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Functoriality and the inverse Galois problem

Chandrashekhar Khare, Michael Larsen and Gordan Savin

Abstract

We prove that, for any prime � and any even integer n, there are infinitely many exponents
k for which PSpn(F�k) appears as a Galois group over Q. This generalizes a result of Wiese
from 2006, which inspired this paper.

1. Introduction

The inverse Galois problem asserts that every finite group G occurs as Gal(K/Q) for K/Q a finite
Galois extension of Q. This has received much attention. It is natural to focus first on simple
groups G. The first infinite family of non-abelian finite simple groups for which the problem was
solved was the family of alternating groups. Hilbert proved his irreducibility theorem for this pur-
pose, thus showing that it suffices to prove that An occurs as the Galois group of a finite regular
extension of Q(T ).

The main advance on this problem in recent decades is the rigidity method. This method has
solved the problem for most of the sporadic groups: it realizes all sporadic groups with the exception
of the Mathieu groups M23 and M24 as Galois groups of regular extensions of Q(T ). We refer
to [Det06], and the references therein, for results towards the inverse Galois problem that are
proved by the rigidity method and its variants.

For classical groups, rigidity-type methods have met with only sporadic success. Typically these
methods seem to work for G(F�k), with G a Chevalley group over the prime field F�, when k is small
as compared to the rank of G.

Recently, Wiese [Wie06] proved the following result of the opposite kind.

Theorem 1.1. Let � be any prime. Then there exist infinitely many integers k such that at least
one of PSL2(F�k) and PGL2(F�k) can be realized as a Galois group over Q. In particular, there are
infinitely many integers k for which the finite simple group L2(2k) = PSL2(F2k) = PGL2(F2k) can
be realized.

This paper generalizes Wiese’s result to finite simple groups of symplectic type.

Theorem 1.2. If we fix a prime � and integers n, t � 1 with n = 2m even, the finite simple group
PSpn(F�k) occurs as a Galois group over Q for some integer k divisible by t.

The method of [Wie06] relies on results in [KW06]. In particular it relies on [KW06, Lemma 6.3],
which asserts that, if one ensures certain ramification properties of a compatible system of two-
dimensional representations of GQ, then its residual representations for small residue characteristics
are large. Wiese uses this lemma and some other techniques and results from [KW06]. One may
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remark, however, that given some constructions of automorphic forms, the only result from [KW06]
one really needs to use is the simple but crucial [KW06, Lemma 6.3].

To prove our theorem we construct a continuous irreducible representation ρ : GQ → GLn(Q�)
that is unramified outside �, the infinite place ∞, and another auxiliary prime q, and whose image
is contained in either the orthogonal or symplectic similitudes. The representation ρ is constructed
so that the image of ρ(Dq), with Dq a decomposition group at q in GQ, is a metacyclic group, which
acts irreducibly on Q�

n and preserves an alternating form, up to a multiplier. Thus one knows that
the image of ρ is contained in fact in the symplectic similitudes. We ensure that the order of ρ(Iq),
with Iq an inertia group at q of GQ, is a prime p �= � that is sufficiently large. The representation ρ
has the property that all open subgroups H of index at most N contain the image of ρ(Dq). (The
N here is larger than max(p(n), d(n)) with p(n) and d(n) as in Theorem 2.2 and p is chosen to
be larger than N .) This is ensured by choosing q to split in all extensions of Q of degree at most
N that are unramified outside � and ∞, and observing that by construction the extensions of Q

corresponding to the subgroups H of im(ρ) of index at most N have this property. Such a q exists
as a consequence of the theorems of Hermite–Minkowski and Čebotarev. Then by choice of N, q, p,
using Theorem 2.2 and Corollary 2.6, one sees that the projective image of the image of a reduction
of ρ is either PSpn(F�k) or PGSpn(F�k) for some integer k. By choosing p appropriately we may
ensure that the former possibility obtains, and that k is divisible by an integer t chosen in advance.

It is in practice impossible to construct such Galois representations with controlled ramification
properties directly. Instead, one constructs certain automorphic forms and relies crucially on the
work of Kottwitz, Clozel, and Harris and Taylor, which associates Galois representations to these,
and proves that they have the required ramification properties. We recall this more precisely below.

We owe to [KW06] in the case of n = 2 the observations that if:

(i) a finite subgroup G of GLn(F�) contains deeply embedded within it a certain metacyclic sub-
group, then G is forced to be large;

(ii) the image of a global Galois representation can be made to contain such a metacyclic subgroup
by means of the Hermite–Minkowski theorem.

Theorem 2.2 of this work generalizes the first observation to all n. The second observation can
then be used in conjunction with automorphic methods to construct the required global Galois
representations.

The main steps to the proof of Theorem 1.2 are as follows:

(1) a generalization of Lemma 6.3 of [KW06] to any dimension (Theorem 2.2);
(2) construction of self-dual, algebraic, regular cuspidal automorphic representations Π on GLn

(AQ), with AQ the adeles of Q, with certain ramification properties; see § 5.3 (the reader may
consult [Clo91] for the definition of regular and algebraic which is a condition on Π∞).

Theorem 2.2 might be of independent interest and be useful when extending the results of [KW06].
We indicate how we construct the Π: this also allows us to introduce some necessary notation.
An expected source of PSpn(F̄�)-valued representations of GQ are self-dual automorphic repre-

sentations Π of GLn(AQ) which are regular algebraic at infinity and for which the exterior square
L-function, L(s,Λ2,Π), has a pole at s = 1.

For each place v of Q we may attach to Πv its complex Langlands parameter σ(Πv) (we use
the normalization of [Clo91]) which is a representation of the Weil–Deligne group WDv of Qv with
values in GLn(C). We may regard this as valued in GLn(Q�) by choosing an isomorphism C � Q�.
When Πv is unramified or supercuspidal, σ(Πv) may be regarded as a representation of the Weil
group WQv ⊂ WDv of Qv; in fact, this will be the case at all finite places for the representations we
construct.
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The work in [Kot92], [Clo91] and [HT01] attaches Galois representations to many such Π. More
precisely, if there is a finite place v such that Πv is a discrete series, and Π∞ is regular and algebraic,
for every prime �, there is an �-adic Galois representation ρΠ : GQ → GLn(Q�) such that the
Frobenius semisimplification of ρΠ|Dq is isomorphic to σ(Πv) ⊗ | |(1−n)/2 for all primes q �= p at
which Πq is unramified or supercuspidal.

We need to ensure certain ramification properties of Π for this Galois representation to be of use
to us. For this we give ourselves the data of certain supercuspidal representations πv of GLn(Qv) for
v ∈ S a finite set of finite places and a discrete series representation π∞ at ∞ with regular algebraic
parameter. Then we have to construct a cuspidal automorphic representation Π that is self-dual on
GLn(AQ), such that Π is unramified outside S and another place w (which will typically be �), and
Πv � πv for v ∈ S ∪ {∞}.

To construct representations of GQ with values in symplectic groups, one is led by the pre-
dictions of Langlands to construct automorphic forms on orthogonal groups which are their dual.
On the other hand, the work recalled above of attaching Galois representations to automorphic
forms is available for automorphic forms that are on groups more closely related to GL2m. Thus
we construct related generic cuspidal automorphic representations on SO2m+1(AQ) using Poincaré
series (see Theorem 4.5) and then transfer them to GL2m(AQ) using a known case of Langlands’
principle of functoriality, namely the forward lifting of Cogdell et al. [CKPSS04] that uses converse
theorems. This accounts for the functoriality of the title (functoriality is used in some more of our
references, e.g. [Clo91]). The results of Jiang and Soudry [JS03, JS04] which prove the local Lang-
lands correspondence for generic supercuspidal representations of SO2m+1(Qp), and that the lifts
from SO2m+1(AQ) to GL2m(AQ) constructed in [CKPSS04] are functorial at all places, are crucial
to us.

The �-adic representations ρΠ which arise this way from automorphic representations Π on
GLn(AQ) that are lifted from SO2m+1(AQ) come with a pairing

ρ⊗ ρ→ Q�(1 − n).

It is expected, but probably not known in general, that this pairing can be chosen to be symplectic.
It is also expected, but again not known in general, that if Π is cuspidal, ρΠ is irreducible. We use
the fact that the Π we consider is such that σ(Πq) is an irreducible representation that preserves an
alternating form on Q

n
� , at some finite prime q, to check this in the cases considered in this paper.

To summarize, we begin with a subgroup of Sp2m(F̄�) which can be realized as a Galois group over
Qq for a prime q satisfying a certain condition of Čebotarev type. We take the corresponding Weil
group representation and use local Langlands for GLn to construct a representation of GLn(Qq).
We use inverse lifting to get a representation of SO2m+1(Qq). This becomes the factor at q of
an automorphic representation of SO2m+1(AQ). We then lift this to a self-dual representation on
GL2m(AQ), to which we associate a symplectic �-adic representation of GQ. Thanks to known
compatibilities, the restriction to GQq of the reduction of this representation gives our original
representation up to a twist. Then a group theory argument (depending on the condition satisfied
by q) can be used to show that any subgroup of GSp2m(F̄�) which contains the image of the specified
image of GQq is (up to conjugation and issues of center) of the form Sp2m(F�k) for some k divisible
by t.

Some variant of this basic method might be made to work for other families of finite simple groups
of Lie type. It appears, however, that our poor control over which values of k can be achieved
is an unavoidable limitation of our technique, at least in its present form. We construct Galois
representations by constructing cuspidal automorphic representations π on GLn(AQ) using Poincaré
series and the results of [CKPSS04]. Thus this allows no control on the field of definition of π. On the
other hand, by explicitly computing Hecke eigenvalues of cuspidal automorphic representations on
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SO2n+1(AQ), and choosing ρq carefully, one could in principle realize PSpn(F�k) for specific values
of k.

On the positive side, this method does give good control of ramification. In fact, all the Galois
extensions of Q constructed in this paper can be ramified only at �, q and ∞.

We end our paper by proving that the �-adic Galois representations we construct, whose reduc-
tions mod � enable us to prove Theorem 1.2, also have large images; namely their Zariski closure
is GSpn.

We now itemize the contents of the paper. In § 2 we prove the group theoretic result (Theo-
rem 2.2) that is key for us. In § 3 we fix the local Galois theoretic data that we need to realize
as arising from a global Galois representation to prove Theorem 1.2. In § 4 we prove Theorem 4.5,
which yields existence of generic cuspidal representations π of a quasi-split group over Q, with some
control on the ramification of π, that interpolate finitely many given local representations that are
generic, integrable discrete series representations. In § 5 we combine all the earlier work to prove
Theorem 1.2. We end with § 6, which determines the Zariski closures of the images of the �-adic
Galois representations we construct.

2. Some group theory

Let Γ be a group and d � 2 an integer. We define Γd as the intersection of all normal subgroups of
Γ of index at most d.

Let n � 2 be an integer and p a prime congruent to 1 (mod n). By a group of type (n, p), we
mean any non-abelian homomorphic image of any extension of Z/nZ by Z/2pZ such that Z/nZ

acts faithfully on Z/pZ ⊂ Z/2pZ.
These groups have the following property.

Lemma 2.1. If G is a group of type (n, p) and � is a prime distinct from p, then every representation
V of G over F̄� on which G does not act through an abelian quotient has dimension at least n. Thus
every faithful representation of G over F̄� has dimension at least n.

Furthermore, if the representation is n-dimensional, and the action of G is faithful, then G acts
irreducibly on V .

Proof. For the first part, it suffices to prove that, if

0 → Z/2pZ → G→ Z/nZ → 0

and Z/nZ acts faithfully on Z/pZ, then every irreducible representation of G has dimension 1 or
dimension at least n. The restriction of any such representation to Z/pZ is a direct sum of characters
since � �= p. If every character is trivial, then the original representation factors through an extension
of Z/nZ by Z/2Z, and such an extension is always abelian. Otherwise, a non-trivial character χ of
Z/pZ appears, so every character obtained by composing χ with an automorphism of Z/pZ coming
from the action of Z/nZ likewise appears. As there are n such distinct characters, say χ1 = χ, . . . , χn,
the original representation must have degree at least n. If, furthermore, V is n-dimensional and G
acts faithfully on V , and hence not through an abelian quotient, then the restriction of V to Z/pZ
is

⊕n
i=1 χi and Z/nZ acts transitively on {χi}, justifying the last sentence.

We recall that, if n � 2 is an integer and F is a finite field, then Ω±
n (F) denotes the image of

Spin±
n (F) in SO±

n (F). (Here Spin±
n and SO±

n denote split or non-split spin and orthogonal groups as
the superscript has a positive or negative sign; the negative sign can only appear when n is even.)

We can now state the theorem.
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Theorem 2.2. Let n � 2 be an integer. There exist constants d(n) and p(n) that depend only on n
such that if d > d(n) is an integer, p > p(n) and � are distinct primes, and Γ ⊂ GLn(F̄�) is a finite
group such that Γd contains a group of type (n, p), then there exist g ∈ GLn(F̄�) and k � 1 such
that g−1Γg is one of the following:

(1) a group containing SLn(F�k) or SUn(F�k) and contained in its normalizer;

(2) a group containing Spn(F�k) and contained in its normalizer;

(3) a group containing Ω±
n (F�k) and contained in its normalizer.

Proof. By the main theorem of [LP98], there exists a constant J(n) depending only on n such that
every Γ ⊂ GLn(F̄�) has normal subgroups Γ1 ⊂ Γ2 ⊂ Γ3 with the following properties:

(a) Γ1 is an �-group;
(b) Γ2/Γ1 is an abelian group of prime-to-� order;
(c) Γ3/Γ2 is isomorphic to a product ∆1 × · · · × ∆r of finite simple groups of Lie type in charac-

teristic �;
(d) Γ/Γ3 is of order at most J(n).

If Γd contains a subgroup of type (n, p) for d > J(n), then Γ3 contains such a subgroup. Thus
by Lemma 2.1, the action of Γ3 on F̄n� is irreducible. It follows that Γ1 = {1}, as Γ3 preserves the
non-trivial subspace of invariants of the �-group Γ1 acting on F̄n� . We conclude that Γ3 is an abelian
extension of ∆1 × · · · × ∆r. This implies that r � 1.

We have the following lemma.

Lemma 2.3. If q �= � is a prime, ∆ is isomorphic to a product of finite simple groups of Lie type in
characteristic �, and φ : ∆ → GLn(F̄q) is a homomorphism, then

|φ(∆)| � max(J(n), 25 920)n/2 .

Proof. In the proof we use implicitly the fact that the normal subgroups of a product of r non-abelian
simple groups are exactly the 2r obvious ones. The image φ(∆) is again a product ∆1 × · · · × ∆s

of simple groups of Lie type in characteristic �. Applying [LP98] to φ(∆), and renumbering the ∆i

if necessary, we may assume that there exists t � s so that

|∆1| · · · |∆t| � J(n)

and ∆t+1, . . . ,∆s are all of Lie type in characteristic q. There are finitely many finite simple
groups which are of Lie type in two different characteristics, and the largest is U4(F2) ∼= PSp4(F3)
[CCNPW85, p. xv], which is of order 25 920. Thus,

|φ(∆)| � max(J(n), 25 920)s .

To bound s, we use the fact that every (faithful) irreducible representation of a product of k finite
non-abelian groups is an external tensor product of (faithful) representations of these groups and
therefore of degree at least 2k. Every faithful representation of ∆1×· · ·×∆s has, for each i from 1 to
s, at least one irreducible factor which is faithful on ∆i. Thus the dimension of such a representation
has degree at least 2k1 + · · · + 2ku where k1 + · · · + ku = s. It follows that 2s � n.

From this we can deduce the following lemma.

Lemma 2.4. Let

d(n) = J(n)max(J(n), 25 920)n/2

and d > d(n). There exist normal subgroups {1} = Γ′
1 ⊂ Γ′

2 ⊂ Γ′
3 of Γ satisfying conditions (a)–(c)

above together with two additional conditions: Γ′
2 lies in the center of Γ′

3, and Γd ⊂ Γ′
3.
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Proof. We know that Γ3/Γ2 is non-trivial, and hence a non-trivial product of groups of Lie type in
characteristic �. Let q denote a prime dividing the order of Γ2. Thus q �= �. Let Γ2[q] and Γ2[q∞]
denote the kernel of multiplication by q and the q-Sylow subgroup respectively. As Γ2[q] is an
elementary abelian q-group contained in GLn(F̄�), its dimension as Fq-vector space is at most n.
By the preceding lemma, the image of the homomorphism

φ : Γ3/Γ2 → AutΓ2[q] ⊂ GLn(Fq)

giving the action of Γ3/Γ2 on Γ2[q] has order bounded above by max(J(n), 25 920)n/2 . Let Γ3,q

denote the preimage in Γ3 of kerφ. As Γ2[q] is normal in Γ, we see that Γ3,q is a normal subgroup of
Γ of index at most J(n)|imφ| < d. Let Γ′

3 denote the intersection of Γ3,q over all primes q dividing
the order of Γ2. Then Γd ⊂ Γ′

3, and Γ′
3/Γ2 is a normal subgroup of a product of groups of Lie type

in characteristic � and is therefore again such a product. Its action on each Γ2[q∞] is trivial since
ker Aut Γ2[q∞] → AutΓ2[q] is a q-group. Therefore, its action on Γ2 is trivial. Setting Γ′

2 = Γ2, we
get the lemma.

Redefining Γi := Γ′
i, we may assume that conditions (a)–(c) hold together with the condition

Γd ⊂ Γ3, and we proceed on the hypothesis that Γd contains a subgroup of type (n, p). Let ∆̃i denote
the universal central extension of the simple (and therefore perfect) group ∆i. Then ∆̃1 × · · · × ∆̃r

is the universal central extension of Γ3 modulo its center and therefore admits a homomorphism ψ
to Γ3. The image of ψ together with the center of Γ3 generates Γ3. If r � 2, then the composition
of ψ and the inclusion Γ3 ⊂ GLn(F̄�) must give an irreducible n-dimensional representation of
∆̃1 × · · · × ∆̃r, which can be written as a tensor product V1 ⊗ V2 of two representations V1 and V2

with dim(Vi) < n for i = 1, 2. This would mean that the image of ψ is contained, up to conjugation,
in the image Ia,b of GLa × GLb in GLn, for some ab = n, a, b > 1. As all scalars belong to Ia,b,
Γ3 is contained in a conjugate of Ia,b, which means that Γ3 → GLn, and therefore its restriction
to a subgroup H ⊂ Γ3 isomorphic to a group of type (n, p), arises from the tensor product of
representations over F̄� of dimension less than n. This contradicts Lemma 2.1, and it follows that
r = 1. As ∆1 is a group of Lie type in characteristic �, there exists a simply connected almost simple
algebraic group D/F̄� and a Frobenius map F : D → D such that ∆1 is isomorphic to the quotient
of D(F̄�)F by its center. Moreover, D(F̄�)F is the universal central extension of ∆1, so the projective
representation ∆1 → PGLn(F̄�) lifts to an irreducible linear representation D(F̄�)F → GLn(F̄�).
By a well-known theorem of Steinberg [Ste68, 13.1], the irreducible representations of D(F̄�)F over
F̄� extend to irreducible representations of the algebraic group D. Thus we have a non-trivial
representation ρ : D → GLn. In particular, dimD � n2 and the center of D can be bounded by a
function p(n) that depends only on n.

Next, we need the following lemma.

Lemma 2.5. Let G be a semisimple algebraic group over an algebraically closed field F . Then there
exists a constant N depending only on dimG such that, if p > N is prime and p �= 0 in F , then for
any two elements x1, x2 ∈ G(F ) of order p whose commutator lies in the center of G there exists a
maximal torus T such that x1, x2 ∈ T (F ).

Proof. We use induction on dimG. Without loss of generality we assume that x1 is not central. If x̃i
denotes a preimage of xi in G̃(F ), where G̃ is the universal cover of G, then x̃1x̃2 = z(x1, x2)x̃2x̃1,
where z(x1, x2) lies in the center of G̃. If p is greater than the order of the center of G̃, this implies
that x̃1 and x̃2 commute, so x1 and x2 lie in the image H in G of the centralizer ZG̃(x̃1).
Note that x1 is semisimple due to its order, so x̃1 is semisimple, and by Steinberg’s theorem ZG̃(x̃1)
is a connected reductive group. As H is connected and reductive, it can be written as H = H ′Z,
where the derived group H ′ of H is semisimple and Z is the identity component of the center of
H, which is a torus. Let xi = x′izi for i = 1, 2 chosen so the order of x′i is p. By the induction
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hypothesis, x′1 and x′2 lie in a common maximal torus T ′ of H ′, and setting T = T ′Z, the lemma
follows by induction.

Now we return to the proof of the theorem. We choose p greater than p(n), p �= �, so that
Lemma 2.5 applies. As Γ3 contains a group of type (n, p), it contains an element x of order p and
an element y such that y−1xy = xa, where a ∈ (Z/pZ)∗ is an element of order n. Thus x and y−1xy
are commuting elements of order p. As we have chosen p that is prime to the order of the center of
D, we may choose elements x̃, ỹ ∈ D(F̄�) that lie over x, y ∈ ∆1 and have order p. Let x1 = x̃ and
x2 = ỹ−1x̃ỹ. Thus x2 lies over xa. It follows that the commutator of x1 and x2 lies in the center
of D.

Applying Lemma 2.5 to x1, x2, we conclude that there exists a maximal torus T in D such
that x1 and x2 both lie in T (F̄�). By a well-known theorem [Hum95, § 3.1], there exists w in the
normalizer of T such that

w−1x1w = x2 = xa1z.

As x1 and x have the same image in PGLn(F̄�), then

ρ(x1) ∼ ω



λ 0 · · · 0
0 λa · · · 0
...

...
. . . 0

0 0 · · · λa
n−1




for some ω. This implies that the characters of ρ with respect to T are pairwise distinct.
Conjugation by w permutes the weights of ρ cyclically. In particular, the Weyl group acts tran-

sitively on the weights, so ρ is miniscule. By the classification of miniscule representations [Ser79,
Annexe], one of the following must hold:

(1) D = SLm and ρ is a fundamental representation;
(2) D = Spn and ρ is the natural representation;
(3) D = Spinn, n is even and ρ is the natural representation of SOn;
(4) D = Spin2m, n = 2m−1 and ρ is a semispin representation;
(5) D = Spin2m+1, n = 2m and ρ is the spin representation;
(6) D = E6 and n = 27;
(7) D = E7 and n = 56.

In case (1), ρ must be the natural representation or its dual because no permutation of an
m-element set S generates a group acting transitively on the set of k-element subsets of S when
2 � k � m − 2. Cases (4) to (7) can be treated by observing that an integral r × r matrix
and its powers can act transitively on an n-element set only if φ(n) � r. For m � 5, one has
φ(2m−1) = 2m−2 > m, and for m � 3, one has φ(2m) = 2m−1 > m. This takes care of case (4) and
case (5); we can ignore the semispin representations of Spin6 and Spin8 and the spin representation
of Spin5 because, up to outer automorphisms, they are duplicates of subcases of (1)–(3). Finally,
φ(27) = 18 > 6, and φ(56) = 24 > 7.

We conclude that it suffices to consider the cases:

(1) D = SLn and ρ is the natural representation;
(2) D = Spn and ρ is the natural representation;
(3) D = Spinn and ρ is the natural representation of SOn.

In case (1), D(F̄�)F is of the form SLn(F�k) or SUn(F�k). In case (2), D(F̄�)F = Spn(F�k). In case (3),
D(F̄�)F = Spin±

n (F�k).

547

https://doi.org/10.1112/S0010437X07003284 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003284


C. Khare, M. Larsen and G. Savin

Now, one has

[Γ3,Γ3] = [ρ(D(F̄�)F ), ρ(D(F̄�)F )] = ρ(D(F̄�)F ).

The possibilities for ρ(D(F̄�)F ) are SLn(F�k), SUn(F�k), Spn(F�k) and Ω±
n (F�k). As

[Γ3,Γ3] ⊂ Γ ⊂ NormGLn(F̄�)
(Γ3),

we have proved Theorem 2.2.

Corollary 2.6. Under the hypotheses of Theorem 2.2, if Γ ⊂ GSpn(F̄�), and Γ̄ denotes the image
of Γ in PGLn(F̄�), then there exists ḡ ∈ PGLn(F̄�) and a positive integer k such that

ḡ−1Γ̄ḡ ∈ {PSpn(F�k),GSpn(F�k)/F×
�k
}.

If, in addition, det(Γ) ⊂ (F×
�k

)n, then ḡ−1Γ̄ḡ = PSpn(F�k).

Proof. If g−1Γg contains SLn(F�k), SUn(F�k) or Ω±
n (F�k), then one of these groups has an

n-dimensional symplectic representation. When n = 2, SLn, SUn and Spn all coincide and there are
no groups Ω±

2 (at least, no such group is a central extension of a simple non-abelian group), so g−1Γg
contains Spn(F�k). For n � 3, from Steinberg’s theorem, it follows that the algebraic group SLn or
SOn has a non-trivial self-dual n-dimensional representation defined over F̄� which maps the fixed
points of a Frobenius map into Spn(F̄�). Of course, SLn has no non-trivial self-dual representation
of dimension n when n � 3. As for SOn, an irreducible n-dimensional representation of Ω±

n (F�k)
cannot preserve a symplectic form, since it already preserves a symmetric form.

In any case, by Theorem 2.2, g−1Γg is trapped between Spn(F�k) and its normalizer in GLn(F̄�).
To compute the normalizer, we first note that Spn(F�k) has no non-trivial graph automorphisms,
so its outer automorphism group is a semidirect product of the group of diagonal automorphisms
Z/2Z (or {0} if � = 2) and the group of field automorphisms Z/kZ.

Non-trivial field automorphisms never preserve the character of the n-dimensional representation
of Spn(F�k). For �k �= 4, we can see this by noting that, by a counting argument, F�k contains an
element α such that α + α−1 is not contained in any proper subfield, and there exists an element
of Spn(F�k) with eigenvalues 1, 1, . . . , 1, α, α−1. For n � 4, there exists an element α of F̄4 of order
17 and an element of Spn(F4) with eigenvalues 1, 1, . . . , 1, α, α4, α−4, α−1 and therefore with trace
in F4 \ F2. Finally, SL2(F4) contains the element

(
1ω
1ω2

)
with trace ω �∈ F2. Thus,

[NGLn(F̄�)
Spn(F�k) : Spn(F�k)F̄×

� ] �
{

2 if � is odd,
1 if � = 2.

On the other hand, when � is odd, GSpn(F�k) ⊂ Spn(F�k) contains elements that act on Spn(F�k)
by the non-trivial diagonal automorphism. By Schur’s lemma, the normalizer of Spn(F�k) in GLn(F̄�)
is therefore GSpn(F�k)F̄×

� . This implies the first claim of the corollary.

Finally, if det Γ ⊂ (F×
�k

)n, then g−1Γg ⊂ Spn(F�k)F×
�k

. Taking images in PGLn(F̄�), we obtain
the second claim of the corollary.

Remark. We indicate how the proof of Theorem 2.2 is related to that of Lemma 6.3 of [KW06].
There it is proved that every subgroup G of GL2(F̄�) with the property that every index 2 subgroup
of G contains the dihedral group of order 2p with p > 5, p �= � a prime, has projective image that
is conjugate to a subgroup that is trapped between PSL2(F�k) and PGL2(F�k) for some integer k.
This is proved using Dickson’s theorem. The role of Dickson’s theorem here is played by the results
of [LP98].
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3. A few preliminaries for the proof of Theorem 1.2

3.1 A tamely ramified symplectic local parameter at q of dimension n

Let p, q > n be distinct odd primes, such that the order of q mod p is n = 2m. Consider the degree
n unramified extension Qqn of Qq. We consider a character χ : Q×

qn � µqn−1 × U1 × qZ → Q�
× such

that:

(i) the order of χ is 2p;

(ii) χ|µqn−1×U1 is of order p;

(iii) χ(q) = −1.

We call such a χ a tame symplectic character of Qq of degree n and order 2p. By local class field
theory, we can regard χ as a character of GQqn . (We normalize the isomorphism of class field theory
by sending a uniformizer to an arithmetic Frobenius.)

Consider ρq : GQq → GLn(Q�) that is given by IndQq

Qqn
χ.

The following is easily deduced from Theorem 1 of [Moy84].

Proposition 3.1. The representation ρq is irreducible and symplectic, and thus it can be conjugated
to take values in Spn(Q�).

Proof. The irreducibility follows from the fact that the order of χ is 2p and the order of q mod 2p
is n. This ensures that the characters χ, χq, χq

2
, . . . , χq

n−1
are all distinct. Also note that χ|

Q
×
qm

is

unramified (i.e. trivial on the units of Qqm) and of order 2. Then Theorem 1 of [Moy84] proves that
ρq is symplectic.

We assume that p �= �. The image of the reduction of ρq in GLn(F�) is a group of type (n, p).
It acts irreducibly on F̄n� and preserves up to scalars a unique bilinear form which is necessarily
non-degenerate and alternating.

3.2 Some lemmas
Next we recall some well-known facts concerning the values of cyclotomic polynomials. Let Rn
denote the set of primitive complex nth roots of unity, and

Φn(x) =
∏
ζ∈Rn

(x− ζ).

If a is an integer, n a positive integer, and p a prime dividing Φn(a), then either the class of a in F×
p

has order exactly n or p divides n [Was82, Lemma 2.9]. In the former case, p cannot divide Φd(a)
for any proper divisor d of n. In the latter case, we have the following result.

Lemma 3.2. If n � 3, a ∈ Z, and p is a prime dividing n, then p2 does not divide Φn(a).

Proof. Suppose first that p = 2 and n = 2k for k � 2 an integer. Then

Φn(a) = a2k−1
+ 1 = (a2k−2

)2 + 1 �≡ 0 (mod 4).

If p = 2 and n has an odd prime divisor q, then Φn(x) divides Φq(xn/q) in Z[x], so Φn(a) divides

1 + an/q + a2n/q + · · · + a(q−1)n/q ≡ 1 (mod 2).

Finally, if p is odd, Φn(a) divides Φp(an/p). As Φp(x + 1) is an Eisenstein polynomial, evaluating
Φp at an integer cannot give a multiple of p2.

From this we easily deduce the following lemma.
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Lemma 3.3. If a � 3 and n � 3 or a = 2 and n � 7, then Φn(a) has a prime divisor q such that the
class of a in F×

q has order exactly n.

Proof. It suffices to prove that |Φn(a)| > n, as then by Lemma 3.2 it has a prime divisor which is
prime to n. We first consider the case a � 3. Then |a−ζ| > 2 for every ζ ∈ Rn, so we have |Φn(a)| >
2φ(n). For every prime power P except for P = 2, we have φ(P ) �

√
P . As φ is multiplicative, for

all n � 1, we have φ(n) �
√
n/2. For x > 2, log2(x) <

√
x/2, so 2φ(n) > n for all n � 3.

For a = 2, we write

log Φn(x) =
∑
d|n

µ

(
n

d

)
log(xd − 1).

As

|log(2d − 1) − d log 2| � 2−d(1 − 2−d)−1 � 21−d,
we have

|log Φn(2) − φ(n) log 2| �
∞∑
d=1

21−d = 2.

For n � 181, we have

φ(n) − 2 �
√
n/2 − 2 > log2(n),

so we need only check for n � 180. The only values n � 7 for which φ(n) − 2 � log2(n) are
n = 8, 10, 12 and 18, for which Φn(2) has prime divisor 17, 11, 13 and 19 respectively.

Now we can construct the primes p and q needed for the main theorem.

Lemma 3.4. Given an even integer n � 2, a prime �, a finite Galois extension K/Q, and positive
integers t and N , there exist primes p and q with the following properties:

(1) the primes p, q and � are all distinct;

(2) the prime p is greater than N ;

(3) if F is any finite field in characteristic � and GSpn(F) contains an element of order p, then F

contains F�t;

(4) the prime q splits in K;

(5) the order of the image of q in F×
p is exactly n.

Proof. Let n = 2m. Let u > 0 denote a multiple of t · (m − 1)!. Using Lemma 3.3, choose p to
be a prime dividing Φnu(�) and therefore Φn(�u), and such that the order of � mod p is nu. We
can make p as large as we please by choosing u sufficiently large. We may therefore assume that
p > max(n, �,N) and K/Q is not ramified at p. For the third property, we note that

|GSpn(F�k)| = (�k − 1)�km
2
m∏
i=1

(�2ik − 1).

If GSpn(F�k) has an element of order p, then p divides �2ik − 1 for some i between 1 and m, which
means that the order of � in F×

p divides 2ki for some i � m and therefore divides 2k ·m!. We know
that the order is in fact nu, which is an integral multiple of 2t ·m!, so t divides k, as claimed.

Let q �= � be a prime congruent to �u (mod p), split in K, and greater than n. As Q(ζp) and
K are linearly disjoint over Q, the Čebotarev density theorem guarantees the existence of such a
prime. As p �= q, the first property is satisfied. The second and fourth properties are built into the
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definitions of p and q respectively. As p does not divide n and

Φn(q) ≡ Φn(�u) ≡ 0 (mod p),

the fifth property is satisfied.

Remark. The referee has remarked that instead of Lemmas 3.2 and 3.3 we may use the following.
For any non-zero positive integers a and n, the set of primes dividing an element of the sequence
{Φn(ad), d > 0} is infinite.

3.3 Fixing Galois theoretic data
Let t be a given positive integer. We may freely replace t by any positive multiple, so without
loss of generality we assume that t is divisible by n. We define N to be max(d(n), p(n)) using the
notation of Theorem 2.2, and let K denote the compositum of all extensions of Q inside an algebraic
closure of degree at most N which are ramified only over � and ∞. By the Hermite–Minkowski
theorem, K is a number field. We define p and q via Lemma 3.4 and consider the representation
ρq = IndQq

Qqn
χ : GQq → Spn(Q�) for χ a tame, symplectic character of Qq of degree n and order 2p.

Note that χ(Iq) has order p.

4. Globalizing discrete series

In this section we show how to construct a global, generic cuspidal representation with desired local
components. A precise result is contained in Theorem 4.5. We consider Poincaré series constructed
from matrix coefficients of integrable discrete series representations. A new result here is that the
Poincaré series are globally generic under certain conditions. The series considered in this paper are
not constructed from compactly supported functions and are, therefore, considerably different from
those used by Henniart and Vigneras; see [Sha90, § 5], and references there in.

4.1 Poincaré series
Let G be a quasi-split almost simple algebraic group over Q. The group Kp = G(Zp) is a hyperspecial
maximal compact subgroup in G(Qp) for almost all primes. We assume that the Lie group G(R) has
discrete series representations. This condition determines the quasi-split G(R), up to an isogeny.
We fix an invariant measure on G(R) and on G(Qp). If G(Qp) contains a hyperspecial subgroup,
we normalize the measure so that the volume of the hyperspecial subgroup is 1. Since G has a
hyperspecial maximal compact subgroup for almost all primes, we have also fixed a product measure
on G(A).

Let (π,H) be an integrable discrete series of G(R) on a Hilbert space H. Fix K, a maximal
compact subgroup in G(R). The space HK of K-finite vectors in H is an irreducible (g,K)-module.
Let f = f∞ ⊗p fp be a function on G(A) such that fp is compactly supported for every prime p
and fp is equal to the characteristic function of Kp for almost all primes. Moreover, f∞ is a matrix
coefficient of the integrable discrete series. More precisely, let 〈v,w〉 denote the inner product on H.
For our purposes the matrix coefficient f∞ is a function

f∞(g) = 〈π(g)w, π(g1)v〉,
where v and w are K-finite vectors in H and g1 is an element in G(R). Let Z(g) be the center of
the enveloping algebra of g. The function f satisfies:

(i) f is in L1(G(A));

(ii) f is right K-finite;

(iii) f is an eigenfunction of Z(g).
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We define the Poincaré series to be the sum

Pf (g) =
∑

γ∈G(Q)

f(γg).

Convergence properties of this series were established by an elegant argument of Harish-Chandra;
see [Bor66, Theorem 9.1]. (The statement in our, adelic, language follows by the same proof.) In
any case, Pf (g) converges absolutely and in the C∞-topology to a smooth function on G(Q)\G(A).
In particular, the series converges uniformly on compact sets in G(A). This function is cuspidal.
That is, for every parabolic subgroup P = MN defined over Q, the constant term

cN (Pf )(g) =
∫
N(Q)\N(A)

Pf (ng) dn

vanishes. This is easy to verify. Indeed, since π is a discrete series representation, a classical result
of Harish-Chandra says that matrix coefficient f∞ lies in the subspace of cusp forms C0(G(R)) in
the Schwarz space C(G(R)) on G(R). This means that∫

N(R)
f∞(g′ng) dn = 0

for any two elements g′ and g in G(R). (See the first book of Wallach [Wal92].) Since the Poincaré
series is uniformly convergent on compact sets and the integral defining the constant term is taken
over a compact set, we can switch the order of integration and summation to obtain

cN (Pf )(g) =
∑

γ∈G(Q)/N(Q)

∏
v

∫
Nv

fv(γngv) dn,

where we have abbreviated Nv = N(Qp) if v = p and Nv = N(R) if v = ∞. It follows that
cN (Pf ) = 0 since the local integral vanishes for v = ∞.

For every X in the Lie algebra g let RX denote the natural right action of X on smooth functions
on G(R). Since the Poincaré series converges in C∞-topology,

RX(Pf ) = PXf ,

where Xf(g) = 〈π(g)π(X)w, π(g1)v〉. It follows that, by fixing a K-finite v in H, the map

w �→ Pf

is an intertwining map, in the sense of (g,K)-modules, from HK into C∞
0 (G(Q)\G(A))K . (Here

the subscript K means K-finite.) In addition, for any prime q, the local factor fq can be taken to
be a matrix coefficient of a supercuspidal representation πq of G(Qq). Then the Poincaré series,
if non-vanishing, will generate a finite sum of cuspidal automorphic representation which has the
integrable discrete series at the real place, the supercuspidal representation πq as a local factor at
the prime q, and is unramified for all p such that Kp is hyperspecial.

4.2 Genericity of Poincaré series
Let N be the unipotent radical of a Borel subgroup B of G, defined over Q. Fix ψ a Whittaker
character ofN(A) trivial onN(Q). Note that the character ψ is necessarily unitary sinceN(A)/N(Q)
is compact. In this section π denotes an automorphic representation of G(A). Recall that π is
ψ-generic if

Wψ(φ) =
∫
N(Q)\N(A)

φ(n)ψ(n) dn �= 0

for some (smooth) function φ in π. Again, the convergence of this integral is clear since N(A)/N(Q)
is compact.

552

https://doi.org/10.1112/S0010437X07003284 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003284


Functoriality and the inverse Galois problem

Fix two finite and disjoint sets of places: D, containing ∞ and perhaps nothing else, and S, a
non-empty set of primes such that G is unramified at all primes p not in D ∪ S. This means that
Kp = G(Zp) is a hyperspecial maximal compact subgroup of G(Qp). For G split, S could consist
of only one prime. In this section we shall show how the Poincaré series gives a globally ψ-generic
(and thus non-zero) cuspidal automorphic representation π such that:

(i) π∞ is a (given) generic integrable discrete series representation;

(ii) πq is a (given) generic supercuspidal representation for every prime q in D;

(iii) πp is unramified for all p not in S ∪D.

We assume, as we can, that ψ is trivial on Np ∩Kp for every prime p not in S.
The Poincaré series is constructed as follows. Let f =

⊗
v fv be a function on G(A) such that:

(a) f∞ is a matrix coefficient of the generic integrable discrete series π∞;

(b) fq is a (compactly supported) matrix coefficient of the generic supercuspidal representation πq
for every prime q in D;

(c) fp is the characteristic function of Kp = G(Zp) for all p not in S ∪D.

We shall specify the local components f� for � in S in a moment. The idea is to show that, for
some choice of f�, the Poincaré series is generic. Let B− be a Borel subgroup opposite to B. For
every prime � in S, pick a decreasing sequence Km

� of open compact subgroups K� such that:

(i) Km
� ∩N� is independent of m and ψ is trivial on it;

(ii) Km
� admits a parahoric factorization

Km
� = (Km

� ∩B−
� )(Km

� ∩N�);

(iii) limm→∞Km
� ∩B−

� = 1, meaning that
∞⋂
m=1

(Km
� ∩B−

� ) = {1}.

It is easy to see that such a sequence of groups Km exists. For example, if G = SL2(Qp) then we
can pick Km to be a congruence subgroup of SL2(Zp) consisting of elements(

a b
c d

)

such that a, d ≡ 1 (mod pm) and c ≡ 0 (mod pm). An analogous definition can be given in general,
for example, using a Chevalley basis consisting of eigenvectors for the adjoint action of the maximal
torus B− ∩B.

Let fm be the function on G(A) which has the local factors outside S independent of m and
as specified above, and fm� the characteristic function of Km

� for all � in S. We shall show that
Wψ(Pfm)(g) �= 0 for a sufficiently large m. In fact we can accomplish this with g in G(A) such
that gp = 1 for all p not in D. Now to the proof. In order to save notation, assume that S contains
only one prime: S = {�}. Since the Poincaré series Pfm is uniformly convergent on compact sets,
and Wψ(Pfm) is obtained by integrating over a compact set N(A)/N(Q), we can switch the order
of integration to obtain an absolutely convergent series

Wψ(Pfm)(g) =
∑

γ∈G(Q)/N(Q)

∏
v

∫
Nv

fmv (γngv)ψ(n) dn.

Let Φ(fmv , γ) denote the local integral over Nv in the above product. For a given γ in G(Q), as m
varies, only the factor at v = � could possibly change.
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Lemma 4.1. Let γ in G(Q) such that Φ(fm� , γ) �= 0. Then

Φ(fm� , γ) = Φ(f1
� , γ).

Proof. Recall first that g� = 1. If Φ(fm� , γ) �= 0 then γn ∈ Km
� for some n in N�. This implies that

γ can be written as

γ = kγnγ

for some kγ in Km
� ∩B−

� and nγ in N�. A trivial computation now shows that

Φ(f1
� , γ) = vol(K1

� ∩N�) · ψ(nγ)−1 = vol(Km
� ∩N�) · ψ(nγ)−1 = Φ(fm� , γ).

The above lemma shows that the terms in the series Wψ(Pfm)(g) (here g is fixed and trivial at
all finite places outside D) are the same as the terms in the series Wψ(Pf1)(g) except that we take
only γ contained in

(Km
� ∩B−

� ) ·N�.

As m goes to infinity, we are reduced to γ which sit in N�, that is, in N(Q). Since γ is a coset in
G(Q)/N(Q), we can take γ = 1 and the limit is equal to

lim
m→∞Wψ(Pfm)(g) = vol(K1

� ∩N�)
∏
v∈D

∫
Nv

fv(ngv)ψ(n) dn.

The local factors for p not in S ∪D are all equal to 1 since gp = 1, fp is the characteristic function
of Kp and, we assumed, ψ is trivial when restricted to Kp ∩Np.

Thus, in order to show that the Poincaré series is generic for some level m, it remains to show
that the integral on the right is non-zero for some matrix coefficient and some gv. This is done in
the following section.

4.3 Some results of Wallach
In this section G = G(R), except at the end of the section. Let K be a maximal compact subgroup
in G. Let (π,H) be a discrete series representation on a Hilbert space H. Let 〈v,w〉 denote the inner
product on H. Let v be a non-zero vector in HK , the space of K-finite vectors in H, and consider
the matrix coefficient cv,w(g) = 〈π(g)v,w〉. It will be important for us that the function cv,w belongs
to the (Harish-Chandra) Schwarz space C(G).

Assume now that π is a generic representation with respect to a regular unitary character ψ
of N . The Whittaker functional Wψ is not defined on H. Instead, the Whittaker functional is defined
on a space of smooth vectors H∞ and continuous with respect to a certain topology on H∞. Note
that HK , the space of K-finite vectors, is contained in H∞. For every vector v in HK we can define
a generalized matrix coefficient

�ψ,v(g) = Wψ(π(g)v).

Of course, �ψ,v(ng) = ψ(n)�ψ,v(g) for every N . Moreover, the following important property of �ψ,v
has been established by Wallach in Theorem 15.3.4 in [Wal92, § 15]: the function �ψ,v belongs to the
space of Schwarz functions C(N\G,ψ). This space is described using the Iwasawa decomposition
G = NAK . Here A = exp(a) where a is a maximal split Cartan subalgebra of the Lie algebra g

of G. A smooth function f on G belongs to C(N\G,ψ) if f(ng) = ψ(n)f(g) and for every X in the
enveloping algebra of g and every positive integer d there is a constant C such that, for all a in A
and k in K,

|RXf(ak)| � Cρ(a)(1 + ‖log(a)‖)−d,
where RXf is obtained by differentiating f by X from the right. Note that this definition says, in
essence, that the restriction of f to A is a usual Schwarz function on A multiplied by the modular
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character ρ(a). The Haar measure dg on the group G can be decomposed as

dg = dnρ−2(a) da dk.

It follows that the space C(N\G,ψ) admits a natural G-invariant inner product

(ϕ1, ϕ2) =
∫

AK
ϕ1(ak)ϕ2(ak)ρ−2(a) da dk.

The absolute convergence of this integral is clear. In fact, as we shall need this observation in
a moment, if ϕ1 is in the Schwarz space, so ϕ1(ak ) � C2,dρ(a)(1 + ‖log(a)‖)−d for any d, and
ϕ2(ak) � C2ρ(a), then the integral is still absolutely convergent. Indeed, up to a non-zero factor,
the integral is bounded by ∫

A
(1 + ‖log(a)‖)−d da,

which is absolutely convergent for a sufficiently large d.
The map v �→ �ψ,v from HK to C(N\G,ψ) is an intertwining map preserving inner products. In

particular, the matrix coefficient cv,w can be written as

cv,w(g) = (R(g)�ψ,v , �ψ,w),

where R denotes the action of G on C(N\G,ψ) by right translations.

Proposition 4.2. Let ψ be a regular (generic) unitary character of N . Let (π,HK) be a ψ-generic
discrete series. For every v �= 0 in HK there are g and g1 in G such that∫

N
cv,π(g1)v(ng)ψ(n) dn �= 0.

Proof. The proof is based on the following lemma.

Lemma 4.3. Let α be a function in C(G) and ϕ a function in C(N\G,ψ). Then there exists a
constant C such that ∫

G
|α(g)| · |ϕ(g1g)|dg � Cρ(a1)

for every g1 = n1a1k1 in G.

We shall postpone the proof of this lemma in order to finish the proof of Proposition 4.2 first.
If we take α = cv,v and ϕ = �ψ,v, then the lemma assures that the integral∫

N\G

∫
G
cv,v(g)�ψ,v(g1g)�ψ,v(g1) dg dg1

converges absolutely. Reversing the order of integration, we can rewrite this integral as∫
G
cv,v(g)(R(g)�ψ,v , �ψ,v) dg = ‖cv,v‖2

L2(G) �= 0

since, as we have remarked before, (R(g)�ψ,v , �ψ,v) = cv,v(g). By Fubini’s theorem, it follows that,
for some g1 in G,

0 �=
∫
G
cv,v(g)�ψ,v(g1g) dg.

The substitution g := g−1
1 g gives

0 �=
∫
G
cv,π(g1)v(g)�ψ,v(g) dg.
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Since this is an absolutely convergent integral over G, it can be written as a double integral over
N\G×N . Then, by Fubini’s theorem, there exists g in N\G such that

0 �= �ψ,v(g)
∫
N
cv,π(g1)v(ng)ψ(n) dn.

(Here we have used the fact that �ψ,v(ng) = ψ(n)�ψ,v(g).) This completes the proof of Proposi-
tion 4.2.

It remains to prove Lemma 4.3.

Proof of Lemma 4.3. We first recall some basic facts about Harish-Chandra’s space C(G); see § 8.3.7
in [War72]. If α is in C(G) then, for every positive integer d, there exists a constant c such that

|α(g)| � c · Ξ(g)(1 + σ(g))−d

for every g in G. This is essentially a definition of C(G). Here Ξ is a zonal spherical function of G
(in particular, it is K-bi-invariant) and σ(g) is a K-bi-invariant function such that σ(a) = ‖log(a)‖
if a is in A. We have the following result of Harish-Chandra.

Lemma 4.4. For a sufficiently large positive integer d, one has∫
N

Ξ(na)(1 + σ(na))−d dn � ρ(a).

Proof. This is precisely Theorem 8.5.2.1 in [War72], the case s = 0. Note that the zonal spherical
function for A is 1.

The proof of Lemma 4.3 is now a simple manipulation of the integral. Substituting g := g−1
1 g

and writing g = nak , the integral (in the statement of Lemma 4.3) can be written as∫
NAK

|α(k−1
1 a−1

1 n−1
1 nak)| · |ϕ(nak )| dn ρ−2(a) da dk.

Note that |ϕ(nak )| = |ϕ(ak )| since ψ is unitary. We can use a substitution n := n1n to rewrite the
integral as ∫

NAK
|α(k−1

1 a−1
1 nak)| · |ϕ(ak )| dn ρ−2(a) da dk.

Next, substituting n := a1na
−1
1 (this change of variable in N contributes a factor ρ2(a1)), the

integral further becomes

ρ2(a1)
∫

NAK
|α(k−1

1 na−1
1 ak)| · |ϕ(ak )| dn ρ−2(a) da dk.

Since α is in C(G), by Lemma 4.4, there exists a constant c such that∫
N
|α(k−1

1 na−1
1 ak)| dn � cρ(a−1

1 a)

for all (k1, k) in K ×K. It follows that the integral is bounded by

cρ(a1)
∫

AK
ρ(a)−1|ϕ(ak )| da dk � Cρ(a1),

for some constant C, exactly what we wanted. Lemma 4.3 is proved.

Of course, our discussion is valid in the case of p-adic fields, provided that, for every positive
integer d, there exists a constant C such that

|�ψ,v(nak )| � Cρ(a)(1 + ‖log(a)‖)−d.
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This may not be known in general, but if the discrete series is supercuspidal, then �ψ,v is compactly
supported, so Proposition 4.2 holds in this case, as well. Summarizing, we have shown the following
theorem.

Theorem 4.5. Let G be an almost simple, quasi-split algebraic group defined over Q. Fix two
finite and disjoint sets of places: D containing ∞ and perhaps nothing else, and S a non-empty
set of primes such that G is unramified at all primes p not in D ∪ S. (This means that G(Qp)
contains a hyperspecial maximal subgroup.) Let ψ be a regular (generic) character of N(A) trivial
on N(Q). Note that ψ is unitary, sinceN(A)/N(Q) is compact. Assume that we are given a ψ-generic
integrable discrete series representation of G(R), and a ψ-generic supercuspidal representation πq
for every q in D. Then there exists a global ψ-generic cuspidal representation π such that π∞ is the
given integrable discrete series, πq is the given supercuspidal representation for every q in D and πp
is unramified for every p outside D ∪ S.

5. Proof of Theorem 1.2

We first reduce the proof of Theorem 1.2 to the construction of certain self-dual cuspidal automor-
phic representations on GLn(AQ). Then we carry out the construction combining Theorem 4.5 with
the results in [CKPSS04].

But to begin with, to apply Theorem 4.5 to construct generic cuspidal representations with a
given integral integrable discrete series at the infinite place on certain orthogonal groups, we need
a description of generic, integrable discrete series representations of the real group SO(m,m+ 1).

5.1 Generic discrete series of SO(m,m + 1)
The Lie group SO(m+ 1,m) has two connected components. Let G0 be the connected component
containing the identity and K0 a maximal compact subgroup of G0. Note that

K0
∼= SO(m+ 1) × SO(m).

The necessary and sufficient condition for G0 to have discrete series representations is that the rank
of G0 is equal to the rank of K0. This clearly holds here. We shall now describe discrete series
representations of G0 and specify which of them are ψ-generic for a choice of a regular (generic)
character ψ of N(R), the unipotent radical of a Borel subgroup. (The difference between generic
discrete series for SO(m + 1,m) and G0 is easy to explain. Any two generic characters of N(R)
are conjugate by an element in SO(m + 1,m), whereas there are two conjugacy classes of generic
characters for G0. Any generic discrete series representation of SO(m+1,m), when restricted to G0,
breaks up as a sum of two discrete series representation of G0, each generic with respect to precisely
one of the two classes of characters.)

Let g be the real Lie algebra of G0 and k the real Lie algebra of K0. Let h be a maximal Cartan
subalgebra of g contained in k. Let Φ and ΦK be the sets of roots for the action of h on g and k,
respectively. The roots in ΦK are called compact roots. The root system Φ is of type Bm. We can
identify ih∗ ∼= Rm. Let (·|·) be the usual inner product on Rm such that the standard basis ei,
1 � i � m, is orthonormal. Then

Φ = {±ei ± ej, with i �= j and ± ei for all i}.
The Langlands parameter [Lan89, § 3] defining an L-packet of discrete series representation of

SO(m+ 1,m) is a homomorphism σ∞ : WR → Sp2m(C) described as follows. Recall that WR is the
non-split extension of Z/2Z by C× given by WR = C× ∪ tC× where t2 = −1 and tzt−1 = z. The
representation σ∞ is a direct sum of two-dimensional symplectic representations ρi,∞ (1 � i � m)
which, when restricted to C×, are of the form (z/z)(1−2λi)/2 ⊕ (z/z)−(1−2λi)/2, for some non-zero
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integers λi such that λi �= ±λj if i �= j, and ρm(t) is the matrix(
0 1

−1 0

)
.

The infinitesimal character of all representations in the L-packet of σ∞ is

λ = (λ1, λ2, . . . , λm) ∈ ih∗.

In fact, the L-packet consists of all discrete series representations with this infinitesimal character.
More precisely, for every non-singular and integral λ in ih∗, there exists a discrete series represen-
tation πλ of G0 with the infinitesimal character λ. Furthermore, πλ ∼= πλ′ if and only if λ and λ′

are conjugated by WK , the Weyl group of ΦK . Of course, πλ and πλ′ have the same infinitesimal
character if and only if λ and λ′ are conjugated by W , the Weyl group of Φ. In particular, the
number of representations in the L-packet (for G0) is equal to the index of WK in W . The repre-
sentation πλ is ψ-generic for some choice of a regular character ψ of N(R) if and only if all walls
of the Weyl chamber containing λ are defined by non-compact roots (see [Vog78, § 6] and [Kos78]).
The existence of one such chamber, in fact precisely two up to the action of WK , can be shown as
follows. Instead of fixing an embedding ΦK ⊆ Φ we shall fix a Weyl chamber C containing λ, and
then look for ways how to put ΦK into Φ so that it misses the roots defining the walls of C. We pick
the Weyl chamber C containing λ, so that λ = (λ1, λ2, . . . , λm), where λi are positive integers such
that λ1 > · · · > λm. In particular, the walls of the Weyl chamber are given by

e1 − e2, e2 − e3, . . . , em−1 − em and em.

Then πλ is ψ-generic for some choice of ψ if and only if these roots are not compact. Thus, we need
to show that we can embed ΦK into Φ so that it does not contain any of these roots. To this end,
break up the set of indices {1, 2, . . . ,m} into a disjoint union E ∪O where E = {m,m− 2, . . . } and
O = {m− 1,m− 3, . . . }. Then we can pick ΦK so that it contains ±ei ± ej where both i and j are
either in E or in O, and ±ei with i in O. With this choice of ΦK , the discrete series πλ is generic.
The other Weyl chamber without ‘compact’ walls is −C. These two are not WK-conjugated since
−1 is not contained in WK . We put

π∞ = IndSO(m+1,m)
G0

πλ.

This is the unique generic discrete series representation of SO(m + 1,m) with the infinitesimal
character λ. In order to make this representation a local component of a global automorphic rep-
resentation, we need that its matrix coefficients are integrable, as well. Integrability conditions on
matrix coefficients are given as follows (see [Mil77]).

Proposition 5.1. Let W be the Weyl group of Φ. Fix a positive W -invariant inner product (·|·)
on ih∗. The discrete series representation πλ has integrable matrix coefficients if

|(λ|α)| > k(α) =
1
4

∑
β∈Φ

|(α|β)|

for every non-compact root α.

In practical terms this simply means that λ is at a certain distance from all walls corresponding
to non-compact roots. We can determine whether the discrete series πλ is integrable or not since
one easily computes that

k(α) =

{
m− 1

2 if α is short,
2m if α is long.

In particular, if λm � m and λi− λi+1 > 2m for all i = 1, . . . ,m− 1, then πλ has integrable matrix
coefficients.
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5.2 Reduction of Theorem 1.2 to existence of certain cuspidal automorphic
representations of GLn(AQ)

Throughout this section we use the notation of § 3.3, and the primes p, q, the representation ρq, and
integer N are as in that section.

Let Π be a cuspidal automorphic representation of GLn(AQ) which is unramified or supercuspidal
at each finite place v of Q. There is attached to Πv a representation σ(Πv) : WQv → GLn(Q�). This
arises from the local Langlands correspondence of [HT01] (for finite places; for infinite places these
are the results of Harish-Chandra and Langlands, see [Lan89] and [Bor79]), and depends on choosing
an isomorphism C � Q�.

Let Π be a cuspidal automorphic representation of GLn(AQ) with the following properties:

(a) The representation Π is self-dual, i.e. Π∨ � Π.

(b) The representation Π∞ has a regular symplectic parameter σ∞ described in § 5.1. Recall that
σ∞ is a direct sum of two-dimensional representations ρi,∞ (1 � i � m) which, when restricted
to C×, are of the form (z/z)(1−2λi)/2 ⊕ (z/z)−(1−2λi)/2. We require that λi be positive integers
such that λm � m and λi − λi+1 > 2m for all i = 1, . . . ,m − 1. This technical condition on
the λi assures us that Π∞ is a local lift of an integrable discrete series representation π∞ of
SO(m+ 1,m).

(c) The representation Π is unramified outside {�, q}, and σ(Πq) is isomorphic to the ρq fixed
in § 3.3.

The results of [Kot92], [Clo91], [HT01], and Theorem 3.6 of [Tay04] (applied to a twist of
Π by the (1 − n)/2 power of the norm character) ensure that there is a continuous semisimple
representation ρΠ : GQ → GLn(Q�) attached to Π such that, for the finite places v �= �, the
Frobenius semisimplification of ρΠ|Dv is isomorphic to σ(Πv) ⊗ | |(1−n)/2. Here | |1/2 : GQq → Q�

is the unramified character of Q×
q that takes q → √

q (
√
q positive). For any integer r, we may also

analogously define a character | |r of GQ with values in Q�
∗ which is the rth power of the �-adic

cyclotomic character.

From the fact that Π is self-dual we see by Čebotarev density that ρ∨Π � ρΠ| |n−1 and thus ρΠ

acts by either orthogonal or symplectic similitudes on Q�
n with similitude factor | |n−1. Although

it is possible for an irreducible representation to act by both orthogonal and symplectic similitudes,
this is not possible if the factors of similitude are the same. As ρΠ|Dq � ρq ⊗ | |(1−n)/2, and ρq is
an irreducible symplectic representation, it follows that ρΠ is irreducible, and that the self-duality
of ρΠ with similitude factor | |n−1 is symplectic. Therefore, the image of ρΠ may be conjugated to
land inside GSpn(Q�), and in fact, by the compactness of GQ, inside GSpn(Z�).

We consider the reduction mod � of ρΠ, and denote the resulting representation by ρ̄ : GQ →
GSpn(F̄�), and note that its determinant is valued in F×

� . Let Γ denote im(ρ̄). Then we see that Γ
satisfies the conditions of Theorem 2.2, by construction, namely the choice of q and the parameter ρq.
We expand on this. We see that any subgroup of Γ of index at most N cuts out an extension L of Q

of degree at most N that is unramified outside {�, q,∞}. In fact, as the image of ρq(Iq) is of order
p and p > N , we see that L is unramified at q. (To see this, note that, as p > N , the degree of the
normal closure of L over Q is prime to p.) Thus L is unramified outside {�,∞}. Hence by choice
of q, it splits in L. Furthermore, by construction, im(ρ̄(Dq)) is a group of type (n, p) (note that by
choice p �= �) of § 2, and it is contained in Γd(n).

Thus Theorem 2.2 implies that, after conjugation by an element in GLn(F̄�), we may conclude
that Γ contains Spn(F�k) for some integer k and is contained in its normalizer. Thus by Corollary 2.6
we know that the image of Γ in PGLn(F̄�) is isomorphic to PSpn(F�k) or GSpn(F�k)/F×

�k
. As the
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order of this group is divisible by p (as the order of ρ̄(Iq) is p), it follows using Lemma 3.4(3) that
k is divisible by t.

Recall that we are assuming that n|t, and we also know that det(ρ̄) ⊂ F×
� . Note that for each

prime � and integers n and t, F∗
� is a subgroup of (F∗

�t)
n if n divides t. Thus we know further, by

the last part of Corollary 2.6, that the image of Γ in PGLn(F̄�) is isomorphic to PSpn(F�k).

5.3 Construction of certain cuspidal automorphic representations of GLn(AQ)
In order to construct the Π of the previous section, we construct generic cuspidal automorphic
representations π of the split SO2m+1(AQ) using Theorem 4.5 and lift them to GL2m(AQ) using
the results of [CKPSS04] and [JS03, JS04]. We use the terminology of these papers below. There is
recent work of Chenevier and Clozel [CC07] which uses related, but more elaborate, constructions
to improve the results in [Che04], which Chenevier had mentioned to the first named author. The
relevance of SO2m+1 to our work is that the connected component of its L-group is Sp2m.

We consider the split group SO2m+1 of rankm defined over Q (defined by the form
∑n

i=1 xixn+i+
x2

2n+1), and consider SO2m+1(Qv) for each place v of Q, and SO2m+1(AQ). We note that the notion
of genericity for these groups is independent of choice of (local or global) Whittaker character ψ,
and thus we call the ψ-generic forms, or ψ-generic local representations, of § 4 simply generic.

We need the following theorem, which is a combination of the work of [CKPSS04] and [JS04];
see [CKPSS04, Theorem 7.1] and [JS04, Theorem E].

Theorem 5.2. There is a lifting from equivalence classes of irreducible generic cuspidal automorphic
representations of SO2m+1(AQ) to equivalence classes of irreducible automorphic representations
of GL2m(AQ) such that this lifting is functorial at all places. Further, a cuspidal automorphic
representation Π of GL2m(AQ) which is in the image of this lift is self-dual (and L(s,Λ2,Π) has a
simple pole at s = 1).

We refer to the cited papers for the exact notion of functoriality used, but will spell it out in
the cases used below.

In order to construct the generic cuspidal representation π, we need to specify what we want
at the local places. We start with the following theorem of Jiang and Soudry: [JS03, Theorem 6.4]
and [JS04, Theorem 2.1].

Theorem 5.3. Let q be a finite prime of Q. There is a bijection between irreducible generic discrete
series representations of SO2m+1(Qq) and irreducible generic representations of GL2m(Qq) with
Langlands parameter of the form σ =

∑
σi with σi irreducible symplectic representations of WDQq

which are pairwise non-isomorphic.

Thus in particular there is a generic supercuspidal representation πq of SO2m+1(Qq) that cor-
responds to the Langlands parameter ρq (and thus to a supercuspidal representation of GL2m(Qq)
with this parameter). This correspondence is also known at the Archimedean places as recalled
in § 5.1. From this we deduce that there is a generic, integrable discrete series representation π∞ on
SO2m+1(R) which corresponds (under the correspondence of [CKPSS04, § 5.1]) to the representation
Π∞ fixed in § 5.2 with Langlands parameter σ∞.

By Theorem 4.5 (with D = {∞, q} and S = {�}) there exists a generic cuspidal automorphic
representation π on SO2m+1(AQ) such that:

(i) under the Jiang–Soudry correspondence of Theorem 5.3, πq has parameter ρq;

(ii) π is unramified outside {�, q};
(iii) π∞ is a generic integrable discrete series with Langlands parameter σ∞.
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Using Theorem 5.2 we can transfer π to Π to get an irreducible automorphic representation Π
on GL2m(AQ) such that:

(i) Π∞ has the regular algebraic parameter σ∞, Π is unramified outside {�, q}, and σ(Πq) � ρq
(this for us is the implication of the functorial at all places assertion in Theorem 5.2);

(ii) Π is cuspidal (as Πq is supercuspidal) and self-dual.

Remarks. (i) To directly construct self-dual representations of GLn(AQ) interpolating finitely many
specified self-dual supercuspidal representations at finitely many places is a subtle matter, and
has been addressed recently in [CC07]. As pointed out in [PR04], one of the difficulties is that
an obstruction to this is that the corresponding local Langlands parameters should either be all
symplectic or all orthogonal, and proofs using the trace formula might not see this obstruction.
This is why we first construct π on SO2m+1(AQ) and then transfer it to GL2m(AQ) using the results
of [CKPSS04].

(ii) The case n = 2 corresponds to the result of [Wie06]. In that case the lifting proved
in [CKPSS04] is trivial: it is the lifting of cuspidal automorphic representations of PGL2(AQ) to
cuspidal automorphic representations of GL2(AQ) with trivial central character.

(iii) Curiously enough as we lack control of the field of definition of the ρ̄ we get, using this
method we do not see how to realize PGL2(F�k) as a Galois group over Q for infinitely many k. The
limitations of our method do not allow us to prove that given an integer t > 1 there are infinitely
many k prime to t (or even one such k) such that PSpn(F�k) appears as a Galois group over Q.

(iv) In the n = 2 case, we may prove the result of [Wie06] for � > 2 by imposing, in addition
to large dihedral ramification at a prime q, also A4/S4-type ramification at another prime (neces-
sarily 2!). This works for � > 2 to ensure that we get some large image representations, but does
not work for � = 2. This is because by our methods it is not possible to ensure that a non-trivial
unipotent is in the image of the mod � Galois representation being considered. A similar remark
applies for higher dimensions n. Further it seems of interest to us to force large images of global
Galois representations by dint of properties of the representation at a single prime q.

(v) In an earlier version of the paper1 it was erroneously asserted that the existence of generic
cuspidal forms as in Theorem 4.5 follows from the literature, in particular the methods of [PSP07].
But it turns out that the methods of [PSP07] using the relative trace formula are not able to prove
results like Theorem 4.5 where one of the local representations sought to be interpolated into a
global generic representation is a generic discrete series representation of a real group.

6. Zariski density

We conclude with a group theoretic proposition which shows that, if t� 0, the �-adic representations
ρΠ : GQ → GLn(Q�) constructed in § 5 have Zariski-dense image in GSpn.

Before stating it, we first prove the following lemma.

Lemma 6.1. Given a positive even integer n and a prime �, there exists a constant M such that,
for all m > M , and all almost simple algebraic groups G/F̄� of rank less than n/2, the finite simple
group PSpn(F�m) is not a subquotient of G(F̄�).

Proof. Up to isomorphism there are only finitely many possibilities for G, so we may pick one.
Let r < n/2 denote the rank of G, and e1 < e2 < · · · < er the exponents. Let p > er be any prime
and F a finite field in characteristic � such that G is defined and split over F and p divides the order

1See http://front.math.ucdavis.edu/math.NT/0610860
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of F×. Let T be an F-split maximal torus of G. We have

ordp|T (F)| = r ordp(|F| − 1) =
r∑
i=1

ordp(|F|ei − 1) = ordp|G(F)|,

so any p-Sylow subgroup of T (F) is a p-Sylow subgroup of G(F). It follows that every p-Sylow of
G(F) is abelian and generated by at most r elements, and these properties are inherited by any finite
p-subgroup of G(F) and therefore (letting F grow) of G(F̄�). It follows that no finite subgroup of
G(F̄�) has a subquotient isomorphic to (Z/pZ)n/2. By Lemma 3.3, for m sufficiently large, �m−1 has
a prime divisor p > er, so PSpn(F�m) has a subgroup isomorphic to (Z/pZ)n/2. It cannot, therefore,
be a subquotient of G(F̄�).

Let Γ = ρΠ(GQ). The image of Γ lies in GLn(K) for some �-adic field K. Since ρΠ has positive
weight, in order to prove that the Zariski closure of Γ is GSpn, it suffices to prove that the closure
contains Spn. This follows from the following proposition.

Proposition 6.2. Let K be a finite extension of Q� with residue field k and Γ denote a compact
subgroup of GSpn(K) ⊂ GLn(K). Suppose that some quotient of Γ is isomorphic to PSpn(F�m). If
m is sufficiently large, then the Zariski closure of Γ contains Spn.

Proof. Let G denote the Zariski closure of Γ in GLn. Let G◦ denote the identity component of G.
The following version of Jordan’s theorem for algebraic groups seems to be well known, but, lacking
a reference, we sketch the proof.

Lemma 6.3. There exists a function J : N → N such that, for every integer n > 0 and every algebraic
subgroup G ⊂ GLn over a field of characteristic 0, the component group H := G/G◦ has a normal
abelian subgroup of index � J(n).

Proof. We may (and do) assume without loss of generality that we are working over C.
If H̃ is an extension of H by a finite group, and H̃ has a normal abelian subgroup Ã of index at

most J(n), then the image A of Ã in H is a normal abelian subgroup of index at most J(n). It suffices
to prove that, for some finite extension H̃ of H, the homomorphism H̃ → H lifts to H̃ → G(C).
Indeed Jordan’s theorem for finite subgroups of GLn(C) then applies to H̃, and therefore to H.
Lifting by stages, it suffices to prove this first in the case that G◦ is adjoint semisimple, next
when G◦ is diagonal, and last when G◦ is commutative and unipotent. For the first case, we note
that the center of G◦(C) is trivial, so every extension of H by G◦(C) is a semidirect product. For
the second, we note that H2(H,D(C)) is annihilated by |H|, and therefore lies in the image of
H2(H,D(C)[|H|]). Any class in this latter cohomology group defines an extension of H by the
finite abelian group D(C)[|H|]. Thus, every cohomology class in H2(H,D(C)) can be trivialized by
pullback to a finite abelian extension H̃ of H. For the third, we note that H2(H,V ) = 0 for every
complex representation V of H, so there is no obstruction to lifting.

Now, if 0 → G1 → G2 → G3 → 0 is any short exact sequence of groups and G2 admits a
surjective homomorphism to a finite simple group ∆, then G1 maps to a normal subgroup of ∆;
thus either G1 or G3 maps onto ∆. Setting ∆ = PSpn(F�k) and assuming that |∆| > J(n), we
see that the component group H cannot map to ∆, and therefore G◦(K) ∩ Γ must. Without loss
of generality, therefore, we may assume that G is connected. If R denotes the radical of G, then
R(K)∩Γ is a normal solvable subgroup of Γ, so its image in ∆ is trivial. It follows that there exists
a semisimple quotient Gs of G such that Gs(K) contains a compact subgroup Γs which admits a
surjective homomorphism to ∆. Replacing K with a finite extension L, we may assume that Γs
stabilizes a hyperspecial vertex of the building of Gs over L (see [Ser96, Proposition 8], [Lar95,
Lemma 2.4]). It follows that there exists a smooth group scheme Gs over the ring of integers OL of
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L with connected semisimple fibers such that Γs ⊂ Gs(OL) and the generic fiber of Gs is isomorphic
to Gs. The kernel of the reduction map on Γs is a normal pro-�-group of Γs whose image in ∆ must
again be trivial. We conclude that the image of Γs under the reduction map admits a surjective
homomorphism to ∆. Let G�s denote the special fiber of Gs. It is connected and semisimple, with
the same Dynkin diagram as Gs. Moreover G�s(F̄�) contains a subgroup which maps onto ∆.

We assume that Gs, or equivalently G�s, is not symplectic of rank n/2. If the rank of Gs is n/2
but Gs �= Spn, then, by the classification of equal rank subgroups of Spn, Gs fails to be almost
simple. In this case, we can replace G�s by an almost simple subquotient, whose rank is strictly less
than n/2. In any case, as long as Gs �= Spn, we can find G�s with rank less than n/2 such that G�s(F̄�)
contains a finite subgroup which maps onto ∆ = PSpn(F�m). By Lemma 6.1, this cannot happen
for m� 0.
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Ser79 J.-P. Serre, Groupes algébriques associés aux modules de Hodge–Tate, Journées de Géométrie
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