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Abstract. By means of numerical simulations we study the radial-orbit instability in anisotropic
self-gravitating N−body systems under the effect of noise. We find that the presence of additive
or multiplicative noise has a different effect on the onset of the instability, depending on the
initial value of the orbital anisotropy.
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1. Introduction

Spherically symmetric, self-gravitating collisionless equilibrium systems with a large
fraction of the kinetic energy stored in low angular momentum orbits are known to
be dynamically unstable. The associated instability is known as Radial Orbit Instability
(hereafter ROI, see e.g. Polyachenko & Shukhman (2015) and references therein). Usually,
the amount of radial anisotropy in a spherical system is quantified by introducing the
Fridman-Polyachenko-Shukhman parameter (see Binney & Tremaine (2008))

ξ ≡ 2Kr

Kt
, (1.1)

where the radial and tangential kinetic energies are given respectively by

Kr = 2π

∫
ρ(r)σ2

r(r)r
2dr, Kt = 2π

∫
ρ(r)σ2

t (r)r
2dr, (1.2)

ρ is the system density, and σ2
r and σ2

t are the radial and tangential phase-space averaged
square velocity components, respectively. For isotropic systems ξ = 1. Numerical simula-
tions show that the ROI typically occurs for ξ >∼ 1.7, even though it is well known that
the ”real” critical value of ξ above which the given system is unstable, depends on the
specific phase-space structure of the initial condition under consideration.
The ROI it is frequently invoked as the mechanism responsible for the triaxiality of

the elliptical galaxies and the formation of bars in disk galaxies. However, little is known
on the effective nature of the underlying mechanism or its near- or far-field origin (see
e.g. Polyachenko & Shukhman (2015); Di Cintio, Ciotti & Nipoti (2017) and references
therein). Recently, Marechal & Perez (2010) introduced a novel interpretation of ROI
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Figure 1. For an initially mildly anisotropic (ξ0 = 1.8) flat-cored model (γ = 0) with N = 28000,
evolution of the virial ratio 2K/|W | (top panel), axial ratio c/a (middle panel) and anisotropy
parameter ξ (bottom panel).

as a (effective) dissipation-induced phenomenon. In this preliminary work we investigate
their argument by means of direct N−body simulations with a controllable source of
(external) noise and dissipation.

2. Methods

We study the stability of a family of γ−models with density profile given by

ρ(r) =
3− γ

4π

Mrc
rγ(r+ rc)4−γ

, (2.1)

with total mass M , scale radius rc and logarithmic density slope γ. In order to generate
the velocities for the simulation particles we use the standard rejection technique to
sample the anisotropic equilibrium phase-space distribution function f(Q), obtained for
a given (spherical) density-potential couple (ρ,Φ) linked by the Poisson equation ΔΦ=
4πGρ, applying the usual Osipkov-Merritt reparametrization (Osipkov (1985); Merritt
(1985)) of the Eddington (1916) integral inversion

f(Q) =
1√
8π2

∫ 0

Q

d2ρa
dΦ2

dΦ√
Φ−Q

. (2.2)

In Equation (2.2)

Q=E + J2/2r2a, (2.3)
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Figure 2. For initially mildly anisotropic (ξ0 = 1.8, solid lines) and strongly anisotropic (ξ0 = 4,
dashed lines) Hernquist models (γ = 1): evolution of the axial ratios c/a (top panel), b/a (middle
panel) and anisotropy parameter ξ (bottom panel).

and E and J are the particle’s energy and angular momentum per unit mass, respec-
tively. The quantity ra is the so-called anisotropy radius, and ρa the augmented density,
defined by

ρa(r)≡
(
1 + r2/r2a

)
ρ(r). (2.4)

For our specific choice of ρ(r) in Eq. (2.1), the model’s potential is given by

Φ(r) = − GM

(2− γ)rc

[
1−

(
r

r+ rc

)2−γ
]

for γ �= 2;

Φ(r) =
GM

(2− γ)rc
ln

r

r+ rc
for γ = 2. (2.5)

The anisotropy radius ra controls the extent of anisotropy of the model so that,
the velocity-dispersion tensor is nearly isotropic for r < ra, and increasingly radially
anisotropic for r > ra, thus small values of ra are associated to more radially anisotropic
systems, i.e. larger values of ξ.

Throughout this work we assume units such that G=M = rc = 1, so that the dynami-
cal time and the scale velocity become t∗ =

√
r3c/GM and v∗ = rc/t∗ and are both equal

to unity. Individual particle masses are therefore m= 1/N .
In order to consider the effect of noise and dissipation, we express the particles’

dynamics in terms of Langevin-like equations (e.g. see Kandrup (1980)) of the form

r̈i =−∇Φ(ri)− νvi +F(ri), (2.6)
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Figure 3. Evolution of the anisotropy parameter ξ for a system starting with γ = 1.5 and
ξ0 = 4.

where, in our case, the acceleration −∇Φ on each particle is evaluated self-consistently
by direct sum over all other particles, ν is the dynamical friction [Chandrasekhar (1943,
1949)] coefficient, and F(r) a fluctuating force (per unit mass).

In our numerical simulations we solved Eqs.(2.6) with the so-called quasi-symplectic
Mannella (2004) scheme with fixed time-step Δt= 10−2t∗, in the same fashion as
Pasquato & Di Cintio (2020) and Di Cintio, Ciotti & Nipoti (2020).

We note that, a similar approach could also be extended to the study of protoplan-
etary disks in dense environments under the effect of flyby stars, since in principle the
disk hydrodynamics and the stellar dynamics have different time scales in a numerical
simulation so the effect of passing stars could be simplified as a stochastic process (e.g.
see Cattolico & Capuzzo-Dolcetta (2020)).

3. Numerical simulations and discussion

Following Pogorelov & Kandrup (1999), Terzic & Kandrup (2003) and Sideris &
Kandrup (2004), we have implemented three different forms of noise: i) additive noise
without friction (i.e. ν = 0 in Eq. 2.6). ii) additive noise connected to friction via the
Fluctuation-Dissipation Theorem such that

η2 =Θν/tc, (3.1)

where η is the typical amplitude of the Gaussian distributed force F, Θ is the system’s
temperature (proportional to the velocity dispersion σ) and tc is the autocorrelation time
of the noise. iii) multiplicative noise with friction where the dynamical friction coeffcient
is explicitly dependent on the particle velocity as

ν = 4πG2ρ∗(m+m∗) ln Λ
Ψ(v)

v3
, (3.2)

https://doi.org/10.1017/S1743921321001484 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921321001484


156 P. Di Cintio & L. Casetti

where G is the gravitational constant, ρ∗ is the mass density of a (fictitious) background
of particles of mass m∗, ln Λ is the Coulomb logarithm, v= ||v||, and

Ψ(v) = 4π

∫ v

0

f(v∗)v2∗dv∗, (3.3)

is the fractional velocity volume function (see e.g. Binney & Tremaine (2008)).
In Figure 1 we show the evolution of the virial ratio 2K/|W |, where K is the total

kinetic energy and W =
∑

N miri · ∇Φ(ri) the virial function; the minimum to maximum
axial ratio c/a and the anisotropy parameter ξ for an initially mildly anisotropic γ = 0
system with ξ0 � 1.8, subjected to frictionless noise for various values of noise amplitude
η. In all cases, the presence of the additive noise does not take the system out of virial
equilibrium, while for low values of η (and also large values of tc, not shown here) some
deviations from the spherical symmetry are evident. In general, large values of η have
a somewhat stabilizing effect against ROI, as less and less deviations from c/a= 1 are
observable and ξ tends to decrease for η > 0.05.
In Figure 2 we compare the evolution of the axial ratios c/a and b/a and the anisotropy

parameters for γ = 1 models with ξ0 = 4 and 1.8 for additive noise with and without fric-
tion. In general, the presence of noise or noise plus friction does not have a significant
effect on the onset of ROI for models with a steeper cusp (generally more unstable,
as they admit a larger degree of wildly chaotic orbits see Di Cintio & Casetti (2019,
2020)) and low values of the initial anisotropy (i.e. ξ0 = 1.8), while for larger values of
ξ0, corresponding to a more violent instability, the evolution of the triaxiality and the
anisotropy are affected by the presence of noise, with systematically less anisotropic and
more ”triaxial” end states associated to the presence of larger amounts of noise and
friction. Introducing a multiplicative noise (with velocity dependent friction coefficient)
complicates the picture even further with as it apparently it does not alter significantly
the evolution of the axial ratios, nor the final values attained by ξ even for extremely
anisotropic models with steep cusps, while it seems to somewhat anticipate the time
at which the anisotropy parameter starts moving to lower values (i.e. unstable models
become more isotropic earlier), as shown in Figure 3 for a system with γ = 1.5.
From these preliminary results we speculate that the mechanisms leading to ROI

might work differently in real systems subjected to different form of internal or
environment-related sources of noise, as well as different central concentrations (see e.g.
Trenti & Bertin (2006)). In particular, we speculate that multicomponent systems with
different anisotropy profiles for each component could develop the ROI in a substantially
different fashion as their single component counterparts. We will explore this matter
further in a forthcoming publication (Di Cintio, Zocchi & Casetti (2021)), studying the
stability of a family of Gieles & Zocchi (2015) models with more mass components with
tunable degree of radial anisotropy.
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