an optimal solution of (P). Then by
Theorems 3.1 and 3.2 and Corollary 3.1 of [14], it follows that X*e\ is an optimal
solution of iQ2P), where et is a unit vector in ^ n + 1 with its first component being 1
and other components zero.
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The Lagrangian function of (Q2P)y is

L(y, p, X) = yTPoy + /*(1 - y2) + £k{t)(b(t) - yTP(t)y), k e AT.

The Lagrangian dual problem of (Q2P)y is

min max (yT Poy + /i(l - y2) + y"MO(*(O - yrP(Oy). (4.1)
A.eA7-,Me^ye^"+1 ^ ^

For detailed discussion, see [10] and [32]. Note that the inner minimisation over y is
bounded from above only if

Po-fiEoo-Y^^PW ^ 0 and k e AT.

Thus the Lagrangian dual problem (4.1) of (Q2P)y is equivalent to the problem

min fu, +^2 k(t)b(t) s.t. (DQ2P)
k € Ay.

Obviously, the dual problem for (P) is also the (£> Q2P) problem. Therefore problem
(P) is a relaxation of {Q2P)y. Since all principal minors of a positive semi-definite
matrix are positive semi-definite, the positive semi-definite constraint of (DQ2P)
implies

- <2o >: 0. (4.2)

This is where the duality gap may arise, since the standard necessary optimality
conditions for (Q2P) do not require that condition (4.2) holds. Therefore it is, in
general, not true that the optimal value of (DQ2P)y is equal to that of (Q2P)- It is
only an upper bound.

We apply the algorithm to solve (P). Suppose that T = [1, 3], Po and P(r), t e T,
are symmetric matrices of size n. Each element of Po is a number randomly generated
between —3 and 3. Each element of P(t) is a qth order polynomial of variable /,
each coefficient of the polynomial is a number randomly generated between —3 and 3.
Take TV = 11, that is, when the partition point number of the interval T is greater
than 2" = 2048, we stop the algorithm. Ten test problems for each n are randomly
generated and computed. The results on average are summarised in Table 1:

• Time (max) — the average (maximum) time in seconds to compute 10 test
problems.
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TABLE 1. Numerical results.

[14]

n
10

20
40

60
80
100

Time (max)
0039.3(0040.2)
0154.5(0156.8)
0618.6(0635.4)
1419.5(1441.4)
2544.9(2720.1)
3975.2(4016.0)

No. ofSDP(max)
09.8(14.0)
10.6(15.0)
11.7(15.0)
11.8(15.0)
09.6(15.0)
10.5(12.0)

Iteration (max)
08.4(11.3)
09.7(13.2)
11.8(20.3)
13.0(15.9)
13.2(28.8)
15.4(18.2)

• No. of (SDP) (max) — the average (maximum) number of (SDP)s solved in
10 test problems.

• Iteration (max) — the average (maximum) number of the average iteration
numbers to compute each (SDP) in 10 test problems.

For q = 6, we obtain the following results.

4.2. A semi-infinite eigenvalue problem Many problems in mechanics and systems
analysis can often be expressed as

d \X(O)=AO,
—X(t) = u(t)A(t) s.t. |
dt u(t) > 0, t e T,

v

where T is an interval in & and Ao and A{t), t € T, are all fixed matrices in S". We
can calculate the solution of the differential equation as follows:

X(u) =A0+ [ u(t)A(t)dt.

Our aim is to seek a function «(/), t e T, such that the maximum eigenvalue of X (u)
is minimised, that is,

k* = min A.max{X(M)},
u(t)>0,teT

(4.3)

where km^iXiu)} denotes the maximum eigenvalue of X(u).
It is clear that this problem can be reformulated as a combined semi-infinite and

semi-definite programming problem (/ \) :

min k s. t.
kl - A o - I u

JT
(t)A(t)dt>:0,

(Pi.)
u(t) > 0, t eT,
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TABLE 2. Numerical results.

491

n
10
20
40
60
80
100

Time (max)
0038.5(0038.9)
0152.3(0153.9)
0606.7(0611.7)
1402.3((1483.5)
2474.1(2482.6)
3886.5(3894.2)

No. of SDP(max)
4.4(5.0)
4.4(6.0)
4.2(5.0)
4.1(5.0)
4.2(5.0)
4.1(5.0)

Iteration (max)
08.0(14.8)
08.3(23.2)
11.4(19.0)
10.5(18.6)
07.9(12.0)
07.8(10.0)

Suppose that A() is a continuous function of variable t. The Lagrangian function of
(ft) is

L(X, X, fi) = X - \XI - A o - I u(t)A(t) dt

The Lagrangian dual problem is

d* = max min

= max nun
X>0 u(()

X- \xi -Ao- f u(t)A(t)dt\

I u(t)A{t) • X dt\ .Ao • X + (1 - / • X)X + / u(t)A(t) »Xdt

Thus, by the continuity of A (•), the Lagrangian dual problem of (Pk) can be rewritten
as (Dx):

max.A0»X s.t.
X > 0 , teT,

ImX = l,

X >0.

If the optimal solution X of (Dk) exists, then X* — Ao • X. Thus, the minimax
eigenvalue X* of the solution X («) of the differential equation can be obtained by
computing the optimal value of the Lagrangian dual problem of (Dk). It follows
from dual feasibility that the eigenvectors for the optimal eigenvalues are found as the
columns of X.

Let T = [1, 3] and let Ao and A(t), t 6 T, be symmetric matrices of size n. Each
element of Ao is a number randomly generated between —3 and 3. Each element of
A(t) is a <?th order polynomial of variable t, of which each coefficient is a number
randomly generated between —3 and 3. Take N = \\, that is, when the number of
partition point of the interval T is greater than 2" = 2048, we stop the algorithm.
For q = 6, 10 test problems with each n are randomly generated and computed. The
results on average are summarised in Table 2.
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From Tables 1 and 2, we know that the average number of (Pk) computed and the
average number of iterations to compute (Pk) are independent of the size n of matrices.
Obviously, when the size n of matrices increases, the average time to compute each
problem also increases. We also observe that the average number of iterations to
compute all (Pk) for semi-infinite eigenvalue problems is less than that to compute all
(Pk) for relaxations of quadratically constrained semi-infinite quadratic programming
problems corresponding to the same n. We note that feasible solutions of semi-infinite
eigenvalue problems are required to satisfy the equality equation I • X = 1, while
feasible solutions of relaxations of quadratically constrained semi-infinite quadratic
programming problems are required to satisfy the equality equation £oo • X = 1.

5. Conclusion

In this paper, we proposed a discretisation algorithm with an adaptive scheme for
solving a class of combined semi-infinite and semi-definite programming problems.
The proposed scheme is very general and flexible. In the discretisation algorithm,
we only find an inexact optimal solution of each subproblem. When the partition
number of the parametric interval T increases, it is not necessary to add any inequality
constraint. We may regard this case as dropping unnecessary constraints, that is, our
discretisation algorithm allows us to explore the possibility of combining the use of
"approximate solutions" for each subproblem and the idea of "dropping unnecessary
constraints" in each iteration. Semi-infinite eigenvalue problems and relaxation of
quadratically constrained semi-infinite quadratic programming problems were effec-
tively solved by the algorithm.
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