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Abstract. The discrete universality of the derivative and logarithmic derivative of
zeta-functions of normalized eigenforms is obtained. This is used to estimate the
number of zeros of the derivatives in the critical strip. For the proof the method of
functional limit theorems in the sense of weak convergence of probability measures is
applied.
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1. Introduction. Let F(z) be a normalized eigenform of weight κ for all Hecke
operators. Then F(z) has the Fourier series expansion

F(z) =
∞∑

m=1

c(m)e2π imz

with multiplicative coefficients c(m). Denote by s = σ + it a complex variable, and
attach to the form F(z) the zeta-function

ϕ(s; F) =
∞∑

m=1

c(m)
ms

.

In view of multiplicativity of the coefficients c(m), the function ϕ(s; F) has the Euler
product expansion over primes

ϕ(s; F) =
∏

p

(
1 − α(p)

ps

)−1(
1 − β(p)

ps

)−1

,

where α(p) + β(p) = c(p). By Deligne’s estimates [2] both the Dirichlet series and
product converge absolutely in the half-plane σ > κ+1

2 and define there a holomorphic
function with no zeros. Moreover, the function ϕ(s; F) is analytically continuable to an
entire function and satisfies the functional equation of the Riemann type

(2π )−s�(s) ϕ (s; F) = (−1)κ/2(2π )s−κ�(κ − s) ϕ (κ − s; F).

S. M. Voronin [14] was the first to prove (continuous) universality for the Riemann
zeta-function, and discrete universality was invented by A. Reich [13] for Dedekind
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zeta-functions. In [5] we began to study value-distribution of the derivative as well as
of the logarithmic derivative of the function ϕ(s; F). We proved the universality in the
Voronin sense [14] for the functions ϕ′(s; F) and ϕ′

ϕ
(s; F), and obtained that ϕ′(s; F)

has infinitely many zeros in the critical strip {s ∈ � : κ/2 < σ < (κ + 1)/2}. To state
more precisely the mentioned results we need some notation. Denote by meas{A} the
Lebesgue measure of a measurable set A ⊂ �, and let, for T > 0,

νT (. . .) = 1
T

meas{τ ∈ [0, T ] : . . .},

where in place of dots a condition satisfied by τ is to be written. Then in [5] the
following statements have been obtained. Let D = {s ∈ � : κ/2 < σ < (κ + 1)/2}, and
let ψ(s; F) denote ϕ′(s; F) or ϕ′

ϕ
(s; F).

THEOREM A. Let K be a compact subset of the strip D with connected complement,
and let f(s) be a continuous on K function which is analytic in the interior of K. Then, for
every ε > 0,

lim inf
T→∞

νT

(
sup
s∈K

|ψ(s + iτ ; F) − f (s)| < ε

)
> 0.

THEOREM B. For every σ1, σ2, κ/2 < σ1 < σ2 < (κ + 1)/2, there exists a constant
c = c(σ1, σ2) > 0 such that, for sufficiently large T, the function ϕ′(s; F) has more than
cT zeros in the rectangle

{s ∈ � : σ1 < σ < σ2, 0 < t < T}.
In Theorem A the translation τ varies continuously in the interval [0, T ]; therefore

Theorem A can be called the continuous universality theorem. The aim of this note is
to obtain discrete versions of Theorems A and B, when the translation τ takes values
from a certain arithmetical progression with the first term zero and difference h > 0.
Let, for N ∈ �,

µN(. . .) = 1
N + 1

#{0 ≤ m ≤ N : . . .},

where in place of dots a condition satisfied by m is to be written.

THEOREM 1. Let K be a compact subset of the strip D with connected complement,
and let f(s) be a function continuous on K which is analytic in the interior of K. Then, for
every ε > 0 and arbitrary positive real number h,

lim inf
N→∞

µN

(
sup
s∈K

|ψ(s + imh; F) − f (s)| < ε

)
> 0.

The function ψ(s, F) does not have an Euler product. Therefore, the function f (s)
in Theorem 1 is not necessarily non-vanishing.

THEOREM 2. For arbitrary σ1, σ2, κ/2 < σ1 < σ2 < (κ + 1)/2, there exists a constant
c = c(σ1, σ2) > 0 such that, for sufficiently large N, the function ϕ′(s + imh; F) has a zero
on the disc |s − σ̂ | ≤ (σ2 − σ1)/2, σ̂ = σ1+σ2

2 , for more than cN numbers m, 0 ≤ m ≤ N.

We note that in this paper there is no restriction on h as in former results [10].
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We consider two cases. In the first case we assume the number exp{ 2πk
h } to be

irrational for all k ∈ �\{0}, while in the second case this number is supposed to be
rational for some k �= 0. In the first case, Theorem 1 with ψ(s; F) = ϕ′(s; F) and
Theorem 2 were proved in [10] if F is a newform of weight κ and level q. So, it
remains to obtain Theorem 1 with ψ(s; F) = ϕ′

ϕ
(s, F) in the first case, and Theorems 1

and 2 in the second case.
The proof of Theorem 1 uses Bagchi’s method based on limit theorems in the

sense of weak convergence of probability measures in the spaces of analytic and
meromorphic functions. An application of Theorem 1 together with Rouché’s theorem
yields Theorem 2.

2. A discrete limit theorem for ϕ′
ϕ

(s, F ). Case 1. Let γ = {s ∈ � : |s| = 1} be the
unit circle on the complex plane. As usual, we define a probability space (
,B(
), mH),
where


 =
∏

p

γp

with γp = γ for each prime p,B(S) denotes the class of Borel sets of the space S, and mH

is the probability Haar measure on (
,B(
)). The measure mH can be defined because

 with the product topology and pointwise multiplication is a compact topological
Abelian group. Denote by ω(p) the projection of ω ∈ 
 to the coordinate space γp.

Let �∞ = � ∪ {∞} be the Riemann sphere with spheric metric d defined by the
formulae

d(s1, s2) = 2|s1 − s2|√
1 + |s1|2

√
1 + |s2|2

, d(s,∞) = 2√
1 + |s|2

, d(∞,∞) = 0,

s, s1, s2 ∈ �. By M(G) denote the space of meromorphic on G functions g : G →
(�∞, d) equipped with the topology of uniform convergence on compacta. In this
topology, a sequence gn(s) ∈ M(G) converges to g(s) ∈ M(G) if

d(gn(s), g(s)) −→ 0, n → ∞,

uniformly on compact subsets of G. The space H(G) of analytic on G functions is a
subspace of M(G).

For V > 0, let DV = {s ∈ � : κ
2 < σ < κ+1

2 , |t| < V}. On the probability space
(
,B(
), mH) define an H(DV )-valued random element ϕ′

ϕ
(s, ω; F) by

ϕ′

ϕ
(s, ω; F) = −

∑
p

α(p)ω(p) log p
ps

(
1 − α(p)ω(p)

ps

)−1

−
∑

p

β(p)ω(p) log p
ps

(
1 − β(p)ω(p)

ps

)−1

.
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THEOREM 3. Let exp{ 2πk
h } be irrational for all k ∈ �\{0}. Then the probability

measure

µN

(
ϕ′

ϕ
(s + imh; F) ∈ A

)
, A ∈ B(M(DV )),

converges weakly to the distribution of the random element ϕ′
ϕ

(s, ω; F) as N → ∞.

For the proof of Theorem 3 we will use the following statement obtained in [12,
Lemma 1], in the case of newforms.

LEMMA 4. As N → ∞, the probability measure

µN(ϕ(s + imh; F) ∈ A), A ∈ B(H(DV )),

converges weakly to the distribution of the H(DV )-valued random element

ϕ(s, ω; F) =
∏

p

(
1 − α(p)ω(p)

ps

)−1(
1 − β(p)ω(p)

ps

)−1

defined on the probability space (
,B(
), mH).

Proof of Theorem 3. Using the Cauchy integral formula we obtain easily that the
function u : H(DV ) → H(DV ) given by the formula u(g(s)) = g′(s), g(s) ∈ H(DV ), is
continuous. Therefore, [1, Theorem 5.1] and Lemma 4 imply, as N → ∞, the weak
convergence of the probability measure

µN(ϕ′(s + imh, F) ∈ A), A ∈ B(H(DV )),

to the distribution of the H(DV )-valued random element ϕ′(s, ω; F). From this and
Lemma 4, using a modification of the Cramér-Wald criterion (see, for example, [4], [6],
[7], [9]) we obtain that the probability measure

µN((ϕ′(s + imh; F), ϕ(s + imh; F)) ∈ A), A ∈ B(H2(DV )), (1)

where H2(DV ) = H(DV ) × H(DV ), converges weakly to the distribution of the
H2(DV )-valued random element (ϕ′(s, ω; F), ϕ(s, ω; F)) as N → ∞. The metric d
defined above satisfies d( 1

g1
, 1

d2
) = d(g1, g2), and therefore the function u : H2(DV ) →

M(DV ) defined by the formula u(g1, g2) = g1
g2

, g1, g2 ∈ H(DV ), is continuous, and the
theorem is a consequence of the weak convergence of the measure (1) as well as of [1,
Theorem 5.1] again.

In order to use functional limit theorems for the proof of the universality property,
it is necessary to know the support of the limit measure. In our limit theorems the limit
measures coincide with the distributions of some random elements. Thus, we have to
find the supports of those random elements.

THEOREM 4. The support of the random element ϕ′
ϕ

(s, ω; F) is the whole of H(DV ).

See [5, Lemma 7] for a proof of this theorem.

3. Discrete limit theorems. Case 2. In this section we suppose that the number
exp{ 2πk

h } is rational for some k �= 0. Clearly, it suffices to consider only positive integers
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k. As it was noted in [3], there exists k0 ∈ � such that the numbers k ∈ � with the
above property are the multiples of k0. Let Ah = {k ∈ �; exp{ 2πk

h } is rational}, and let
k0 = mink∈Ah k. If k ∈ Ah, then k = ak0 + r with 0 ≤ r < k0. Hence

exp
{

2πr
h

}
= exp

{
2πk

h

}
exp

{
− 2πak0

h

}
is rational. Therefore, by the definition of k0 we have that r = 0.

For m ∈ �, we define

ω(m) =
∑
pα‖m

ωα(p), (2)

where pα‖m means that pα|m but pα+1 � m. Let

exp
{

2πk0

h

}
= m0

n0
, m0, n0 ∈ �, (m0, n0) = 1,

and


0 = {ω ∈ 
 : ω(m0) = ω(n0)}.

Then 
0 is a closed subgroup of 
, and therefore it is also a compact topological
Abelian group. Hence we can define a probability space (
0,B(
0), m0H), where m0H

is the probability Haar measure on (
0,B(
0)). Denote the elements of 
0 by ω0 and
define

ϕ(s, ω0; F) =
∏

p

(
1 − α(p)ω0(p)

ps

)−1(
1 − β(p)ω0(p)

ps

)−1

.

By the same method as in the case of ϕ(s, ω; F) it can be proved that ϕ(s, ω0; F) is an
H(DV )-valued random element defined on the probability space (
0,B(
0), m0H).

THEOREM 5. Suppose that exp{ 2πk
h } is rational for some k �= 0. Then the probability

measure

PN(A)
def= µN(ϕ(s + imh; F) ∈ A), A ∈ B(H(DV )),

converges weakly to the distribution of the random element ϕ(s, ω0; F) as N → ∞.

Proof. The structure of the proof is similar to that in the case of h when exp{ 2πk
h }

is irrational for all k ∈ � � {0}. Therefore we will give a sketch of the proof only. �

We start with a limit theorem on a finite-dimensional torus. Without loss of
generality we can suppose that the prime numbers p1, . . , pl occur in the factorization
of the numbers m0 and n0, i.e., we have that

exp
{

2πk0

h

}
= m0

n0
= pα1

1 · · · pαl
l (3)
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with some αl ∈ �\{0}, j = 1, . . . , l. Let p1, . . . , pr be all prime divisors of n!, r > l.
Define a finite-dimensional torus


r =
r∏

j=1

γpj ,

where γpj = γ for j = 1, . . . , r, and let


0r = {ω ∈ 
r : ω(m0) = ω(n0)},
where for the extension of ω(p) to the set �, ω ∈ 
r, formula (2) is used. Then in [3] it
was proved that the probability measure

QhN(A) = µN
((

pimh
1 , . . . , pimh

r

) ∈ A
)
, A ∈ B(
r),

converges weakly to the Haar measure m0r on (
0r,B(
0r)) as N → ∞. Note that in
this place the property of h that exp{ 2πk

h } is rational for some k �= 0 is used. To prove
the weak convergence of the measure QhN , we use the Fourier transform method.
Denoting by gN(k1, . . . , kr), kj ∈ �, j = 1, . . . , r, the Fourier transform of the measure
QhN , we have that

gN(k1, . . . , kr) = 1
N + 1

N∑
m=0

r∏
j=1

pimhkj

j = 1
N + 1

N∑
m=0

exp
(

imh
r∑

j=1

kj log pj

)

=
{

1, if k1 = kα1, . . . , kαl, kl+1 = . . . = kr = 0,

1
N+1

1−exp{i(N+1)h
∑r

j=1 kj log pj}
1−exp{hi

∑r
j=1 kj log pj} otherwise.

Note that in view of the linear independence over the field of rational numbers of
logarithms of prime numbers and (3),

1 − exp

hi
r∑

j=1

kj log pj

 �= 0

for (k1, . . . , kl, kl+1 = · · · = kr) �= (kα1, . . . , kαl, 0, . . . , 0), k ∈ �. Therefore,

lim
N→∞

gN(k1, . . . , kr)=
{

1, if (k1, . . . , kl, kl+1 =· · · = kr) �= (kα1, . . . , kαl, 0, . . . , 0),
0, otherwise.

This implies the weak convergence of QhN to m0r as N → ∞.
The proof thereafter contains the following sequence of statements: limit theorems

in the space of analytic functions for Dirichlet polynomials and for absolutely
convergent Dirichlet series, approximations in the mean by absolutely convergent
series, limit theorems in the space of analytic functions for ϕ(s; F) and ϕ(s, ω0; F),
and the identification of the limit measure. For Matsumoto zeta-functions, all these
statements for the complex plane were proved in [3]. Here we have to generalize the
mentioned statements for the space of analytic functions.

Let

pn(s) =
n∑

k=1

akk−s, ak ∈ �,
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and

pn(s, ω0) =
n∑

k=1

akω0(k)k−s,

where ω0 is an element of 
0, be two Dirichlet polynomials. Then, taking into account
the weak convergence of the measure QhN and [1, Theorem 5.1], similar to the proofs
of [3, Theorems 4 and 5] we deduce that the probability measures

µN(pn(s + imh) ∈ A), A ∈ B(H(DV )), (4)

and

µN(pn(s + imh, ω0) ∈ A), A ∈ B(H(DV )), (5)

both converge weakly to the same probability measure on (H(DV ),B(H(DV ))) as
N → ∞.

Now let, for σ1 > 1/2 and n ∈ �,

ϕn(s; F) =
∞∑

m=1

c(m)
ms

exp
{
−

(
m
n

)σ1
}

and

ϕn(s, ω0; F) =
∞∑

m=1

c(m)ω0(m)
ms

exp
{
−

(
m
n

)σ1
}
.

The latter series both converge absolutely for σ > κ/2. Then the analogue of [3,
Theorem 6] says that there exists a probability measure Pn on (H(DV ),B(H(DV )))
such that both the measures

µN(ϕn(s + imh; F) ∈ A), A ∈ B(H(DV )), (6)

and

µN(ϕn(s + imh, ω0; F) ∈ A), A ∈ B(H(DV )), (7)

converge weakly to Pn as N → ∞. To prove this, instead of the Euclidean metric used
in [3] we have to deal with a metric ρ in H(DV ) which induces its topology. There exists
a sequence {Kl} of compact subsets of DV such that

DV =
∞⋃

l=1

Kl,

Kl ⊂ Kl+1, and if K is a compact subset of DV , then K ⊆ Kl for some l. Then the metric
ρ can be defined by

ρ(g1, g2) =
∞∑

l=1

2−l ρl(g1, g2)
1 + ρl(g1, g2)

, g1, g2 ∈ H(DV ),
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where

ρl(g1, g2) = sup
s∈Kl

|g1(s) − g2(s)|.

Moreover, we use the weak convergence of probability measures (4) and (5) as well as
[1, Theorem 4.2].

To pass from ϕn(s; F) to ϕ(s; F) an approximation of ϕ(s; F) by ϕn(s; F) in the mean
is applied. Using the estimate ([11], [12])

T∫
0

|ϕ(σ + it; F)|2 dt � T, σ >
κ

2
,

we obtain that, for every compact subset K ⊂ DV ,

lim
n→∞ lim sup

N→∞

1
N + 1

N∑
m=0

sup
s∈K

|ϕ(s + imh; F) − ϕn(s + imh; F)| = 0. (8)

The proof of a similar result for ϕ(s, ω0; F) is more complicated. Let ah = {p−ih :
p is prime}. Define a transformation fh of 
0 taking fh(ω0) = ahω0, ω0 ∈ 
0. Then fh

is a measurable measure preserving transformation on (
0,B(
0), m0H). In [3] it was
proved that the transformation fh is ergodic. This together with the classical Birkhoff
theorem implies, for σ > κ/2 and almost all ω0 ∈ 
, the estimate

N∑
m=0

|ϕ(σ + imh, ω0; F)| � N.

From this we find that, for every compact subset K ⊂ DV ,

lim
n→∞ lim sup

N→∞

1
N + 1

N∑
m=0

sup
s∈K

|ϕ(s + imh, ω0; F) − ϕn(s + imh, ω0; F)| = 0 (9)

for almost all ω0 ∈ 
0.
Now the weak convergence of probability measures (6) and (7), the relations (8) and

(9), and [1, Theorem 4.2] show that on (H(DV ),B(H(DV ))) there exists a probability
measure P such that the probability measures PN and

µN(ϕ(s + imh, ω0; F) ∈ A), A ∈ (H(DV )), (10)

both converge weakly to P as N → ∞.
It remains to prove that the measure P is the distribution of the random element

ϕ(s, ω0; F). This is obtained by a standard way. Let A ∈ B(H(DV )) be a continuity set
of the measure P. Then the weak convergence of the measure (10) yields

lim
N→∞

µN(ϕ(s + imh, ω0; F) ∈ A) = P(A) (11)
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for almost all ω0 ∈ 
0. For a fixed set A define on the probability space (
0,

B(
0), m0H) the random variable θ by

θ (ω0) =
{

1 if ϕ(s, ω0; F) ∈ A,

0 if ϕ(s, ω0; F) /∈ A.

Denote by �ξ the expectation of the random element ξ . Then by the definition of θ

�θ =
∫

0

θdm0H = m0H(ω0 ∈ 
0 : ϕ(s, ω0; F) ∈ A) = Pϕ(A) (12)

is the distribution of ϕ(s, ω0; F). Since the transformation fh is ergodic, the Birkhoff
theorem shows that

lim
N→∞

1
N + 1

N∑
m=0

θ
(
f m
h (ω0)

) = �θ (13)

for almost all ω0 ∈ 
. However, by the definitions of fh and θ ,

1
N + 1

N∑
m=0

θ
(

f m
h (ω0)

) = µN(ϕ(s + imh, ω0; F).

Therefore, in view of (12) and (13),

lim
N→∞

µN(ϕ(s + imh, ω0; F)) = Pϕ(A)

for almost all ω0 ∈ 
0. Hence and from (11) we have that P(A) = Pϕ(A) for all
continuity sets A of the measure P. Therefore, P(A) = Pϕ(A) for all A ∈ B(H(DV )).
Theorem 5 is proved.

On the probability space (
0,B(
0), m0H) define an H(DV )-valued random
element ϕ′(s, ω0; F) by the formula

ϕ′(s, ω0; F) =
∏

p

(
1 − α(p)ω0(p)

ps

)−1(
1 − β(p)ω0(p)

ps

)−1

×
(

−
∑

p

α(p)ω0(p) log p
ps

(
1 − α(p)ω0(p)

ps

)−1

−
∑

p

β(p)ω0(p) log p
ps

(
1 − β(p)ω0(p)

ps

)−1)
.

THEOREM 6. Suppose that exp{ 2πk
h } is rational for some k �= 0. Then the probability

measure

µN(ϕ′(s + imh; F) ∈ A), A ∈ B(H(DV )),

converges weakly to the distribution of the random element ϕ′(s, ω0; F) as N → ∞.

Proof. Since the function u : H(DV ) −→ H(DV ) defined by u(g(s)) = g′(s), g(s) ∈
H(DV ), is continuous, the theorem is a consequence of Theorem 5 and Theorem 5.1
of [1].
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Now on the probability space (
0,B(
0), m0H) define an H(DV )-valued random
element ϕ′

ϕ
(s, ω0; F) by the formula

ϕ′

ϕ
(s, ω0; F) = −

∑
p

α(p)ω0(p) log p
ps

(
1 − α(p)ω0(p)

ps

)−1

−
∑

p

β(p)ω0(p) log p
ps

(
1 − β(p)ω0(p)

ps

)−1

.

�
THEOREM 7. Suppose that exp{ 2πk

h } is rational for some k �= 0. Then the probability
measure

µN

(
ϕ′

ϕ
(s + imh; F) ∈ A

)
, A ∈ B(M(DV )),

converges weakly to the distribution of the random element ϕ′
ϕ

(s, ω0; F) as N → ∞.

Proof. The theorem is derived from Theorem 6 in the same way as the second part
of the proof of Theorem 3. �

3. The supports of the random elements ϕ′(s,ω0;F ) and ϕ′
ϕ

(s,ω0;F ). We start with
a statement on the support of the random element ϕ(s, ω0; F). Let

SV = {g ∈ H(DV ) : g(s) �= 0 or g(s) ≡ 0}.
LEMMA 8. The support of the random element ϕ(s, ω0; F) is the set SV .

Proof. By the construction of the torus 
, {ω(p)} is a sequence of independent
random variables defined on the probability space (
,B(
), mH). Hence it follows
easily that {ω0(p)} is also a sequence of independent random variables defined on the
probability space (
0,B(
0), m0H). Therefore, the proof of the lemma coincides with
that of [8, Lemma 8]. �

THEOREM 9. The support of the random element ϕ′(s, ω0; F) is the whole of H(DV ).

Proof. We repeat the arguments of the proof of Lemma 6. The function u :
SV → H(DV ) defined by u(g(s)) = g′(s), g(s) ∈ SV , is continuous. Hence the set u−1G
is open for any open set G ⊂ H(DV ). Using the metric ρ defined in the proof of
Theorem 5 and the Mergelyan theorem on uniform approximation of analytic functions
by polynomials (see, for example, [14]), we ensure that the set u−1G ⊂ SV is non-empty:
there exists a polynomial g(s) ∈ u−1G, and g(s) �= 0 on DV . Now we have by Lemma 8
that

m0H(ω0 ∈ 
0 : (ϕ(s, ω0; F))′ ∈ G) = m0H(ω0 ∈ 
 : ϕ(s, ω0; F) ∈ u−1G) > 0.

Since the support of ϕ′(s, ω0; F) consists of all g ∈ H(DV ) such that for every
neighborhood G of g the distribution Pϕ′ of ϕ′(s, ω0; F) satisfies the inequality
Pϕ′(G) > 0, hence the theorem follows. �

THEOREM 10. The support of the random element ϕ′
ϕ

(s, ω0; F) is the whole of H(DV ).
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Proof. As it was noted above, {ω0(p)} is a sequence of independent random variables
on (
0,B(
0), m0H). Therefore, the proof of the theorem runs in the same way as that
of [5, Lemma 7]: everywhere in place of ω(p) we write ω0(p), only. �

Proof of Theorems 1 and 2.
Proof of Theorem 1. We will consider only ψ(s; F) = ϕ′(s; F) in the second case.

The remaining cases can be treated similarly.
First of all we observe that there exists a number V > 0 such that K ⊂ DV , and

suppose that the function f (s) is analytically continuable to the region DV . Denote by
G the set of functions g ∈ H(DV ) such that

sup
s∈K

|g(s) − f (s)| < ε.

By Theorem 9 the function f (s) belongs to the support of the random element
ϕ′(s, ω0; F), moreover, the set G is open. Therefore, by Theorem 6, taking into account
[1, Theorem 2.1, Statement 4] and the above-mentioned property of the support, we
have that

lim inf
N→∞

µN

(
sup
s∈K

|ϕ′(s + iτ ; F) − f (s)| < ε

)
≥ m0H(ω0 ∈ 
0 : ϕ′(s, ω0; F) ∈ G) > 0.

Now let f (s) satisfy the hypothesis of Theorem 1. By the Mergelyan theorem,
(see, for example, [15]), there exists a polynomial pn(s) such that

sup
s∈K

|f (s) − pn(s)| <
ε

2
. (14)

Since pn(s) is analytic in DV , by the beginning of the proof it follows that

lim inf
N→∞

µN

(
sup
s∈K

|ϕ′(s + iτ ; F) − pn(s)| <
ε

2

)
> 0.

This and (14) yield the assertion of the theorem.
If ψ(s; F) = ϕ′

ϕ
(s; F), then for the proof of Theorem 1 in the first and the second

cases Theorems 3 and 4, and Theorems 7 and 10 are applied.

Proof of Theorem 2. As it was noted above, we have to consider only the second
case. The investigation of the latter case is similar to that of the first one and we shall
only sketch the arguments. �

Define

σ̂ = σ1 + σ2

2
, σ = max

{∣∣∣∣σ1 − 2κ + 1
4

∣∣∣∣, ∣∣∣∣σ2 − 2κ + 1
4

∣∣∣∣},

and we take f (s) = s − σ̂ and 0 < ε < σ2−σ1
20 . Then in view of Theorem 1 there exists a

constant c = c(σ1, σ2) > 0 such that, for sufficiently large N,

µN

(
max

|s− 2κ+1
4 |≤σ0

|ϕ′(s + imh; F) − f (s)| < ε

)
> c. (15)
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Since {
s ∈ � : |s − σ̂ | = σ2 − σ1

2

}
⊂

{
s ∈ � : |s − 2κ + 1

4
| ≤ σ0

}
,

we have that, for m satisfying (15),

max
|s−σ̂ |= σ2−σ1

2

|ϕ′(s + imh; F) − (s − σ̂ )| <
σ2 − σ1

20
.

Therefore, the functions s − σ̂ and ϕ′(s + imh) − (s − σ̂ ) on the disc {s ∈ � : |s − σ̂ | ≤
σ2−σ1

2 } satisfy the hypotheses of Rouché’s theorem. Since the function s − σ̂ on this disc
has exactly one zero, by Rouché’s theorem the function ϕ′(s + imh; F) on this disc also
has one zero. By (15) the number of such m, 0 ≤ m ≤ N, for sufficiently large N, is
greater than cN. This proves the theorem.
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