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A GROUP THEORETIC CHARACTERIZATION OF THE 
2-DIMENSIONAL SPHERICAL GROUPS 

BY 

ANDY MILLER 

ABSTRACT. It is shown that for a finite group G to be isomorphic to 
a subgroup of SO(3) (or, equivalently, of PSL(2, C)) it is necessary and 
sufficient that G satisfies the property that the normalizer of every cyclic 
subgroup is either cyclic or dihedral. 

Let SO(3) denote the group of orthogonal linear transformations with determinant 
1 on 3-dimensional Euclidean space. We refer to the finite subgroups of SO(3) as 
spherical groups. This class of groups plays an important role in 2- and 3-dimensional 
geometry, and in this context many characterizations have arisen. For example it is 
well-known (see [9], [2: 33] or [10: 2.6]) that the spherical groups occur as the 
rotational symmetry groups of the regular polyhedra and that they may be classified 
as: Zr (cyclic), 0 r (dihedral), A4 (tetrahedral), S4 (octahedral), and A5 (icosahedral). 
These groups have also been described in various other ways: as the finite groups 
of sense-preserving isometries of Euclidean 3-space ([10]); as the finite subgroups of 
the group of orientation-preserving (topological) homeomorphisms of the 2-sphere S2 

(see [4]); as the class of groups of genus zero ([1]); and as the finite groups having a 
presentation of the form 

(p,q,r) = (R,S\Rp = S« = {RS)r = l) 

for some positive integers p ik q Û r([3]). In this latter characterization, the group 
(p, #, r) is sometimes referred to as a triangle group and it may be shown to be finite 
precisely when the inequality 

0-?W- Ï ) -H)< ' 
holds. An enumeration of the positive integer solutions of this inequality leads to a 
determination of the finite triangle groups as: 

(1, q, r) * T-gcd{qA, (2,2, r) * Dr, (2,3,3) * A4, (2,3,4) ^ §4, (2,3,5) ^ A5. 
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In this note we shall derive an algebraic description of the spherical groups to add to 
the list of characterizations given above. 

THEOREM . A finite group G is isomorphic to a spherical group if and only if the 
normalizer of every nontrivial cyclic subgroup of G is either cyclic or dihedral. 

Our interest in this characterization of the spherical groups stems from the important 
role it plays in the more general recognition problem for Kleinian groups. A Kleinian 
group is a discrete subgroup of the group Iso+(M3) of orientation preserving isometries 
of 3-dimensional hyperbolic space H3; equivalently - by the standard correspondence 
between linear fractional transformations and 2 x 2 matrices - it is a discrete subgroup 
of PSL{2, C). The recognition problem for Kleinian groups is the problem of finding 
necessary and sufficient intrinsic conditions on an abstract group for it to be realizable 
as a Kleinian group. In the action of Iso+(M3) on M3 the point stabilizers are isomorphic 
to SO(3) and each finite subgroup of 7̂ o+(IHl3) stabilizes some point of U3. Therefore 
the finite Kleinian groups correspond to the spherical groups and the Theorem then 
solves the recognition problem for the class of finite Kleinian groups. This result is a 
key step in the solution of the recognition problem for finitely generated virtually free 
Kleinian groups which was given in section 4 of [5]. In related work in [6] we have 
also solved the recognition problem for the class of non-cocompact 2-dimensional 
non-Euclidean crystallographic groups. 

We now turn to the proof of the Theorem. Our proof will be elementary, employing 
only some well-known concepts of linear algebra and of finite group theory. In partic
ular, the essential linear algebra facts may be found in section 33 of [2], and the class 
equation from finite group theory provides a good analogy for the main technique of 
our proof. 

First let us suppose that G is isomorphic to a spherical group. By a somewhat 
tedious direct consideration of the various isomorphism types for G (cyclic, dihedral, 
tetrahedral, octahedral, or icosahedral) it is not hard to show that G must satisfy the 
normalizer hypothesis of the Theorem. A more compelling argument is suggested 
by the geometry and goes as follows: Each orthogonal transformation of R3 with 
determinant 1 fixes every point in some 1-dimensional subspace. If the transformation 
is nontrivial then this subspace is unique and it is called the axis of the transformation. 
Now assume that G is a finite subgroup of SO(3) and let C be a nontrivial cyclic 
subgroup of G. There is a common axis, call it W, for all nontrivial elements of C. 
Each element y of the normalizer of C in G must leave W invariant. (Indeed if x 
is a nontrivial element of C then yxy~~l G C and yxy~l fixes every element of W 
and of y(W). The uniqueness of the axis of yxy~l implies that y(W) = W.) Using 
orthogonality it follows that each element of N(C) leaves the 2-dimensional subspace 
WL invariant. In this way we see that N{C) corresponds to a finite group of orthogonal 
transformations of 2-dimensional Euclidean space. Such a finite group is either cyclic 
or dihedral ([2: 14]) and so the hypothesis of the Theorem holds. 

To prove the converse we will use a counting argument involving the maximal 
cyclic subgroups of G. An argument similar to that given here was used by Burnside in 
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describing the subgroups of WL(2, q) ([1: 325-6], see also [8]). However our Theorem 
is not a consequence of Burnside's theorem as we must start with an arbitrary finite 
group G which satisfies the normalizer hypothesis and we cannot assume a priori that 
this is a 2 x 2 matrix group. In the next paragraph we show that the hypothesis of 
the theorem reduces to two conditions ((B) and (C)) concerning the maximal cyclic 
subgroups of G. 

Let G be a finite group satisfying the normalizer hypothesis of the Theorem: 

(A) The normalizer of any nontrivial cyclic subgroup of G is either cyclic or dihedral. 

Suppose that M\ and Mi are distinct maximal cyclic subgroups of G and that x ^ 1 
is an element of M\C\ M2. If (x) denotes the cyclic subgroup generated by x then, by 
hypothesis (A), its normalizer N((x)) is either cyclic or dihedral. Since N((x)) contains 
both M\ and M2 it can't be cyclic as that would contradict maximality of Mi. Therefore 
N((x)) is a dihedral group which contains distinct maximal cyclic subgroups M\ and 
M2. From this it follows that M\DM2 = 1. For suppose that N((x)) is dihedral of order 
2r. Then it is isomorphic to the triangle group (2,2, r) = (R,S\R2 = S2 = (RS)r = 1) 
where each element can be uniquely expressed in the form Re(RS)1 where 0 ^ e ^ 1 
and 0 ^ / < r. Using this the maximal cyclic subroups are readily seen to be (RS) 
(of order r) and (R(RS)1), 0 ^ / < r (of order 2) - and these subgroups have pairwise 
trivial intersection as claimed. To summarize, we have shown: 

(B) Distinct maximal cyclic subgroups of G intersect trivially. 

Consider further the maximal cyclic subgroup M\. By condition (A), N(M\) is 
either cyclic or dihedral. If N(M\) is cyclic then N(M\) = M\, whereas if N(M\) is 
dihedral then M\ has index 2 in N(M\) since a normal maximal cyclic subgroup of a 
dihedral group must have index 2. (To see this consider the description of Dr = (2,2, r) 
as above. If r — 2 then every nontrivial proper subgroup of Dr = Z2 x Z2 has index 
two. If r > 2 then (RS ) is the only normal maximal cyclic subgroup of Br and it has 
index two.) Thus, if [N(M\) : M\] denotes the index of Mi in N(M\), we have shown: 

(C) [N(M\) : Mi] ^ 2 for each maximal cyclic subgroup M\ of G. 

To complete the proof of the Theorem we will count the maximal cyclic subgroups 
of G using conditions (B) and (C). This will lead to seven possibilities for G in 
which the number of maximal cyclic subgroups and the orders of their normalizers 
are specified. One of the possibilities is shown to be vacuous. In each of the remaining 
possible cases, an analysis of the group structure will show that G is ismorphic to 
Z r , 0 r , A4, S4, or A5 - and these are in turn isomorphic to spherical groups as remarked 
above. 

Let s be the number of conjugacy classes of maximal cyclic subgroups of G and let 
Mi , . . . , Ms be maximal cyclic subgroups representing these conjugacy classes. Denote 
the order of Mk by mu = |M*|, and let ik = [N(Mk) : Mk]. By reindexing, if necessary, 
we assume that /* ^ ik+\ for each k. With this notation the number of subgroups in 
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the conjugacy class of Mk is 

[G : N(Mk)] = M . 
ikmk 

By condition (B) each nontrivial element of G is in a unique conjugate of Mk for 
some k. Counting the number of nontrivial elements of G gives: 

s \G\ 
\G\ - 1 = V M imk - 1) 

f~f lkmk 

which we rewrite in the more convenient expression: 

(D) |G| i^ik\ mkJ 
k=\ 

Now we observe that mk ^ 2 for each & (since M^ is nontrivial). Hence it follows that 

3|"Si* Uj 1 
I f r l 

£ = 1 

and therefore 
s 1 

Er<2-Ik 
k=l K 

This latter inequality has very few solutions. In fact, since ik ^ 2 by condition (C), 
we have s ^ 3 and the s-tuple (/i , . . . , is) must equal either (1), (2), (1, 2), (2, 2), or 
(2, 2, 2). Since i*m* = \N(Mk)\ ^ |G|, formula (D) implies that 

icrèrU ici; 
and this in turn yields 

s-l 
^ 1 + 

Using this we see that 0"i,..., is) must equal either (1), (1, 2), or (2, 2, 2). We will 
examine these as three separate cases. 

CASE 1. s = I and i\ = 1. In this case formula (D) shows that 

|G| mi 

and so G has order m\. Therefore G equals its cyclic subgroup M\, and so G = Zm]. 
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CASE 2. s = 2, i\ = 1 and /2 = 2. By formula (D) we have 

|G| V mij 2 \ m2J 

This leads to the inequality 

J_ J_ _ 1 1 1 
ml^lm^ ~ 2 + |G| > 2 ' 

and, since #22 ^ 2, it follows that 

1 1 
mi 4 ' 

There are two possibilities, m\ = 2 and mi = 3. 

SUBCASE A. mi = 2. In this subcase we have 

\G\ 2 + 2V rn2) 2m2 ' 

and consequently |G| = 2m2. Thus M2 has index two in G and so G is the normalizer 
of this cyclic subgroup. By hypothesis (A) we conclude that G = Bm2. 

SUBCASE B. mi = 3. In this subcase we have 

\G\ V 3 / + 2 V m) 6 2m2 ' 

This implies that 

and so m2 must equal 2. Thus 

7 1 
6 2m2 

i _ _ L - Z _ I - i i 
~ |GJ~ 6 4 " 12 

which shows that G has order 12. Let x be a generator of Mi and let y be a generator 
of M2. The element JJC is contained in a maximal cyclic subgroup whose order is 
either mi = 3 or m2 = 2. Therefore, being nontrivial, yx has order 2 or 3. If yx has 
order two then yxy~l = (yx)2x~l = x~l which implies that y G N{M\)—M\\ but this 
contradicts the assumption that i\ = 1. It follows that yx has order three. Let H be the 
subgroup of G generated by x and v. There is an epimorphism from the triangle group 
(2,3,3) = (R,S\R2 = S3 = (RS)3 = 1>(^ A4) to H given by R^y.S »-» JC. Since 
|G| = 12 and H contains elements of orders 2 and 3, the order of H is either 6 or 
12; however A4 does not have a quotient group of order 6 so we must have \H\ = 12. 
Thus G equals / / , and G is isomorphic to A4. 
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CASE 3. s = 3 and i\ = i2 = h = 2. By changing the indexing if necessary we may 
assume in this case that m\^m2^m^. Now formula (D) yields: 

èO-±)-'('-èr)<* 
which implies that (rai,m2,m3) equals one of (2,2,#23), (2, 3, 3), (2, 3, 4), or (2, 3, 

5). 

SUBCASE A. mi = m2 = 2. Here we have 

V \G\) 2 2 V /n3y w3 

and it follows that \G\ — 2m^. As in case 2(a), hypothesis (A) now implies that 

G = K3-

SUBCASE B. m\ = 2, mi = m?, = 3. Here we have 

(-MH 
. x . x 2 2 11 

2 | 1 _ _ ) = T + _ + _ = _ 

which shows that |G| = 12. Then Mi and M3 are Sylow 3-subgroups of G which is 
impossible as Sylow 3-subgroups must be conjugate. Therefore this subcase cannot 

anse. 

SUBCASE C. m\ = 2, m>i — 3, and m^ = 4. We have 

( - H H 
- , - 2 3 23 

2 ( l - _ ) = - + - + - = -

which shows that \G\ = 24. Let y be an element of order 3 in M2 and let x be an 
element of order 2 which is conjugate to the generator of M\ but not contained in 
N{M2). (There is such an element since G has 

i\m\ 

distinct elements of order 2 which are conjugate to the generator of M\ but only 3 of 
these are in the subgroup N(M2) which has order 6.) Consider the element xy whose 
order is either 2, 3, or 4. Its order cannot be 2 because then xyx~l = y~l which 
implies that x G N{M2) in contradiction of the choice of x. Next suppose that xy has 
order 3 and let K be the subgroup of G generated by x and y. There is an epimorphisrn 
from the triangle group (2,3,3) = (R,S\R2 = S3 = (RS)3 = 1)(^ A4) to K given by 
R i—• x, S i—*y. Observe that K has order 12 since A4 has no quotient group of order 
6 and \K\ ^ 6. There are 
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distinct conjugates of M3 in G and these carry three distinct elements of order 2 (by 
condition (B)). Since K has index 2 in G each of these three elements (which are 
squares of elements of order 4 in G) are in K, and these are the only elements of 
order 2 in K (since K = A4 and A4 has three elements of order 2). Therefore no 
maximal cyclic subgroup in G of order 2 is contained in K. In particular, x £ K 
which contradicts our choice of K. We conclude that xy must have order 4. Let H be 
the subgroup generated by x and y. There is an epimorphism from the triangle group 
(2,3,4) = (R,S\R2 = S3 = (RS)4 = 1((^ S4) to K given by R*->x,S \-^y. Notice 
that a Sylow 2-subgroup of H contains maximal cyclic subgroups of orders 2 and 4, 
thus it cannot be cyclic and its order must be 8. This implies that \H\ = 24, and so 
G = H and G *É S4. 

SUBCASE D. mi = 2, mi — 3, and m^ = 5. We have 

/ 1 \ 1 2 4 59 
2{l-\G\J=~2 + 3 + 5=T0 

which shows that G has order 60. Choose elements: y £ M2 of order 3; z G N(Mi) 
of order 2 ; x E N((z)) — (z) of order 2 (this choice of x being possible since (z) is 
conjugate to M\ so that N((z)) is conjugate to N(M\) = Z2 x Z2). Consider the element 
xy, whose order must be either 2, 3, or 5. Its order cannot be 2 because then x would 
be in the normalizer of M2 which gives a contradiction since x G N((z}) — (z) and 
N((z)) n N(M2) = (z). Suppose that xy has order 3. Let K be the subgroup generated 
by x and y, and consider the epimorphism from the triangle group (2,3,3) = A4 to K 
given by R i—> JC, S 1—• j . As before this must be an isomorphism since |A |̂ ^ 6. As a 
result, NK((X)) has order 4 so that NK((x)) = N((x)) and, in particular, z G N((x)) C 
£ . Therefore z G NK(M2) which is impossible - in A4 each subgroup of order 3 is its 
own normalizer. We conclude that xy must have order 5. The subgroup H generated 
by x and y is an epimorphic image of the triangle group (2,3,5) = A5. As H contains 
elements of orders 2, 3, and 5 its order is either 30 or 60. Since A5 has no quotient 
group of order 30, the order of H is 60 so that G = H and G = A5. 

We have now examined all possible cases and found that each nonvacuous one 
leads to G being isomorphic to a spherical group. This completes the proof of the 
Theorem. 

In the proof of the Theorem we have shown that hypothesis (A) implies the condi
tions (B) and (C). We will now show that the converse also holds. To this end suppose 
that the finite group G satisfies conditions (B) and (C), and let C be a nontrivial cyclic 
subgroup. Let M be a maximal cyclic subgroup containing C. By condition (B) M is 
unique, and it follows that N(C) = N(M). By condition (C), either N(M) = M, which 
is cyclic, or else M has index two in N(M). In the latter case if a G N(M) — M then 
the maximal cyclic subgroup containing a intersects M trivially by condition (B) and 
therefore a must have order two (since a2 EM); in particular, if JC generates M, then 
a and ax are involutions which generate N(M) and N(M) is dihedral. We conclude 
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that N(C) is either cyclic or dihedral. This shows that conditions (B) and (C) together 
are equivalent to hypothesis (A) (and to G being isomorphic to a spherical group) as 
claimed. On the other hand, it is easily seen that conditions (B) and (C) are indepen
dent of each other: an elementary abelian group, G = Zp x • • • x Zp (p prime), with 
order larger than four, satisfies condition (B) but not condition (C); whereas the group 
G = (JC, V|JC8 = v2 = l,yxy — x3) of order 16 can be seen to satisfy condition (C) but 
not condition (B). In general much is known about finite groups satisfying condition 
(B). For instance the nonsolvable finite groups with this property are classified in [7]. 
At the other end of the spectrum, each group with prime exponent satisfies condition 
(B); so the solvable groups with this property are more complicated. 
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