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1. Introduction. Since the solution of Post's Problem
by Friedberg and Muchnik, a good deal of abstract knowledge
about the semilattice of recursively enumerable degrees has
been developed, especially in recent papers of G. E. Sacks.

In this note, we show that one specific class of simple sets
contains only sets of degree 0' ; no contribution to the general
theory is claimed. One of the sets belonging to the special
class considered is the original simple-but-not-hypersimple

S of Post[1]. According to information received from Sacks,
J. R. Myhill gave a proof, in 1953, of the completeness of S.
However, as far as we know, Myhill' s proof (presented in a
seminar) does not exist in published form. In any case, it

may be that our more general result has some interest beyond
its application to the particular set S.

2. Definitions and Notation. We follow the notational

conventions of [3]; regarding terminology, the necessary
definitions are available in [1] and [3] with the exception of the
following one:

Definition. An infinite number set A is said to be
strongly effectively immune if and only if there is a partial

recursive function p such that, for every n, w C A - p(n)
n

is defined and (Vx)(x € w p(n) > x) .

Remarks. (1) It is easily seen that the adjective ' partial
may be omitted in the preceding definition without altering the
class of sets defined. (2) Our notion of strong effective im-
munity is a modification of a concept due to R. M. Smullyan.

Canad. Math. Bull. vol. 8, no. 1, February 1965

33

https://doi.org/10.4153/CMB-1965-006-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-006-2

Smullyan calls an infinite number set A effectively immune

if and only if there exists a partial recursive function p such
that if qu A then p(n) is defined and is greater than the
cardinality of @, The differences between our notion and
Smullvar's may be summarized as follows. Sacks (2] shows
the existence of a simple but not effectively simple set;
modifyving Sacks' argument, D.A. Martin has shown (private
communication) that there exist effectively simple sets whose
complements are not strongly effectively immune. J.S. Ullian
has shown (private communication) that there exists an effectively
immune set whose complement is also effectively immune.
Finally, it is not difficult to show that the complement of a
strongly effectively immune set cannot be immune; we conclude
section 2 of the note with a proof of this latter fact.

PROPOSITION. Suppose A is strongly effectively
immune. Then A' has an infinite r.e. (recursively enumer-

able) subset.

Proof. Consider the Kleene Ti-predicate, Ti(x,y, z);

by definition, we have w = {yl(E{Z)T1(n,y,z)}. Choose w
n n

to be nonrecursive, and suppose that r is a recursive function
which witnesses the strong effective immunity of A. Now,
there exists (by standard arguments“) a recursive function t
such that, for each Kk,

{(uz)'ri(n,k,z)}, if (F2)T, (0K, 2)

tk) o) , otherwise.

Clearly, if (E{z)Ti(n,k,z) and (pz)Ti(n,k,z)_>_ rt(k), then
(pz)'I‘i(n, k,z)€ A'. Also, there must be infinitely many k

for which (3Z)T1(n,k,z) and (pz)Ti(n,k,z)z rt(k), since

See, for example, Davis, Computability and Unsolvability,
Chapter 9, sections 1 and 2. The same reference applies,
regarding functions used in the proof of LLemma 2 below.
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otherwise there would be an effective test for membership in
w . Finally, it is a well-known property of Ti(x,y, z) that
n

Ti(x,y, z) -2 >y. From these facts, it is clear that we may

enumerate an infinite r. e. subset of A' by enumerating all
numbers of the form (pz)Ti(n, k,z) such that (pz)Ti(n, k,z) > rt(k).

3. S.E.S. Sets are Hypersimple or Complete. We will,

for convenience, refer to r.e. sets with strongly effectively
immune complements as S. E. S. (strongly effectively simple)
sets.

THEOREM. If B is a nonhypersimple S. E.S. set, then
B is complete.

For our proof of this result, we require two lemmas.

LEMMA 1. Suppose B is simple but not hypersimpie.
Then there exist r.e. sets C, D, and E such that BC C,
C is simple, C=DUE, DNE=¢, and D is quasicreative.

Proof. The resultis proved in [3] for a particular
simple-but-not-hypersimple set (namely, Post's set S);
the proof given in [3], with obvious modifications, serves to
establish the more general claim of Lemma 1.

LEMMA 2. Suppose C and D are simple sets,
CcCD, and D=AUB, where ANB=¢, A isr.e., and
B is quasicreative. Then if C is S.E.S., C™NB is quasi-

creative.
Proof. Let be a recursive function such that, for
T 1002 P
every n, w =w M B. Let f be a recursive function
e(n) n
quasiproductive for B'. Let y be a recursive function such

that, for every n, =w U &y and define a recursive
n

“Y(n) (n)’

function g(i,n) as follows:

g(i, 0) = i; g(i,n+1) = d(g(i,n)) .

Once again applying remark (1) of §2, we let r be a recursiv:
function witnessing strong effective immunity of C'; further,
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let £ be a recursive function such that, for each n, we have

W\é(n) D {x[x <roln)}

Finally, let {* be the recursive function such that

.U

Q .
k < ro(n)+1 flgl&(n), k)

(o3
f3(n)
We claim that (C M B)' 1is quasiproductive relative to [*;
the easy details of the verification are left to the reader.

Remark. The assumption, in Lemma 2, that D - B is
r.e. is not really relevant so far as the Lemma is concerned;

Lemma 2.

Proof of the Theorem. Suppose B is S.E.S. but not
hypersimple. By Lemma 1, there is a simple set C such that
BC C and €C=A\UD, with D quasicreative, A r.e., and
DMNA empty. By Lemma 2, BM D is quasicreative.
Therefore, by [3, Theorem 2], BN D is complete. But B
is the disjoint union of the r.e. sets BM D and BMNA; it
follows that the degree of B 1is the l.u.b. of the degrees of
BN D and BM A. Thus B must be complete.

COROLLARY. Post' s simple set S is complete,
together with all of its simple, nonhypersimple extensions.

Proof. S is nonhypersimple {[1]), and it is easily
checked that S is S. E.S. The proof of the Corollary is
completed by observing that any infinite subset of a strongly

effectively immune set must be strongly effectively immune.

Remark. The above discussion does not bear on the
question of completeness of S. E. S. hypersimple sets; for,
it can be shown that a quasiproductive set must intersect a
hypersimple set quasiproductively, so that Lemma 1 is never
true in the hypersimple case.
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Added in proof. In a letter of December 1&, 19064,
D. A. Martin has communicated to the author a proof that

every effectively simple set is complete. This result sub-

sumes both the central assertion in the present note and
(in view of other well-known theorems) the main content of
reference [2].
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