
Galois Theory for the Selmer Group

of an Abelian Variety
?

RALPH GREENBERG
Department of Mathematics, University of Washington, Seattle, WA 98195-4350, U.S.A.
e-mail: greenber@math.washington.edu

(Received: 5 January 2001; accepted in final form: 21 December 2001)

Abstract. This paper concerns the Galois theoretic behavior of the p-primary subgroup

SelAðF Þp of the Selmer group for an Abelian variety A defined over a number field F in an
extension K=F such that the Galois group GðK=F Þ is a p-adic Lie group. Here p is any prime
such that A has potentially good, ordinary reduction at all primes of F lying above p. The prin-

cipal results concern the kernel and the cokernel of the natural map sK=F 0 : SelAðF
0Þp !

SelAðK Þ
GðK=F 0 Þ
p where F 0 is any finite extension of F contained in K. Under various hypotheses

on the extension K=F, it is proved that the kernel and cokernel are finite. More precise results

about their structure are also obtained. The results are generalizations of theorems of
B. Mazur and M. Harris.
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1. Introduction

Let A be an Abelian variety defined over a number field F. Let K denote the cyclo-

tomic Zp-extension of F, where p is any prime. Thus the Galois group GðK=F Þ is iso-

morphic to Zp, the additive group of p-adic integers. For any algebraic extension F 0

of F, we let SelAðF
0Þp denote the p-primary subgroup of the Selmer group SelAðF

0Þ

for A over F 0. The purpose of this article is to consider some generalizations of

the following classical theorem of Mazur.

THEOREM. Assume that A has good, ordinary reduction at all primes of F lying

over p. Let F 0 be a finite extension of F contained in K. Then the natural map

SelAðF
0Þp ! SelAðK Þ

GðK=F 0Þ
p has finite kernel and cokernel. The orders of the kernels

and cokernels are bounded as F 0 varies.

This is Mazur’s ‘Control Theorem’, which he proves for any Zp-extension K=F

satisfying certain mild conditions. Actually the theorem is true for the full Selmer

group since one can show easily that, for any prime q 6¼ p, the q-primary subgroups
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of Selmer groups behave very well Galois theoretically. That is, the maps

SelAðF
0Þq! SelAðK Þ

GðK=F 0Þ
q are isomorphisms.

We will consider Galois extensions K=F such that GðK=F Þ is a p-adic Lie group.

For any field F 0 such that F � F 0 � K, we let sK=F 0 denote the natural restriction

homomorphism

sK=F 0 : SelAðF
0Þp! SelAðK Þ

GðK=F 0Þ
p :

For our main theorems we will need to assume that K=F is ‘S-ramified’ for some
finite set S of primes of F. That is, every prime v of F not in S is unramified in

K=F. We will make this assumption throughout the article. Let p be a prime of F

lying over p. Let Dp and Ip denote the decomposition and inertia subgroups of

GðK=F Þ for some prime of K lying over p. Both Dp and Ip are closed subgroups

of GðK=F Þ and hence are also p-adic Lie groups. Let dp and ip denote their Lie alge-
bras. They are subalgebras of the Lie algebra g of GðK=F Þ.

DEFINITION. We say that K=F is admissible if, in addition to being a S-ramified
p-adic Lie extension for some S, we have d0p ¼ i0p for all p lying over p.

Here, for any Lie algebra l, we let l0 denote the derived Lie subalgebra of l. (That is, l0

is the Qp-subspace spanned by ½x; y	, x; y 2 l, which is an ideal of l.) Now i0p is actu-
ally an ideal of dp. The equality d0p ¼ i0p is equivalent to saying that the Lie algebra

dp=i
0

p is Abelian. In attempting to prove the finiteness of the cokernel of sK=F 0 , this

condition arises quite naturally as a hypothesis. Examples where it is satisfied are

rather abundant. Any Zp-extension K=F is admissible. More generally, if the Lie

algebra g is Abelian (i.e., if GðK=F Þ contains a subgroup of finite index isomorphic

to Zd
p for some d ), then K=F is admissible. The condition d0p ¼ i0p for pjp is obviously

satisfied since dp is Abelian and so d0p ¼ 0. Another class of examples are those where

the inertia subgroup Ip has finite index in GðK=F Þ for all pjp. Then dp ¼ ip ¼ g and

so again d0p ¼ i0p obviously holds. An important class of examples, which we discuss

below, are those where GðK=F Þ admits a faithful, finite-dimensional p-adic represen-

tation which is of Hodge–Tate type at the primes p of F above p.

In our first theorem, we assume that the p-primary subgroup AðK Þp of AðK Þ is

finite. In this and other theorems, the hypothesis that A has potentially ordinary

reduction at the primes of F lying above p means that A achieves good, ordinary

reduction at those primes over some finite extension of F.

THEOREM 1. Assume that A has potentially ordinary reduction at all primes of F

lying over p. Assume that K=F is admissible and that AðK Þp is finite. Then, for every

finite extension F 0 of F contained in K, the kernel and cokernel of sK=F 0 are finite.

Note that the hypotheses in the above theorem are preserved when K=F is replaced

by K=F 0 for any finite extension F 0 of F contained in K. Thus, it would be enough to

prove just that kerðsK=FÞ and cokerðsK=FÞ are both finite. The same remark applies to
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Theorems 2 and 3 below. Nevertheless, we will usually present the proofs allowing F 0

to vary in order to see how the order and structure of the kernel and cokernel

behave. Under the hypotheses of Theorem 1, the kernel of sK=F 0 is relatively easy

to bound. In fact, it would suffice to just assume that K=F is a p-adic Lie extension

and that AðK Þp is finite to conclude that kerðsK=F 0 Þ is of bounded order as F 0 varies.

For this one needs no hypothesis on the reduction of A. (See Proposition 3.1.) How-

ever, as will become clear later, one cannot expect cokerðsK=F 0 Þ to have bounded

order as F 0 varies unless one imposes rather stringent hypotheses.

It is not difficult to prove that if the Lie algebra g of GðK=F Þ is semisimple (i.e., a

direct product of simple, non-Abelian Lie algebras), then AðK Þp is necessarily finite.

(See Proposition 3.2 for this and some other sufficient conditions for the finiteness of

AðK Þp.) It seems that for the p-adic Lie extensions K=F which arise in various natural

ways in number theory, the corresponding Lie algebra g is often reductive (i.e., a

direct product of a semisimple Lie algebra and an abelian one). In this case, it is cer-

tainly possible for AðK Þp to be infinite. Nevertheless, one can use Theorem 1 to prove

the following result.

THEOREM 2. Assume that A has potentially ordinary reduction at all primes of F

lying over p. Assume that K=F is admissible and that g is reductive. Then kerðsK=F 0 Þ and

cokerðsK=F 0 Þ are finite for every finite extension F 0 of F contained in K.

Suppose that r: GF ! GLnðQpÞ is a continuous, finite-dimensional Qp-representa-

tion of the absolute Galois group GF ¼ Gð �QQ=F Þ. If we let K ¼ �QQ
kerðrÞ

, then r induces
an isomorphism of GðK=F Þ to the compact subgroup imðrÞ of GLnðQpÞ. Such a sub-

group must be a p-adic Lie group of dimension d4 n2. We suppose also that r is

unramified outside a finite set S of primes of F and so K=F is S-ramified. If r is a

completely reducible representation of GF, then the Lie algebra of imðrÞ (which is

isomorphic to g) must be reductive. For every prime p of F lying over p, we can

restrict r to a decomposition subgroup obtaining the representation rjGFp
of the local

Galois group GFp ¼ Gð �QQp=FpÞ. We will prove later (Proposition 4.7) that if rjGFp
is a

Hodge–Tate representation, then the equality d0p ¼ i0p does hold. As a consequence

we obtain the following result, which perhaps is the most interesting theorem of

this article.

THEOREM 3. Assume that r is completely reducible and that rjGFp
is Hodge–Tate

for all primes p of F lying above p. Assume that the Abelian variety A has potentially

ordinary reduction at the primes of F lying over p. Then, for every finite extension F 0 of

F contained in K, the kernel and cokernel of sK=F 0 are finite.

The hypothesis in Theorem 3 are often known to be true for p-adic representations

r that arise naturally in number theory. For example, suppose that B is an arbitrary

Abelian variety defined over F and let VpðBÞ ¼ TpðBÞ �Zp
Qp, where TpðBÞ denotes

the Tate module for B. Then the representation r: GF ! AutQp
ðVpðBÞÞ giving the
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natural action of GF on VpðBÞ is unramified outside the set S of primes of F lying

above p or where B has bad reduction. Faltings has proven that r is completely

reducible. It is also known that rjGFp
is Hodge–Tate for the primes p of F above p.

(A result of Tate when B has good reduction at p, extended by Raynaud to the gen-

eral case.) In this example, K ¼ FðB½ p1	Þ.

As another example, let F ¼ Q and let rf be the p-adic representation of GQ asso-

ciated to a cusp form of level N. Here p is a prime of the field E generated by the

coefficients in the q-expansion for f. The representation rf is of dimension 2 over

the completion Ep. Then rf is known to be irreducible. (See thm 2.3 in [R].) That suf-

fices to imply that the Lie algebra g is reductive. Faltings has proven that rfjGQp
is

Hodge–Tate. This means that the Qp-representation r of dimension 2½Ep: Qp	

defined by rf is Hodge–Tate. Since kerðrÞ ¼ kerðrfÞ, Theorem 3 can be applied to

K=Q, where K ¼ �QQ
kerðrfÞ

.

Faltings has also proven that the Qp-representations giving the action of GFp on

the p-adic étale cohomology of a nonsingular, projective algebraic variety X defined

over Fp is Hodge–Tate. If X is defined over the number field F, then it is also expec-

ted that the corresponding Qp-representations of GF are completely reducible.

In this article, we will single out the caseK ¼ FðA½ p1	Þ. As mentioned above, Theo-

rem 3 applies to this case (since we can take B ¼ A in the discussion following that

theorem). Thus, as a corollary, we have

THEOREM 4. Assume that A is an Abelian variety defined over F which has poten-

tially ordinary reduction at all primes of F over p. Let K ¼ FðA½ p1	Þ. Then, for every

finite extension F 0 of F contained in K, kerðsK=F 0 Þ and cokerðsK=F 0 Þ are finite.

This theorem is equivalent to a result proved by M. Harris. (See the ‘effectivity

theorem’ of [H]. The statement there seems rather different, but can be shown to

be equivalent to Theorem 4.) Although this theorem is a consequence of Theorem

3, it seems worthwhile to treat it separately and as directly as possible. In the case

where dimðAÞ ¼ 1, we will prove that kerðsK=Fn
Þ is actually of bounded order, where

Fn ¼ FðA½ pn	Þ. A similar result may possibly be true for Abelian varieties of arbitrary

dimension.

Under various sets of assumptions about A and K=F, one can show that

cokerðsK=F 0 Þ is nontrivial for all F
0 or that this group grows in some way. Such results

would obviously give information about the structure of SelAðK Þ
GðK=F 0Þ
p and, hence,

of SelAðK Þp itself. Here are two sample theorems of that kind. In both theorems, we

assume that K=F is a p-adic Lie extension which is S-ramified for some finite set S of

primes of F. We assume that the Abelian variety A has good, ordinary reduction at a

prime p of F lying over p, but make no assumption about the reduction of A at other

primes of F. Let fp denote the residue field for p and ~AAp denote the reduction of A

modulo p. The group of points ~AApð fpÞ is of course finite. Let At denote the dual

Abelian variety.
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THEOREM 5. Assume that ~AApð fpÞp 6¼ 0. Assume also that p is infinitely ramified in

K=F and that AðK Þp ¼ AtðK Þp ¼ 0. Then SelAðK Þp is infinite.

THEOREM 6. Assume that ~AApð fpÞp 6¼ 0. Assume also that there are infinitely many

primes of K lying above p, that the residue field kZ for any such prime Z is infinite, and

that p is infinitely ramified in K=F. Then ðSelAðK ÞpÞdiv is isomorphic to an infinite ðbut

countableÞ direct sum of copies of Qp=Zp.

The hypothesis that ~AApð fpÞp 6¼ 0 plays an important role in [M]. Following

Mazur, one calls p an anomalous prime for A if A has good ordinary reduction

at p and ~AApð fpÞp 6¼ 0. For a given A=F, it seems likely that infinitely many such

primes should exist. The hypothesis that p is infinitely ramified in K=F simply

means that ip 6¼ 0. Infinitely many primes lying above p exist if dp 6¼ g and the resi-

due field for such primes is infinite if ip 6¼ dp. It is also worth remarking that if

GðK=F Þ is pro-p, then AðF Þp ¼ AtðF Þp ¼ 0 easily implies that AðK Þp ¼ AtðK Þp ¼ 0.

In particular, if K=F is the cyclotomic Zp-extension and if dimðAÞ ¼ 1 (so that

A ¼ At), then just assuming that AðF Þp ¼ 0 and that some prime pjp is anomalous

for A would imply that SelAðK Þp is infinite. (This is Proposition 8.5 in [M] when

F ¼ Q. See also Proposition 5.3 in [G1].) If SelAðK Þp is infinite, then either

ðSelAðK ÞpÞdiv 6¼ 0 or SelAðK Þ½ p	 is infinite. Both cases can occur. If ðSelAðK ÞpÞdiv is infi-

nite, then either AðK Þ�Z ðQp=ZpÞ is infinite or ðSAðK ÞpÞdiv is infinite. Again, both

cases can occur.

To illustrate Theorem 6, consider again the case of an elliptic curve A=F. Assume

that A does not have complex multiplication and that A has potentially ordinary

reduction at a prime p of F lying over p. Let K ¼ FðA½ p1	Þ. If one replaces F by

F 0 ¼ FðA½ p	Þ (or by F 0 ¼ FðA½4	Þ if p ¼ 2), then all the hypotheses in Theorem 6

are satisfied. A now has good, ordinary reduction at any prime p0 of F 0 above p,
we have ~AAp0 ð fp0 Þp 6¼ 0, and the Lie algebras g, dp0 , and ip0 are distinct because they
have dimensions 4, 3, and 2, respectively. Hence ðSelAðK ÞpÞdiv is an infinite direct

sum of copies of Qp=Zp. A proof of essentially the same result is given in [CH2].

This article should be regarded as a sequel to [CG]. In that paper one finds a rather

simple description of the local conditions occurring in the definition of the Selmer

group. This description makes it easy to study Galois theory for the Selmer group,

especially in the case where A has potentially ordinary reduction.

Our proofs will be based on a certain exact sequence which we now explain. Let A

be an arbitrary Abelian variety defined over F. Let L be any algebraic extension of F.

For any prime v of F, let Fv denote the v-adic completion of F. If Z is any prime of L

lying over v, we let LZ denote the union of the Z-adic completions of all finite exten-
sions of F contained in L (so that LZ is an algebraic extension of Fv). We denote by kZ
the corresponding Kummer homomorphism

kZ: AðLZÞ � ðQp=ZpÞ ! H1ðLZ;A½ p
1	Þ:
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For each Z, we let HAðLZÞ ¼ H1ðLZ;A½ p
1	Þ=imðkZÞ. Then the p-Selmer group for A

over L is defined by

SelAðLÞp ¼ ker
�
H1ðL;A½ p1	Þ !

Y
Z

HAðLZÞ
�
;

where the map is induced by restricting cocycles to decomposition groups. Here Z
runs over all primes of L, including the Archimedean primes (important only for

p ¼ 2). We will let PAðLÞ ¼
Q

Z HAðLZÞ for brevity. Also we put GAðLÞ ¼

im H1ðL;A½ p1	Þ ! PAðLÞ
� �

.

Now suppose that K=F is a Galois extension and F 0 is an intermediate field. We

then obtain the following commutative diagram with exact rows.

0 !SelAðF
0Þp !H1ðF 0;A½ p1	Þ !GAðF

0Þ !0

 

sK=F 0

 

hK=F 0

 

gK=F 0

0�! SelAðK Þ
GðK=F 0Þ
p �!H1ðK;A½ p1	ÞGðK=F

0Þ
�!GAðK Þ

GðK=F 0Þ

The snake lemma then gives the exact sequence

0�!kerðsK=F 0 Þ �! kerðhK=F 0 Þ �! kerðgK=F 0 Þ �! cokerðsK=F 0 Þ �! cokerðhK=F 0 Þ

ð1Þ

As mentioned above, this exact sequence will be the basis of our proofs. In the lit-

erature it has often been used in a similar way, especially in the case of Zp-extensions.

(See [CM], [P] for example.) We also use certain basic results about compact p-adic

Lie groups, recalled in Section 2. In the subsequent two sections we will study

kerðhK=F 0 Þ and cokerðhK=F 0 Þ, and kerðgK=F 0 Þ. This will of course give information

about the kernel and cokernel of sK=F 0 , which is the subject of Section 5. In each sec-

tion we first consider the two important special cases where GðK=F Þ ffi Zp and where

K ¼ FðA½ p1	Þ.

2. Cohomology of Compact p-Adic Lie Groups

We will collect here several useful results. Let G be a compact p-adic Lie group. Let

d denote the dimension of G. In the following lemma, we regard Z=pZ as a trivial

G-module.

LEMMA 2.1. ðiÞ Let V be a closed subgroup of G. Then H1ðV;Z=pZÞ is finite. Its

order is bounded. There exists an open subgroup U of G such that jH1ðV;Z=pZÞj4 pd

for all closed subgroups V of U.
ðiiÞ Let V be a closed subgroup of G. Then H2ðV;Z=pZÞ is finite. Its order is

bounded.

Proof. We will use the notation and results of [DSMS]. Let P be a Sylow pro-p

subgroup of G. Then P is an open subgroup and the restriction map HnðG;Z=pZÞ !

260 RALPH GREENBERG

https://doi.org/10.1023/A:1023251032273 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023251032273


HnðP;Z=pZÞ is injective, for any n5 1. It suffices to prove Lemma 2.1 for open

subgroups V of P. P is a pro-p p-adic analytic group, and so P has finite rank in the

sense of [DSMS]. This means that dðVÞ ¼ dimZ=pZðH
1ðV;Z=pZÞÞ, which is the car-

dinality of a minimal topological generating set for V, is finite and bounded as V
varies over closed subgroups of P. Also P contains an open subgroup U, which is

uniformly powerful (thm. 9.34 of [DSMS]). Thus, if V is any closed subgroup of U,
then dðVÞ4 dðUÞ ¼ dimðUÞ ¼ d (thms 9.36, 9.38, Proposition 4.4 of [DSMS]). These

results prove (i).

As for (ii), tðVÞ ¼ dimðH2ðV;Z=pZÞÞ is the number of relations for a minimal topo-
logical generating set for V, which is finite (thm 4.25). For a uniformly powerful sub-

group U, we have tðUÞ ¼ dðd� 1Þ=2 (thm 4.26). Using this, one can give an explicit

upper bound for tðVÞ valid for all closed subgroups of G. (See exercise 9, p. 83 of

[DSMS].) &

Remark. We will apply this lemma to the subgroups V ¼ GðK=F 0Þ of the p-adic

Lie group G ¼ GðK=F Þ. These subgroups are open (and hence closed) if ½F 0: F 	 <1.

In fact, GðK=F Þ has a base of open subgroups V such that H1ðV;Z=pZÞ has order pd
and H2ðV;Z=pZÞ has order pdðd�1Þ=2, where d ¼ dimðGÞ. For arbitrary closed sub-

groups V, the bound on the order of HiðV;Z=pZÞ depends only on G.

Now let V be a finite-dimensional Qp-vector space on which G acts continuously.

Let T be a G-invariant Zp-lattice in V. LetM ¼ V=T. ThenM½ p	 ffi ðZ=pZÞdimðV Þ. Let

i ¼ 1 or 2. By a simple devissage argument, it follows from Lemma 2.1 that

HiðV;M½ p	Þ is finite and of bounded order as V varies over all closed subgroups

of G. But HiðV;MÞ½ p	 is a homomorphic image of HiðV;M½ p	Þ and, therefore, also
has bounded order. It follows that the p-primary group HiðV;MÞ is cofinitely gene-
rated as a Zp-module. It also follows that the Zp-corank of H

iðV;MÞ is bounded as V
varies over all closed subgroups of G. Here is a more precise result for open sub-

groups. &

LEMMA 2.2. Let g be the Lie algebra of G. Let i ¼ 1 or 2. For every open subgroup V
of G, we have

corankZp
ðHiðV;MÞÞ4 dimQp

ðHiðg;V ÞÞ:

There exists an open subgroup U of G such that equality holds for all open subgroups V
of U.

Proof. We have corankZp
ðHiðV;MÞÞ ¼ dimQp

ðHiðV;V ÞÞ. If V1, V2 are any two

open subgroups of G with V2 � V1, then the restriction map HiðV1;V Þ ! HiðV2;V Þ

is injective. There exists an open subgroup U of G such that HiðV;V Þ ¼ Hiðg;V Þ for
all open subgroups V of U. Lemma 2.2 follows from these remarks. &

Remark. As a consequence, if Hiðg;V Þ ¼ 0, then HiðV;MÞ is finite for all open
subgroups V of G. In particular, this applies if g is a semisimple Lie algebra.
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3. The Kernel and Cokernel of hK=F 0

By the inflation-restriction exact sequence we have

kerðhK=F 0 Þ ffi H1ðK=F 0;AðK ÞpÞ:

As a group, AðK Þp ffi ðQp=ZpÞ
t
�(a finite group), where 04 t4 2g, g ¼ dimðAÞ. Note

that kerðsK=F 0 Þ ¼ kerðhK=F 0 Þ \ SelAðF
0Þp. This is often smaller than kerðhK=F 0 Þ, but we

will postpone the discussion of this issue. The inflation-restriction sequence also gives

cokerðhK=F 0 Þ ffi kerðH2ðK=F 0;AðK ÞpÞ ! H2ðF 0;A½ p1	ÞÞ:

But H2ðF 0;A½ p1	Þ ffi
L

v0 H
2ðF 0v0 ;A½ p

1	Þ, where v0 varies over the real primes of F 0.

(This follows from Corollary 6.24 in [Mi].) It follows that H2ðF 0;A½ p1	Þ ¼ 0 if p is

odd and is a finite elementary 2-group if p ¼ 2. We will simply use the upper bound

jcokerðhK=F 0 Þj4 jH2ðK=F 0;AðK Þpj

which is an equality if p is odd or if F 0 is totally complex.

I. K=F is a Zp-extension

Assume that s0 is a topological generator of GðK=F Þ ffi Zp. The finite extensions F
0

of F contained in K form a tower F ¼ F0 � F1 � � � � � Fn � � � �, where Fn=F is cyclic

of degree pn and GðK=FnÞ is generated topologically by s pn

0 . We have

H1ðK=Fn;AðK ÞpÞ ffi AðK Þp=ðs
pn

0 � 1ÞAðK Þp:

We consider sp
n

0 � 1 as an endomorphism of the Abelian group AðK Þp. Its kernel is

the finite group AðFnÞp. This implies that the restriction of s pn

0 � 1 to the maximal

divisible subgroup ðAðK ÞpÞdiv is surjective. Hence it follows that

ðAðK ÞpÞdiv � ðs
pn

0 � 1ÞAðK Þp � AðK Þp

for all n, and therefore H1ðK=Fn;AðK ÞpÞ is finite. Its order is bounded above by the

index ½AðK Þp: ðAðK ÞpÞdiv	 with equality for n� 0. Thus jkerðhK=F 0 Þj is finite and

bounded as F 0 varies.

Since GalðK=F 0Þ is isomorphic to Zp and so has p-cohomological dimension 1, it

follows that H2ðK=F 0;AðK ÞpÞ ¼ 0. Consequently, we have that cokerðhK=F 0 Þ ¼ 0 for

all F 0.

II. K ¼ FðA½ p1	Þ

A theorem of Serre (corollaire of Theoreme 2, [Se]), implies the finiteness of

HnðGðK=F 0Þ;A½ p1	Þ for all n5 0 and all finite extension F 0 of F contained in K.

In particular, kerðhK=F 0 Þ is finite. But its order turns out to be unbounded. More pre-

cisely, we have the following result: Let Fn ¼ FðA½ pn	Þ for n5 1. Then

kerðhK=Fn
Þ ffi ðZ=pnZÞ2gðm�1Þ ð2Þ
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for n� 0. Here m ¼ mA denotes the dimension of the p-adic Lie group GðK=F Þ. One

can show easily that m > 1 and hence indeed jkerðhK=F 0 Þj is unbounded as F 0 varies.

To justify (2), consider the subgroup Z of GðK=F Þ defined as follows. Let

s 2 GðK=F Þ. Then, s 2 Z , s acts on TpðAÞ as multiplication by a scalar

dðsÞ 2 1þ 2pZp. According to a result of Bogomolov [B], d defines an isomorphism

of Z to an open subgroup of 1þ 2pZp, i.e., Z ffi Zp. Let M ¼ KZ . For n5 1, let

Mn ¼ FnM ¼MðA½ pn	Þ. We assume hereon that n is sufficiently large. Then

1þ pnZp � dðZÞ. We have GðK=MnÞ ¼ Zn, where Zn ¼ d�1ð1þ pnZpÞ. We also have

AðMnÞp ¼ AðFnÞp ¼ A½ pn	. Now since Zn is topologically cyclic and AðMnÞp is finite,

one sees easily that H1ðZn;A½ p
1	Þ ¼ 0 and, hence, the inflation-restriction sequence

gives an isomorphism

H1ðMn=Fn;A½ p
n	Þ!
�
H1ðK=Fn;A½ p

1	Þ:

Therefore, kerðhK=Fn
Þ ¼ HomðGðMn=FnÞ;A½ p

n	Þ. We have an isomorphism

GðMn=FnÞ ffi GðM=M \ FnÞ ¼ Hn, say. This is an open subgroup of the p-adic Lie

group GðM=F Þ, which has dimension m� 1. Using Lemma 2.1, one sees that Hn

can be generated topologically by m� 1 elements. Also, ½Fnþ1: Fn	 ¼ pm and

½Mnþ1: Mn	 ¼ p from which it follows that ½Hn: Hnþ1	 ¼ pm�1. Now GðF2n=FnÞ is

Abelian and of exponent pn. It follows that Hn=H2n is Abelian, of exponent pn,

and of order pnðm�1Þ. The above remarks imply that Hn=H2n ffi ðZ=p
nZÞm�1 and that

H2n ¼ ðHn;HnÞH
pn

n , which justifies (2).

Serre’s theorem referred to earlier states that H2ðK=F 0;A½ p1	Þ, and hence

cokerðhK=F 0 Þ, are finite. Alternatively, one can prove the finiteness as follows. Define

M as above. For any F 0, let M0 ¼ F 0M. Then K=M0 ffi Zp and so we have

H2ðK=M0;A½ p1	Þ ¼ 0. Since H1ðK=M0;A½ p1	Þ ¼ 0 also, we obtain an isomorphism

H2ðM0=F 0;AðM0ÞpÞ!
�

H2ðK=F 0;A½ p1	Þ:

Now AðM0Þp is finite. If V is the Sylow pro-p subgroup of the p-adic Lie group

GðM0=F 0Þ, then H2ðV;Z=pZÞ is finite. The finiteness of H2ðV;AðM0ÞpÞ and hence

of cokerðhK=F 0 Þ follows by devissage. Lemma 2.1 (ii) asserts that we have

dimZ=pZðH
2ðV;Z=pZÞÞ < C, for some C. Then an upper bound for jcokerðhK=F 0 Þj

would be jAðM0Þpj
C. But note that jAðM0Þpj is unbounded as F 0 varies.

III. Arbitrary K=F

Here is one general result valid for any Abelian variety defined over F.

PROPOSITION 3.1. Let K=F be a Galois extension such that GðK=F Þ is a p-adic Lie

group. Assume that AðK Þp is finite. Then kerðhK=F 0 Þ and cokerðhK=F 0 Þ are finite and have

bounded order as F 0 varies over all extensions of F contained in K.

Proof. AðK Þp is a finite GðK=F Þ-module. It is enough to bound the order of

HiðV;AðK ÞpÞ for all open pro-p subgroups V of GðK=F Þ, where i ¼ 1 or 2. But AðK Þp
has a V-composition series with corresponding quotients isomorphic to Z=pZ. Thus,
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by devissage, one can bound the order of HiðV;AðK ÞpÞ by jAðK ÞpjdiðVÞ, where

diðVÞ ¼ dimZ=pZðH
iðV;Z=pZÞÞ. By Lemma 2.1, diðVÞ is bounded. &

There are various hypotheses which imply that AðK Þp is finite, some of which are

included in the following result. A number of other results can be found in articles of

Zarhin. (See [Z1], [Z2], and some of the references there.) We assume only that A is

an abelian variety defined over F and that GðK=F Þ is a p-adic Lie group.

PROPOSITION 3.2. AðK Þp is finite if any of the following conditions are satisfied.

ðiÞ There exists a nonarchimedean prime Z of K not lying over p such that the corre-

sponding residue field kZ is finite.

ðiiÞ The Lie algebra g is solvable, A has potentially ordinary reduction at all primes of

F lying above p, and the residue field kZ is finite for all primes Z of K lying above p.

ðiiiÞ The Lie algebra g is semisimple.

Proof of ðiÞ. Suppose that v is the prime of F lying below Z and that vjl, l 6¼ p. The

stated condition is actually equivalent to asserting that KZ is a finite extension of Fv.

For GðKZ=FvÞ is a p-adic Lie group of dimension 42. If it has positive dimension,

then KZ must contain the cyclotomic Zp-extension of Fv (which is the only Zp-

extension of Fv and is unramified). Then the residue field kZ would be infinite. Since

KZ is a finite extension of Fv, it is now obvious that AðKZÞtors is finite, and hence so is

AðK Þtors and, in particular, AðK Þp.

Proof of ðiiÞ. Replacing F and K by finite extensions, we can assume that A has

good, ordinary reduction at all primes v of F lying above p. The other conditions still

hold. Assume that AðK Þp is infinite. Let Wp ¼ H 0ðK;VpðAÞÞ. That is, Wp ¼

TpðAðK ÞpÞ �Zp
Qp, where TpðAðK ÞpÞ denotes the Tate module of AðK Þp. Then

dimðWpÞ5 1 and we can consider the representation r: GðK=F Þ ! AutðWpÞ induced

from the action of GðK=F Þ on AðK Þp. Since ~AAvðkZÞ is finite, it follows that

Wp � kerðVpðAÞ ! Vpð ~AAvÞÞ. Let A
t denote the dual Abelian variety for A. Then At

also has good reduction in v and the action of GFv
on VpðfAt

vAt
vÞ is unramified. Since we

are assuming that A has ordinary reduction at v, the Weil pairing

VpðAÞ � VpðA
tÞ ! Qpð1Þ induces an isomorphism

kerðVpðAÞ ! Vpð ~AAvÞÞ ffi HomðVpðfAt
vAt
vÞ;Qpð1ÞÞ

as representation spaces for GFv
. Let w: GF ! Z�p denote the cyclotomic character

and let s ¼ r� w�1, which gives the action of GF on HomðQpð1Þ;WpÞ. Then s is a

finite-dimensional representation of GF and its restriction sjGFv
gives the action of

GFv
on some nonzero subspace of HomðVpðfAt

vAt
vÞ;QpÞ and, hence, is unramified and

has infinite image. It follows that L ¼ �FF
kerðsÞ

is an infinite p-adic Lie extension of

F which is unramified at all primes of F lying over p. A conjecture of Fontaine
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and Mazur implies that such an extension L=F cannot exist. If g is solvable, then the

nonexistence of L=F is easy to show. Then the Lie algebra of GðL=F Þ is also solvable.

Replacing F by a finite extension, if necessary, we can assume that GðL=F Þ=GðL=F Þ0

is infinite and hence L must contain a Zp-extension F1 of F. But the only primes of F

which can ramify in F1=F are those lying over p, and at least one such prime must

ramify. This proves that AðK Þp must be finite.

Proof of ðiiiÞ. All that we need is that the Lie subalgebra g0 is equal to g. If
d: GðK=F Þ ! Z�p denotes the determinant of the representation r of GðK=F Þ giving

the action onWp, then it follows that d is a character of finite order. Hence, djGðKZ=FvÞ

also has finite order, where v is any prime of F and Z is a prime of K lying above v.

Choose v to be a prime not lying over p where A has good reduction. Then the

natural action of GFv
on VpðAÞ, and hence on Wp, is unramified. The eigenvalues of

the Frobenius automorphism jv in GðF unr
v =FvÞ on VpðAÞ are algebraic numbers

which have absolute value
ffiffiffiffiffiffiffi
jfvj

p
at all Archimedean primes (of �QQ). Here fv is the

residue field for v. Assume that AðK Þp is infinite. Then dimðWpÞ5 1 and the above

discussion shows that djGFv
must have infinite order and hence so does d. This is not

possible and, hence, AðK Þp must be finite. &

As a step towards proving Theorems 2 and 3, we now consider the case where g is

reductive. As mentioned in the introduction, such K=F arise naturally.

PROPOSITION 3.3. Assume that the Lie algebra g of GðK=F Þ is reductive. Then

kerðhK=F 0 Þ and cokerðhK=F 0 Þ are finite.

Proof. Let n denote the radical of g. The proof of this proposition will be based

just on the hypothesis that n is Abelian, which is true by definition if g is reductive.

Let n ¼ dimQp
ðnÞ. It follows that GðK=F Þ contains an open subgroup G and a

normal subgroup N of G such that N ffi Zn
p and the Lie algebra g=n of G=N is

semisimple. To simplify notation, we replace F by the finite extension KG and so

have G ¼ GðK=F Þ. Let L ¼ KN. If F 0 is any finite extension of F, let L0 ¼ F 0L and let

N0 ¼ GðK=L0Þ, which is also isomorphic to Zn
p. The Lie algebra of GðL

0=F 0Þ is still g=n
and, hence, Proposition 3.2 implies that AðL0Þp is finite. That is, for every subgroup

N of N of finite index, we have that H 0ðN ;AðK ÞpÞ is finite. This last property is all

that we need. We will show that H1ðG;AðK ÞpÞ andH2ðG;AðK ÞpÞ are both finite. This

implies that kerðhK=FÞ and cokerðhK=FÞ are finite. Proposition 3.3 then follows since F

can be replaced by any finite extension F 0. (It simplifies the notation to just consider

the case K=F.)

As before, we let Wp ¼ TpðAðK ÞpÞ �Zp
Qp, where TpðAðK ÞpÞ denotes the Tate

module for AðK Þp. The inflation-restriction sequence gives an exact sequence

H1ðG=N;WN
p Þ ! H1ðG;WpÞ ! H1ðN;WpÞ:

Since WN
p ¼ 0, the first term is trivial. To show that the last term is trivial, we show

that N contains a subgroup Z isomorphic to Zp with the property that WZ
p ¼ 0.
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Using the inflation-restriction sequence again, it will then follow that H1ðN;WpÞ is

isomorphic to a subspace of H1ðZ;WpÞ ¼Wp=ðz� 1ÞWp, where z is a topological

generator for Z. But WZ
p ¼ 0 implies that H1ðZ;WpÞ ¼ 0. Hence, H1ðN;WpÞ ¼ 0

and therefore H1ðG;WpÞ is indeed trivial. The fact that H1ðN;WpÞ ¼ 0 gives another

exact sequence

H2ðG=N;WN
p Þ ! H2ðG;WpÞ ! H2ðN;WpÞ:

Just as above, the first term is trivial and the last term is isomorphic to a subspace of

H2ðZ;WpÞ, which is trivial because Z has p-cohomological dimension 1.

To prove the existence of such a subgroup Z, consider Wp as a representation

space for N. Since N is Abelian, all of its irreducible representations over �QQp are

one-dimensional. Thus the composition factors in the representation space

Wp �Qp
�QQp are one-dimensional and the action of N on them is given by homo-

morphisms wi: N! �QQ
�

p for 14 i4 dimQp
ðWpÞ. SinceH

0ðN ;WpÞ ¼ 0 for every sub-

group N of finite index in N, it is clear that wijN is nontrivial for each i. (Otherwise,

the elements of N would have 1 as a common eigenvalue and a common eigenvector

would exist since N is Abelian.) Thus, each wi has infinite order. Hence

rankZp
ðkerðwiÞÞ. One must just choose Z ffi Zp so that Z�Zp

Qp is not contained in

any of the proper subspaces kerðwiÞ �Zp
Qp of N�Zp

Qp, which is certainly

possible. &

We also include a proof of the following simple result.

PROPOSITION 3.4. Let K=F be any Galois extension such that GðK=F Þ is a p-adic

Lie group. Then kerðhK=F 0 Þ½ p	 and cokerðhK=F 0 Þ½ p	 have bounded order as F 0 varies.

Also kerðhK=F 0 Þ and cokerðhK=F 0 Þ have bounded Zp-corank as F 0 varies.

Proof. Let B ¼ ðAðK ÞpÞdiv and C ¼ AðK Þp=ðAðK ÞpÞdiv. Let i ¼ 1 or 2. Since C is

finite, the proof of Proposition 3.1 shows that HiðK=F 0;CÞ has bounded order.

Also, B½ p	 is finite and so HiðK=F 0;B½ p	Þ has bounded order. Since B is divisible,

one has a surjective map from HiðK=F 0;B½ p	Þ to HiðK=F 0;BÞ½ p	, which therefore

also has bounded order. It follows easily that jHiðK=F 0;AðK ÞpÞ½ p	j is bounded as F 0

varies, which gives the first assertion in Proposition 3.4. The second assertion

follows from this. Or one could use Lemma 2.2 to get the bound dimQp
ðH1ðg;WpÞÞ

on the Zp-corank of kerðhK=F 0 Þ and the bound dimQp
ðH2ðg;WpÞÞ for the Zp-corank of

cokerðhK=F 0 Þ, where g is the Lie algebra of GðK=F Þ andWp ¼ ðlim
 �

B½ pn	Þ �Zp
Qp. &

Remark. The finiteness of kerðhK=F 0 Þ for all F
0 is equivalent to the vanishing of

H1ðg;WpÞ. The finiteness of cokerðhK=F 0 Þ for all F
0 is equivalent to the vanishing of

H2ðg;WpÞ.

It is possible for kerðhK=F 0 Þ to have positive Zp-corank. For example, let A be any

Abelian variety defined over a number field F. Let FS be the maximal extension of F
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unramified outside S, where S is the set of primes of F lying over p or1 or where A

has bad reduction. Then H1ðFS=F, A½ p
1	Þ is a cofinitely generated Zp-module and so

H1ðFS=F;A½ p
1	Þdiv ffi ðQp=ZpÞ

a, where ½F : Q	g4 a <1. This follows from the fact

that the Euler–Poincaré characteristic of the GðFS=F Þ-module A½ p1	 is �½F: Q	g.

Let L ¼ FðA½ p1	Þ. Let HF be any subgroup of H1ðFS=F;A½ p
1	Þ isomorphic to

Qp=Zp. Then HL ¼ hL=FðHF Þ is a subgroup of HomGðL=F ÞðGðL
ab=LÞ; A½ p1	Þ which

is also isomorphic to Qp=Zp, since kerðhL=FÞ is finite by Serre’s theorem. It is clear

that HL determines a unique extension K=L such that HL � HomðGðK=LÞ;A½ p1	Þ

and K is minimal. It is not hard to see that K=F is Galois and that GðK=LÞ ffi Zb
p

for some b ð42gÞ. Therefore GðK=F Þ is a p-adic Lie group. Also, K=F is S-ramified.
It is clear that HF � kerðhK=FÞ, which therefore has Zp-corank 51.

More generally, one could take HF to be an arbitrary subgroup of

H1ðFS=F;A½ p
1	Þ. One obtains just as above a p-adic Lie extension K=F such that

K � FS and HF � kerðhK=FÞ. A similar construction works locally. Let v be a prime

of F. Suppose that Dv is any GFv
-module of finite Zp-corank. Then H1ðFv;DvÞ also

has finite Zp-corank. Let HFv
be any subgroup of H1ðFv;DvÞ. Then one can construct

a p-adic Lie extension K of Fv such that HFv
is contained in the kernel of the restric-

tion map H1ðFv;DvÞ ! H1ðK;DvÞ.

4. The Kernel of gK=F 0

We will study the kernel of the natural restriction map on each factor of PAðF
0Þ. This

will give information about the kernel of the natural map rK=F 0 : PAðF
0Þ ! PAðK Þ.

We have kerðgK=F 0 Þ ¼ GAðF
0Þ \ kerðrK=F 0 Þ and hence we will obtain information

about kerðgK=F 0 Þ. If v
0 is any prime of F 0, let v denote the prime of F such that v0jv

and let Z denote any prime of K lying over v0. We let rv0 denote the restriction

map rv0 : HAðF
0
v0 Þ ! HAðKZÞ. The kernel of rv0 doesn’t depend on the choice of Z. This

section will have five parts A–E. The cases A: v j= p or 1, B: vj1, and C: vjp will be

considered separately. We then bring these cases together in part D, where we study

kerðrK=F 0 Þ. Finally, we will say what we can about kerðgK=F 0 Þ in part E. In parts A–D,

we discuss the cases I, II, and III as in Section 3.

(A) v j= p; v non-Archimedean

In this case, Proposition 4.1 of [CG] states that the image of the Kummer maps kv0
and kZ are both zero. Thus the map rv0 is simply the restriction map

H1ðFv0 ;A½ p
1	Þ ! H1ðKZ;A½ p

1	Þ and so

kerðrv0 Þ ffi H1ðKZ=Fv0 ;AðKZÞpÞ:

Now results of Tate imply easily thatH1ðFv0 ;A½ p
1	Þ is finite and so obviously kerðrv0 Þ

is also finite. The question therefore is whether the order of kerðrv0 Þ is bounded or

unbounded as F 0 varies and as v0 varies over primes of F 0 lying over v.
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I. K=F is a Zp-extension

In this case it is well known that v is unramified in K=F. We will prove the following

general result which will be useful for other p-adic Lie extensions too.

PROPOSITION 4.1. Assume that v j= p and that KZ=Fv is unramified. Then there is a

constant cð pÞv ðwhich depends only on A;Fv, and pÞ such that jkerðrv0 Þj4 cð pÞv . If A has

good reduction at v, then kerðrv0 Þ ¼ 0.

Proof. We first give the bound cð pÞv . Let Iv denote the inertia subgroup of

GFv
¼ Galð �FFv=FvÞ, where �FFv denotes an algebraic closure of Fv. Let F

unr
v ¼ �FFIv

v , the

maximal unramified extension of Fv. Then we let

cð pÞv ¼ ½AðF
unr
v Þp: ðAðF

unr
v ÞpÞdiv	:

Now jkerðrv0 Þj is bounded by the order of the kernel of the restriction map

ðH1ðF 0v0 ;A½ p
1	Þ ! H1ðF unr

v ;A½ p1	Þ, which is isomorphic to

H1ðF unr
v =F 0v0 ;AðF

unr
v ÞpÞ ffi AðFunr

v Þp=ðs
0 � 1ÞAðF unr

v Þp:

Here s0 denotes a topological generator of GðF unr
v =F 0v0 Þ. The kernel of s

0 � 1 acting

on AðF unr
v Þp is AðF 0v0 Þp, which is finite, and so the cokernel of s0 � 1 is also finite.

It follows that

ðAðF unr
v ÞpÞdiv � ðs

0 � 1ÞAðF unr
v Þp � AðF unr

v Þp:

Thus indeed jkerðrv0 Þj4 cð pÞv . For the final part of Proposition 4.1, note that if A has

good reduction at v, then the action of Iv on A½ p1	 is trivial. Hence,

AðF unr
v Þp ¼ A½ p1	 is divisible and so cð pÞv ¼ 1. &

Remark. The bound cv can often be improved. If KZ=Fv is an infinite extension,

then the pro-p Sylow subgroup of GðKZ=FvÞ is isomorphic to Zp. The above argu-

ment would show that

jkerðrv0 Þj4 ½AðKZÞp: ðAðKZÞpÞdiv	:

Now GðKZ=FvÞ acts on AðKZÞp=ðAðKZÞpdiv through a finite quotient group. Hence

ðs0 � 1ÞAðKZÞp ¼ AðKZÞpdiv if F 0v0 is sufficiently large. Then the above inequality

becomes an equality. As a special case, if K=F is a Zp-extension and AðFvÞp ¼ 0, then

one sees easily that AðKZÞp ¼ 0 too, and so kerðrv0 Þ ¼ 0. On the other hand, it can

happen that v splits completely in K=F (i.e., KZ ¼ Fv). In that case, it is obvious that

kerðrv0 Þ ¼ 0.

The invariant cð pÞv of an Abelian variety A=Fv has the following interpretation. Let
~AAv denote the reduction modulo v of the Néron model for A over the ring of integers

in Fv. Then ~AAv is an abelian algebraic group defined over the residue field fv. Let

l ¼ charð fvÞ. For any finite extension of Fv, the kernel of the reduction map is a

pro-l group. Since l 6¼ p, it follows easily that AðFunr
v Þp ffi

~AAvð
�ffvÞp, where

�ffv is an
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algebraic closure of fv. Let ~BBv denote the connected component of the identity in ~AAv.

Then ~BBvð
�ffvÞ is divisible and has finite index in ~AAvð

�ffvÞ. Therefore, ð ~AAvð
�ffvÞpÞdiv ¼

~BBvð
�ffvÞp and, since

~AAvð
�ffvÞ is a torsion group, it follows that cð pÞv is just the order of

the Sylow p-subgroup of the group Cv ¼ ~AAvð
�ffvÞ= ~BBvð

�ffvÞ of connected components

for ~AAv.

If KZ=Fv is an infinite, unramified, p-adic Lie extension, then KZ is just a finite

extension of the unramified Zp-extension of Fv. Letting kZ denote the residue field

for Z, the group ~BBvðkZÞp is still divisible. (This follows easily from the fact that

Gð �ffv=kZÞ has profinite order not divisible by p.) We therefore have

ð ~AAvðkZÞpÞdiv ¼ ~BBvðkZÞp. One can then see that AðKZÞp=ðAðKZÞpÞdiv ffi CGKZ
v and that

kerðrv0 Þ is isomorphic to CGKZ
v =ðs0 � 1ÞCGKZ

v , where s0 is a topological generator for

GðKZ=F
0
v0 Þ. As a consequence, kerðrv0 Þ has the same order as C

GF 0
v0

v .

II. K ¼ FðA½ p1	Þ

Since v j=p, the criterion of Serre–Tate states that v is ramified in KZ=Fv if and only if A

has bad reduction at v. Thus, if A has good reduction at v, then Proposition 4.1

implies that kerðrv0 Þ ¼ 0. If A has bad reduction at v, we consider two cases.

(i) A has potentially good reduction at v.

Equivalently, the inertia group Iv acts on A½ p1	 through a finite quotient group D. In
fact, D ¼ DðFv;AÞ is independent of p. Also, A achieves good reduction over

FvðA½m	Þ for any m5 3 such that v6 jm. (See Section 2 of [ST].) It is rare for p to divide

the order of D. (For the case where g ¼ dimðAÞ ¼ 1, this could happen only for p ¼ 2

or 3. For g5 1, the set of primes which can divide jDj is finite and depends only on

g.) If p6 j jDj, then Proposition 4.1 implies that kerðrv0 Þ ¼ 0.

On the other hand, if p does divide jDj, one can remark that there is a bound on

jkerðrv0 Þj which depends only on g. Let L be a fixed finite Galois extension of Fv over

which A achieves good reduction. (One can choose L to depend only on g and not on

A.) It suffices to bound the order of H1ðLKZ=F
0
v0 ;A½ p

1	Þ. But, by Proposition 4.1,

this is H1ðLF 0v0=F
0
v0 ;AðLF

0
v0 ÞpÞ and its order is bounded by that of

H1ðP0;AðLF 0v0 ÞpÞ, where P0 is a p-Sylow subgroup of GðLF 0v0=F
0
v0 Þ. P

0 has bounded

order (dividing ½L: Fv	). It is an easy exercise (by devissage) to bound the order of

H1ðP0;BÞ, where B is any finite p-primary P0-module, in terms of jP0j and jB½ p	j,

which justifies our remark.

(ii) A doesn’t have potentially good reduction at v.

Thus the image of Iv in AutZp
ðTpðAÞÞ is infinite. Assume vjl, where l is a rational

prime (and l 6¼ p). Since AutZp
ðTpðAÞÞ contains a pro-p subgroup of finite index,

the same is true for the image of Iv and one can see easily by local class field theory

that KZ contains the field Fvðmp1 ;
ffiffi
lp1
p
Þ. This implies that GKZ has profinite order

prime to p. Thus H1ðKZ;A½ p
1	Þ ¼ 0. As a consequence, kerðrv0 Þ is as large as it could

be kerðrv0 Þ ¼ H1ðF 0v0 ;A½ p
1	Þ. This group is finite and isomorphic to H2ðF 0v0 ; TpðAÞÞ.
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To see this we use the exact sequence 0! TpðAÞpðAÞ ! A½ p1	 ! 0 together with

the fact that H iðF 0v0 ;VpðAÞÞ ¼ 0 for i ¼ 1; 2. By using Tate’s local duality theorem,

one sees that H2ðF 0v0 ;TpðAÞÞ is dual to H 0ðF 0v0 ;A
t½ p1	Þ ¼ AtðF 0v0 Þp, where At is the

dual Abelian variety. Thus kerðrv0 Þ and AtðF 0v0 Þp have the same order. But since A

and At are isogenous over Fv, we have KZ ¼ FvðA
t½ p1	Þ. Thus, it is clear that

jkerðrv0 Þj will be unbounded in this case. One can be somewhat more precise about

the structure of kerðrv0 Þ if one takes F
0 ¼ Fn ¼ FðA½ pn	Þ and if v0 ¼ vn is some prime

of Fn lying above v. Then it is not hard to show that kerðrvn Þ � ðZ=p
nZÞ2g as n!1.

Here the notation An � Bn as n!1, where An, Bn are two sequences of groups,

means that there are homomorphisms fn: An ! Bn whose kernels and cokernels

are finite and of bounded order as n!1.

III. Arbitrary K=F

The Galois group GðKZ=FvÞ is a p-adic Lie group. Local class field theory implies that

dimðGðKZ=FvÞÞ4 2. If GðKZ=FvÞ is finite, there is little to say. The order of kerðrv0 Þ is

trivially bounded. (This can occur. For example, it is possible for a prime v of F to

split completely in K=F, in which case kerðrv0 Þ ¼ 0.) If dimðGðKZ=FvÞÞ ¼ 1, then the

Lie algebra of GðKZ=FvÞ is abelian. Let K u
Z ¼ KZ \ F

unr
v . One must have

½KZ: K
u
Z	 <1. Then, by using Proposition 4.1, it is easy to verify that jkerðrv0 Þj is

bounded.

Finally, if dimðGðKZ=FvÞÞ ¼ 2, it follows that GKZ has profinite order relatively

prime to p and, hence, H1ðKZ;A½ p
1	Þ ¼ 0. In this case, we have, as in II(ii),

kerðrv0 Þ ¼ H1ðF 0v0 ;A½ p
1	Þ, which is isomorphic to the dual AtðF 0v0 Þ

b
p of the finite group

AtðF 0v0 Þp. This is of bounded order if and only if A
tðKZÞp is finite. Note that A

tðKZÞp is

finite if and only if AðKZÞp is finite. If A has good reduction at v0, then the kernel of

the reduction map AðF 0v0 Þ !
~AAv0 ð fv0 Þ is a pro-l group. Here fv0 denotes the residue

field for v0 and l denotes its characteristic. Since the reduction map is surjective, it

follows that AðF 0v0 Þp ffi
~AAv0 ð fv0 Þp. Also, At will have good reduction at v0 and

AtðF 0v0 Þp ffi
~AtAt
v0 ð fv0 Þp will have the same order as

~AAv0 ð fv0 Þp. Thus, if A has good reduc-

tion at Z, then kerðrv0 Þ will have bounded order if and only if ~AAðkZÞp is finite, where kZ
denotes the residue field of Z. We also remark that, since K=F is a Galois extension,

both GðKZ=FvÞ and AðKZÞp are independent of the choice of Z lying over a fixed prime
v of F.

(B) v Archimedean

We need only worry about the case when p ¼ 2, F 0v0 ¼ R, and KZ ¼ C. This does not

occur when K=F is a Zp-extension, since Archimedean primes of F will split comple-

tely in K=F. If K ¼ FðA½21	Þ, then KZ ¼ C for all Archimedean primes of K. If one

restricts attention to fields F 0 which are totally complex (e.g. those containing

FðA½4	Þ), then again kerðrv0 Þ ¼ 0. Let K=F be arbitrary. Assume now that F 0v0 ¼ R,

KZ ¼ C. We again have Imðkv0 Þ ¼ 0, ImðkZÞ ¼ 0. Thus kerðrv0 Þ ffi H1ðC=R;A½21	Þ,

where one considers A as an Abelian variety/R by the identification Fv ¼ R, (and

270 RALPH GREENBERG

https://doi.org/10.1023/A:1023251032273 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023251032273


v is the prime of F lying below v0). Let s be the nontrivial element of GðC=RÞ. Then

we have kerðrv0 Þ ffi kerð1þ sÞ=imð1� sÞ, when 1þ s, 1� s are regarded as endo-

morphisms of A½21	. One verifies easily that kerðrv0 Þ ffi ðZ=2ZÞ
ev , where ev ¼

dimZ=2ZðAðRÞ½2	Þ � g. This of course can be positive.

(C) vjp

Before we discuss the special cases I and II, we must recall some of the results of [CG]

and make some general observations. Let L be any algebraic extension of Fv. Let

kL: AðLÞ � ðQp=ZpÞ ! H1ðL;A½ p1	Þ denote the Kummer homomorphism for A

over L. Then kL is injective. If L is a finite extension of Fv, then as explained in

[CG] (see page 150), we have

imðkLÞ ffi ðQp=ZpÞ
g½L: Qp	; H1ðL;A½ p1	Þdiv ffi ðQp=ZpÞ

2g½L: Qp	 ð3Þ

as groups. On the other hand, a certain canonical GFv
-invariant subgroup C of A½ p1	

is defined in [CG], p. 150–151, which can be characterized in the following way:

D ¼ A½ p1	=C is the maximal GFv
-quotient of A½ p1	 on which some subgroup of

finite index in the inertia group Iv acts trivially. (That is, D is ‘almost’ unramified.)

This subgroup C is isomorphic to ðQp=ZpÞ
h as a group, where h is the height of

the formal group F for a Néron model for A over the integers in a finite extension

of Fv where A achieves semistable reduction. In fact, C ¼ F ð �mmÞ½ p1	. (Later we may
write Cv for C and Dv for D.) We define lL: H1ðL;CÞ ! H1ðL;A½ p1	Þ. According to

(4.9) of [CG], we have imðkLÞ � imðlLÞ for all L. Proposition 4.3 of [CG] states that

equality holds if L is ‘deeply ramified’. We quickly recall one of the equivalent defi-

nitions of this concept. For each w5 � 1, let G
ðwÞ
Fv

denote the wth ramification sub-

group of GFv
in the upper numbering (which is defined even for infinite extensions)

and let FðwÞv denote the fixed field for G
ðwÞ
Fv
. An algebraic extension L of Fv is deeply

ramified if and only if L 6� FðwÞv for all w. A theorem of Sen implies that a p-adic Lie

extension L=Fv which is infinitely ramified must be deeply ramified. (See Theorem

2.13 of [CG]).

Assume that the inertia subgroup of GðKZ=FvÞ is infinite. Then KZ is deeply rami-

fied. For any L, let HAðLÞ ¼ H1ðL;A½ p1	Þ=imðkLÞ as before. Note that HAðKZÞ ¼

H1ðKZ;A½ p
1	Þ=imðlKZ Þ. Hence we can factor the map rv0 as indicated by the follow-

ing commutative diagram (where we let lv0 ¼ lF 0
v0
for brevity):

HAðF
0
v0 Þ �!

av0
H1ðF 0v0 ;A½ p

1	Þ=imðlv0 Þ

!

 

bv0

HAðKZÞ

ð4Þ

Clearly kerðav0 Þ � kerðrv0 Þ. Furthermore, we have isomorphisms

kerðav0 Þ ffi imðlv0 Þ=imðkv0 Þ; kerðrv0 Þ=kerðav0 Þ ffi kerðbv0 Þ;

rv0
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the last isomorphism because av0 is surjective. Thus we can study kerðrv0 Þ by studying

imðlv0 Þ=imðkv0 Þ and kerðbv0 Þ. Kerðbv0 Þ can be studied by the following commutative

diagram

H1ðF 0v0 ;CÞ !
lv0

H1ðF 0v0 ;A½ p
1	Þ !

pv0
H1ðF 0v0 ;DÞ

   

dv0

H1ðKZ;CÞ !
lZ H1ðKZ;A½ p

1	Þ !
pZ H1ðKZ;DÞ:

ð5Þ

Thus obviously kerðbv0 Þ is isomorphic to a subgroup of kerðdv0 Þ. In many cases, the

map pv0 is surjective and hence we would have an isomorphism kerðbv0 Þ ffi kerðdv0 Þ.

(This is true, for example, if A has potentially good reduction at v since then one sees

easily that H2ðF 0v0 ;CÞ ¼ 0.)

Assume that A has potentially ordinary reduction at v. Then, by Proposition 4.5 of

[CG], we have imðkv0 Þ ¼ imðlv0 Þdiv. (This is not hard to show. It involves simply

showing that imðkv0 Þ � imðlv0 Þ and that these groups have the same Zp-corank.)

Using this, we can prove the following result. Here Ct � At½ p1	 and

Dt ¼ At½ p1	=Ct are the GFv
-modules associated to At which are defined analogously

to C and D.

PROPOSITION 4.2. Assume that A has potentially ordinary reduction at v and that

the inertia subgroup of GðKZ=FvÞ is infinite. Then kerðav0 Þ is finite and

jkerðav0 Þj4 jH 0ðF 0v0 ;D
tÞj. If A has good, ordinary reduction over F 0v0 then one has

equality. In this case, jkerðav0 Þj ¼ j ~AAv0 ð f
0
v0 Þpj, where f

0
v0 ¼ OF 0

v0
=mF 0

v0
is the residue field

for v0 and ~AAv0 is the reduction of A at v0.

Proof. We have kerðav0 Þ ffi imðlv0 Þ=imðlv0 Þdiv. This is a homomorphic image of the
group H1ðF 0v0 ;CÞ=H

1ðF 0v0 ;CÞdiv. Therefore

jkerðav0 Þj4 jH1ðF 0v0 ;CÞ=H
1ðF 0v0 ;CÞdivj:

Now H2ðF 0v0 ;CÞ ¼ 0 and so, by considering the exact sequence 0! C½ pn	 !

C!
pn

C! 0, for n� 0, one sees that H1ðF 0v0 ;CÞ=H
1ðF 0v0 ;CÞdiv ffi H2ðF 0v0 ;C½ p

n	Þ. This

last group is dual to H 0ðF 0v0 ;D
t½ pn	Þ which coincides with the group H 0ðF 0v0 ;D

tÞ for

n� 0. This gives the inequality in Proposition 4.2. The second statement is part of

Proposition 4.6 of [CG]. &

Remark. If L denotes a fixed finite extension of Fv where A (and hence At) has

good reduction, then an obvious bound for jH 0ðF 0v0 ;D
tÞj is jH 0ðF 0v0L;D

tÞj ¼ j ~AAtðk0Þpj

where k0 denotes the residue field of F 0v0L. Since k
0 is a finite field, ~AAtðk0Þp and

~AAðk0Þp
have the same order, although they are not necessarily isomorphic. If A has good,

ordinary reduction over F 0v0 , then we have kerðav0 Þ ffi H 0ðF 0v0 ;
~AAt½ p1	Þ ¼ ~AAtð f 0v0 Þp.

We need one more general result.
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PROPOSITION 4.3. Assume that A has good reduction at v and that KZ=Fv is

unramified. Then kerðrv0 Þ ¼ 0 for all F 0 and all v0.

Proof. Here we use the following consequence of Tate’s duality theorem for

Abelian varieties over local fields. For any extension KZ=F
0
v0 , we have the iso-

morphism

kerðrv0 Þ
b
ffi ðAtðF 0v0 Þ=NKZ=F 0v0

ðAtÞÞp;

where kerðrv0 Þ
b is the dual of kerðrv0 Þ. Thus it suffices to prove that NKZ=F 0v0

ðAtÞ ¼

AtðF 0v0 Þ under the above hypotheses. We have an exact sequence

0! FAtðmF 0
v0
Þ ! AtðF 0v0 Þ !

~AAtð f 0v0 Þ ! 0

where f 0v0 is the residue field for F
0
v0 and FAt is the formal group for a Néron model of

At over OFv
. By Proposition 3.9, of [CG], the norm map for a formal group is sur-

jective for unramified extensions. Thus FAt ðmF 0
v0
Þ is contained in NKZ=F 0v0

ðAtÞ. Hence

it suffices to verify that if f 00=f 0 is any finite extension of finite fields, then

Nf 00=f 0 ðfAtAtð f 00ÞÞ ¼fAtAtð f 0Þ. This amounts to the assertion that H2ð f 00=f 0; ~AAtð f 00ÞÞ vani-

shes since Gð f 00=f 0Þ is cyclic. To verify it, note that H2ð f 00=f 0; ~AAtð f 00ÞÞ has the same

order as H1ð f 00=f 0; ~AAtð f 00ÞÞ. To prove this is trivial, it is then enough to show that

H1ð f 0; ~AAtð �ff 0ÞÞ ¼ 0, where �ff 0 denotes an algebraic closure of f 0. But this is not hard

to show by using the facts that Gð �ff 0=f 0Þ ffi bZZ and ~AAtð �ff 0Þ is a divisible group. &

I. K=F is a Zp-extension

Assume first that KZ=Fv is unramified. (This can occur!) If A has good reduction over

Fv, then Proposition 4.3 asserts that kerðrv0 Þ ¼ 0. If A has potentially good reduction,

then Proposition 4.3 easily implies that jkerðrv0 Þj is bounded as F 0 varies.

Assume now that KZ=Fv is ramified and that A has potentially ordinary reduction.

The inertia group IðKZ=FvÞ must have finite index in GðKZ=FvÞ. This means that the

residue field f 0v0 is of bounded degree over fv, as F
0 varies. Then by proposition 4.2

and the subsequent remark it follows that kerðav0 Þ has bounded order. (In the case

of good ordinary reduction the obvious fact that Að f 0v0 Þ stabilizes is enough.) Now

consider dv0 : H
1ðF 0v0 ;DÞ ! H1ðKZ;DÞ. We have kerðdv0 Þ ffi H1ðKZ=F

0
v0 ;DðKZÞÞ. Let L

be again a fixed finite extension of Fv where A has good reduction. Let k be the resi-

due field for LKZ, which is a finite field. Thus DðLKZÞ ¼ ~AAðkÞp is finite and therefore

so is DðKZÞ. It is then obvious that kerðdv0 Þ and hence kerðbv0 Þ are finite and of boun-

ded order as F 0 varies. Combining these observations, it follows that kerðrv0 Þ is finite

and has bounded order as F 0 varies.

Under certain hypotheses we can assert that kerðrv0 Þ ¼ 0 for all F 0. We have

already shown this if v is unramified in K=F and A has good reduction over Fv.

Assume now that v is ramified in K=F. Assume also that A has good ordinary reduc-

tion at v and that the order of ~AAð fvÞ is not divisible by p. Since f 0v0=fv is a p-extension,

it clearly follows that ~AAð f 0v0 Þp ¼ 0 for all F 0. Hence, by Proposition 4.2, kerðav0 Þ ¼ 0.

The residue field k of KZ is also a finite p-extension of fv. Thus DðKZÞ ¼ ~AAðkÞ ¼ 0

again. It follows that kerðbv0 Þ ¼ 0. Therefore the hypotheses that K=F is a Zp-exten-
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sion, A has good, ordinary reduction at v, and ~AAð fvÞp ¼ 0 are sufficient to conclude

that kerðrv0 Þ ¼ 0 for all intermediate fields F 0.

II. K ¼ FðA½ p1	Þ

In this case we will show that kerðrv0 Þ is finite but of unbounded order as F 0 varies,

under the assumption that A has potentially ordinary reduction at v. The finiteness

of kerðav0 Þ is clear because it is isomorphic to imðlv0 Þ=imðlv0 Þdiv and H1ðF 0v0 ;CÞ is

cofinitely generated over Zp. Now A achieves good, ordinary reduction over

FvðA½ p	Þ for odd p (and over FvðA½4	Þ if p ¼ 2). Proposition 4.2 implies that

jkerðav0 Þj is unbounded since the same is true of j ~AAð f 0v0 Þpj. In fact, if we take

F 0 ¼ Fn ¼ FðA½ pn	Þ for any n5 2 and if vn is a prime of Fn lying above v, then

j ~AAð fvnÞpj5 pgn, where fvn denotes the residue field for vn. We have

kerðavnÞ ffi
~AAtð fvn Þ and one can verify that kerðavnÞ � ðZ=p

nZÞg as n!1.

Now we consider the finiteness of kerðdv0 Þ. Note that DðKZÞ ¼ D. Assume that U is

any open pro-p subgroup of GðKZ=FvÞ such that the action of U on D is unramified.

(For example, U ¼ GðKZ=FvðA½ p
n	ÞÞ for n5 2. We will add a few more requirements

on the choice of U below.) It suffices to show that H1ðU;DÞ is finite. Let V denote the

inertia subgroup of U. Then U=V ffi Zp. Let u 2 U be chosen so that uV is a topo-

logical generator of U=V. Then H 0ðU;DÞ ¼ kerðu� 1Þ is finite (as pointed out in

the proof of Proposition 4.2) and therefore H1ðU=V;DÞ ¼ D=ðu� 1ÞD is trivial. Also

clearly H2ðU=V;DÞ ¼ 0. Therefore,

H1ðU;DÞ ffi H1ðV;DÞU=V ¼ HomU=VðV=V 0;DÞ:

Now U acts faithfully on the vector space V ¼ TpðAÞ �Qp. Let ~VV be the quotient

space Tpð ~AAÞ �Qp. (We assume that A has good reduction over K U
Z .) Let

W ¼ kerðV! ~VV Þ. We will assume that U=kerðwÞ ffi Zp, where w: U ! 1þ pZp

denotes the cyclotomic character. Let N ¼ V \ kerðwÞ. Then N � V � U and

U=N ffi Z2
p is Abelian. Now V acts trivially on ~VV and by w

		
V on W. Hence, N is a sub-

group of AutðV Þ which acts trivially on both ~VV andW and so can be identified with a

subgroup of Homð ~VV;WÞ. This shows that N is Abelian, isomorphic to Zm
p for some

m5 0, and also that V=N acts on N by w
		
V . It follows that ½N: V 0	 <1. The finite-

ness of H1ðU;DÞ follows immediately because HomU=VðV=N;DÞ is isomorphic to

H 0ðU;DÞ.
We can take U ¼ GðKZ=ðFnÞvn Þ for n� 0, where Fn ¼ FðA½ pn	Þ and vn is a prime

above v as before. The above discussion shows that H 0ðU;DÞ ffi ~AAð fvnÞp is a homo-

morphic image of kerðdvnÞ ¼ H1ðU;DÞ. It follows that kerðdvn Þ contains a subgroup

isomorphic to ðZ=pnZÞg. One can verify that kerðdvnÞ � ðZ=p
nZÞg as n!1. We

noted previously that the same statement is true for kerðavnÞ. By carefully studying

the structure of the groups H1ððFnÞvn ;CÞ, H
1ððFnÞvn ;A½ p

1	Þ and H1ððFnÞvn ;DÞ, one

can show that kerðrvn Þ � ðZ=p
nZÞ2g as n!1.

We remark that the preceding discussion shows that K=F is admissible if A has

potentially ordinary reduction at all primes p of F lying over p, as we will now
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explain. We already mentioned that GðK=F Þ is a p-adic Lie group and that K=F is S-
ramified for a finite set S of primes of F. Now if we take v ¼ p, then dp and ip are the
Lie algebras for U and V, respectively. The Lie algebra for N is i0p, which coincides

with d0p since dp=i
0

p is the Lie algebra for the Abelian group U=N.

III. Arbitrary K=F

Let dv denote the Lie algebra for GðKZ=FvÞ. Let iv be the Lie subalgebra corres-

ponding to the inertia subgroup of GðKZ=FvÞ. Let DðKZÞ ¼ H 0ðKZ;DÞ. We prove

the following results, assuming still that A has potentially ordinary reduction at v.

Note that if A has good reduction at v, then DðKZÞ ¼ ~AAvðkZÞ, where ~AAv is the reduc-

tion of A at v and kZ denotes the residue field for Z.

PROPOSITION 4.4. Assume that DðKZÞ is finite. Then kerðrv0 Þ is finite and has

bounded order as F 0 and v0 vary. In particular, this is true if dv ¼ iv.

PROPOSITION 4.5. Assume that d0v ¼ i0v. Then kerðrv0 Þ is finite.

Proof of Proposition 4:4. Since A and At are isogenous over Fv, there is a sur-

jective GFv
-homomorphism from Dt to D, with finite kernel. Hence, DtðKZÞ is finite.

Proposition 4.2 implies that jkerðav0 Þj is bounded by jDtðKZÞj. By Lemma 2.1, we see

that H1ðU;DðKZÞÞ is finite and has bounded order, where U varies over all closed

subgroups of GðKZ=FvÞ. Thus kerðdv0 Þ is finite and has bounded order. Note that the

bound depends only on v and not on the choice of the prime Z lying over v. If dv ¼ iv,
then the residue field kZ of KZ is finite. Since At has potentially good, ordinary

reduction at v, one can bound jDtðKZÞj by jD
tðK0ZÞj ¼ j

~AAtðk0ZÞj, where K0Z is a finite

extension of KZ such that At has good reduction over K0Z and k0Z denotes the cor-

responding residue field, which will still be finite. &

It is worth remarking that if GðKZ=FvÞ is a pro-p group and if both H 0ðFv;DÞ and

H 0ðFv;D
tÞ vanish, then DðKZÞ ¼ DtðKZÞ ¼ 0 and so the above proof shows that

kerðrv0 Þ ¼ 0 for all F 0 and v0. In particular, this is true if A has good, ordinary reduc-

tion at v, p6 j j ~AAð fvÞj, and GðKZ=FvÞ is pro-p. For in this case, ~AAð fvÞ and ~AtAtð fvÞ have the

same order and H 0ðFv;DÞ ¼ ~AAð fvÞp, H 0ðFv;D
tÞ ¼ ~AtAtð fvÞp are both trivial. Since

GðKZ=FvÞ is pro-p, it follows easily that DðKZÞ and DtðKZÞ are both trivial.

Proof of Proposition 4:5. We might as well assume that DðKZÞ is infinite. We know

that kerðav0 Þ is finite. We must show that kerðdv0 Þ is also finite. But this follows

essentially as in II above, using the hypothesis that d0v ¼ i0v. It suffices to show that

H1ðU;DðKZÞÞ is finite for all sufficiently small open subgroups U of GðKZ=FvÞ. (This

then is true for all open U.) We assume that U is pro-p, that the inertia subgroup V of

U acts trivially on DðKZÞ, and that ½U 0: V 0	 <1. Here U 0 and V 0 denote the com-

mutator subgroups of U and V, respectively. Now clearly H 0ðU;DðKZÞÞ is finite and

U=V ffi Zp. As in II, the inflation-restriction sequence shows that H1ðU;DðKZÞÞ is

isomorphic to HomU=VðV=V 0;DðKZÞÞ. But since U 0=V 0 is finite, it is enough to show
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that HomU=VðV=U 0;DðKZÞÞ is finite. But this is obvious because U=V acts trivially on

V=U 0, H 0ðU;DðKZÞÞ is finite, and V is topologically finitely generated. &

In the proof of proposition 4.5, the key fact is that HomU=V ðV=V 0;DðKZÞÞ is finite

for all sufficiently small open subgroups U of GðKZ=FvÞ. This leads to a simple

necessary and sufficient condition for the conclusion of that proposition. Suppose

that U is an open pro-p subgroup of GðKZ=FvÞ, that its inertia subgroup V acts trivi-

ally on DðKZÞ, and that the Lie algebra of V 0 is i0v. (It can happen that the Lie algebra
of V 0 is bigger than i0v.) These assumptions hold for any sufficiently small open sub-

group of GðKZ=FvÞ. Let u 2 U be chosen so that uV is the Frobenius element of U=V.
Now the map x! uxu�1 for x 2 V induces a linear transformation of the vector

space ðV=V 0Þ �Zp
Qp over Qp (of dimension e ¼ dimðivÞ � dimði0vÞ5 0) with eigenva-

lues fasg, 14 s4 e. (Counting multiplicity, although that will be of no importance.)

Also, u acts linearly on the vector space TpðDðKZÞÞ �Zp
Qp, with eigenvalues fbtg,

14 t4 f. Here TpðDðKZÞÞ is the Tate module for DðKZÞ and f ¼ corankZp
ðDðKZÞÞ.

On the residue field of KZ, u induces the map y! yq, where q ¼ pm for some

m5 1. We denote m by degðuÞ. We define the following sets:

Av ¼ flogpðasÞ= degðuÞg14 s4 e; Bv ¼ flogpðbtÞ= degðuÞg14 t4 f: ð6Þ

These sets are independent of the choice of U. The first set depends only on the

Galois extension KZ=Fv (and, in fact, only on KZ, which is independent of Zjv).
The second set depends only on the Gð �kk=kÞ-representation space TpðDðKZÞÞ �Qp,

where k is the residue field of any finite extension of Fv over which A achieves good

reduction. This representation space is a subspace of the Gð �kk=kÞ-representation space

Tpð ~AAÞ �Qp. Thus the bt’s are algebraic numbers (in fact, Weil numbers), since they

are contained in the set of eigenvalues of a Frobenius automorphism acting on

Tpð ~AAÞ �Qp (where one must suitably adjust the residue field). These eigenvalues

are just the p-adic unit eigenvalues associated to Tlð ~AAÞ �Ql for any prime l 6¼ p.

We remark that Av ¼ f when iv ¼ i0v and Bv ¼ f when DðKZÞ is finite.

We will prove the following result.

PROPOSITION 4.6. Assume that A has potentially ordinary reduction at v. Then the

following statements are equivalent:

ðaÞ kerðrv0 Þ is finite for all F 0 and v0.

ðbÞ Av and Bv are disjoint.

Proof. By Proposition 4.2, kerðav0 Þ is always finite. Thus ðaÞ is equivalent to the

assertion that kerðdv0 Þ is always finite. We might as well assume that U=V ffi Zp.

(Otherwise, U ¼ V and one sees easily that DðKZÞ is finite. Then Bv is empty and

kerðrv0 Þ is finite by Proposition 4.4.) The finiteness of kerðdv0 Þ for all F
0 and v0 is

equivalent to the finiteness of HomU=VðV=V 0;DðKZÞÞ for all U as described above. If

this last group is infinite for some choice of U, then clearly fasg and fbtg will fail to be
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disjoint. Thus Av \ Bv will be nonempty. Conversely, if Av \ Bv is nonempty, then

we will have ap
k

s ¼ bp
k

t for some s; t, and k, where 14 s4 e, 14 t4 f, and k5 0.

(Since U is pro-p, the as’s, bt’s are principal units in some finite extension of Qp.) We

can assume that k ¼ 0, i.e., that as ¼ bt (replacing U by UpkV if necessary). Thus as
and bt have the same minimal polynomial over Qp. Then the ðU=VÞ-representation
space ðV=V 0Þ �Qp will have a nontrivial quotient which is isomorphic to a ðU=VÞ-
invariant subspace of TpðDðKZÞÞ �Qp. This will imply that HomU=VðV=V 0;DðKZÞÞ is

infinite for suitably chosen U. &

Our final result about the case vjp is the following.

PROPOSITION 4.7. Assume that there is a continuous representation rv: GFv
!

GLnðQpÞ such that KZ ¼ �FF
kerðrvÞ
v and such that rv is Hodge–Tate. Then d0v ¼ i0v.

Proof. GFv
acts on the Qp-vector space dv through the natural adjoint repre-

sentation of GðKZ=FvÞ on its Lie algebra dv. This action induces a representation

sv: GFv
! AutQp

ðdv=i
0

vÞ. We have an exact sequence

0! iv=i
0

v ! dv=i
0

v ! dv=iv ! 0

of finite-dimensional Qp-representation spaces for GFv
. Of course, we can assume

that dv 6¼ iv and so dimQp
ðdv=ivÞ ¼ 1. Let U be an open subgroup of GðKZ=FvÞ and

let V denote the inertia subgroup of U. If U is sufficiently small, then the Lie algebra

of V will be iv and the Lie algebra of V 0 will be i0v. Also, the adjoint representation of
U induces the trivial representation on dv=iv. The adjoint representation of V induces

the trivial representation on iv=i
0

v. Thus, if U is chosen sufficiently small, V acts tri-

vially on both iv=i
0

v and dv=iv. Therefore, these Qp-representation spaces of GFv
are

Hodge–Tate and the corresponding Hodge–Tate weights are all 0’s. (Remark: The

Hodge–Tate property for a representation of GFv
and the corresponding weights

are unaffected by replacing Fv by a finite extension KU
Z . The weights depend only

on the restriction to the inertia subgroup GKV
Z
. For these elementary facts, see [Fo].)

The assumption that rv is Hodge–Tate turns out to imply that sv is also Hodge–

Tate. The corresponding weights for sv would be all 0’s. According to a theorem of

Sen (corollary to theorem 11 in [Se]), the image of the inertia subgroup GF unr
v

under sv
must then be finite. It follows that if U is chosen sufficiently small, the natural action

of V on U=V 0 by inner automorphisms will be trivial. That is, V=V 0 will be a subgroup
of the center of U=V 0. Since U=V is topologically cyclic, it then follows that U=V 0 is
abelian. But then U 0 ¼ V 0 and so d0v ¼ i0v, as claimed.
It remains to show that sv is Hodge–Tate. The category of Hodge–Tate represen-

tation is closed under tensor products, contragredients, subrepresentations and quo-

tients. Let Vp be the underlying Qp-vector space for rv. Let r_v denote the

contragredient of rv. Then rv � r_v is Hodge–Tate. This representation gives the

action of GFv
on HomðVp;VpÞ. The Lie algebras dv, iv, and i0v are Qp-subspaces which

are invariant under the action of GFv
. The action on dv is the adjoint representation
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of GðKZ=FvÞ. It follows that sv, which gives the action of GFv
on dv=i

0

v induced by that

on HomðVp;VpÞ, must indeed be Hodge–Tate. &

(D) The kernel of rK=F 0

We will conclude this section by combining the previous observations to study

the kernels of the maps rK=F 0 : PAðF
0Þ ! PAðK Þ, where K=F is a given p-adic

Lie extension, S-ramified for some finite set S of primes of F, and where F 0 varies

over all finite extensions of F contained in K. We assume always that A has poten-

tially ordinary reduction at all primes p of F lying over p. The kernel of gK=F 0 is

just kerðrK=F 0 Þ \ GAðF
0Þ. Let S be a finite set of primes of F containing S, all primes

lying over p and 1, and all primes where A has bad reduction. If v =2S, then Pro-

position 4.1 implies that kerðrv0 Þ ¼ 0. Thus, in fact, kerðrK=F 0 Þ � PS
AðF

0Þ where

PS
AðF

0Þ ¼
Q

v0 HAðF
0
v0 Þ, v

0 running over the set SðF 0Þ of primes of F 0 lying over

the primes in S. We regard PS
AðF

0Þ as a subgroup of PAðF
0Þ. We first discuss

two special cases.

I. K=F is a Zp-extension

Let v 2 S. If v splits completely in K=F, then kerðrv0 Þ ¼ 0 for all F 0 and all v0jv. If v

does not split completely, then the decomposition subgroup of GðK=F Þ for v has

finite index, i.e., v is finitely decomposed in K=F. But our previous observations

show that jkerðrv0 Þj is finite and has bounded order for all such v (and v0jv). Hence,

it follows that kerðrK=F 0 Þ is finite and of bounded order as F 0 varies.

II. K ¼ FðA½ p1	Þ

Since we have shown that the groups kerðrv0 Þ are all finite in this case, it follows that

kerðrK=F 0 Þ is finite for all F 0. But its order is unbounded as F 0 varies. In fact,

kerðrK=F 0 Þ½ p	 is often of unbounded order. To discuss this, we will consider the sub-

fields F 0 ¼ Fn ¼ FðA½ pn	Þ for n5 0. The growth of kerðrK=Fn
Þ exhibits some regulari-

ties. Let m ¼ mA denote the dimension of the p-adic Lie group GðK=F Þ. For every

nonarchimedean prime v 2 S, let mv denote the dimension of a decomposition sub-

group GðKZ=FvÞ (for any Zjv). Here we can take S to consist of all primes of F which

divide p or1 or where A has bad reduction. For n� 0, GðFn=F Þ has order ap
mn and

the image of GðKZ=FvÞ in GðFn=F Þ has order bp
mvn, where a; b > 0 are fixed positive

constants. Thus the number of primes of Fn lying over v is tp
ðm�mvÞn for n� 0, where

t ¼ tv > 0. We denote any of these primes by vn. Since Fn=F and K=F are Galois, the

structure of the group kerðrvn Þ is the same for all primes vn of Fn lying over v. There

are several distinct cases:

(i) vjl, l 6¼ p or1, A has potentially good reduction at v. Then A has good reduction

over ðFnÞvn for n5 1 (or n5 2 if p ¼ 2) and all vnjv. Also, K=Fn is unramified at

vn. Thus, by Proposition 4.1, we then have kerðrvn Þ ¼ 0.

(ii) vjl, l 6¼ p or 1, A does not have potentially good reduction at v. In this case

kerðrvn Þ coincides with the corresponding factor H1ððFnÞvn ;A½ p
1	Þ in PS

AðFnÞ,
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which is isomorphic to AtððFnÞvnÞp. Thus, kerðrvnÞ has unbounded exponent as n

varies, but kerðrvn Þ½ p	 has order p
2g for n� 0. As pointed out earlier, mv ¼ 2.

The number of such vn’s is tvp
ðm�2Þn for large n.

(iii) vjp. From our earlier discussion, it is clear that kerðrvn Þ has unbounded exponent

since that is true for kerðavnÞ. But kerðavn Þ½ p	 has order p g for n5 1 and

H1ðU;DÞ½ p	 also has bounded order as U varies over open subgroups of

GðKZ=FvÞ. (See the remark preceding lemma 0.2.) Thus jkerðrvn Þ½ p	j is at least

pg, and is bounded as n varies. It is clear that mv 5 2.

(iv) vj1. The infinite primes of F2 are complex. Thus kerðrvn Þ ¼ 0 when n5 2 in this

case. Note however that, if v is real, then there will be subfields F 0 of K of arbi-

trarily high degree in which v splits completely. Then, if ev > 0 and if p ¼ 2, the

archimedean contribution to kerðrK=F 0 Þ will be of exponent 2 but of unbounded

order.

We have the following consequences. The exponent of kerðrK=Fn
Þ is unbounded as

n!1. The order of kerðrK=Fn
Þ½ p	 is also unbounded unless mv ¼ m for all primes of

F lying over p or where A does not have potentially good reduction. This condition is

quite stringent, but it does hold, for example, when A is an elliptic curve with com-

plex multiplication. In that case, A has potentially good reduction at all primes and

mv ¼ m ¼ 2 when vjp. It is possible that no examples exist with m > 2.

III. Arbitrary K=F

We immediately have the following result.

PROPOSITION 4.8. Assume that K=F is admissible. Then kerðrK=F 0 Þ is finite for all

finite extensions F 0 of F contained in K.

Remark. The conclusion that kerðrK=F 0 Þ is always finite is valid under the fol-

lowing substantially weaker hypothesis: Av \ Bv ¼ f for all primes v of F lying over p.

Here Av and Bv are the sets A and B defined in (6), which depend only on A, v, and

K=F.

Under various sets of hypotheses on A and on K=F, one can prove more precise

statements about kerðrK=F 0 Þ. To simplify our remarks, we assume that A has good,

ordinary reduction at all v lying over p. We let S ¼ S1 [ Sp [ Sbad [ Sram, where

S1 denotes the set of archimedean primes of F, Sp the set of primes lying over p,

Sbad the set of primes where A has bad reduction, and Sram the set of primes rami-

fied in K=F. We are assuming that Sp \ Sbad ¼ f, although it is likely that

Sp \ Sram 6¼ f and possible that Sbad \ Sram 6¼ f. We will discuss several types of

behavior for kerðrK=F 0 Þ, being content in each case to give convenient sufficient con-

ditions for that behavior. For v 62 S, Proposition 4.1 shows that the contributions

of kerðrv0 Þ to kerðrK=F 0 Þ is trivial for all v
0jv. Hence, it is enough to study the beha-

vior of the contributions when v 2 S, which our previous observations in this sec-

tion determine.
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(i) When is kerðrK=F 0 Þ ¼ 0 for all F 0? This will be true if all of the following condi-

tions hold:

For v 2 Sp: ~AAvðkZÞp ¼ 0, where kZ denotes the residue field for K correspond-

ing to some Zjv and ~AAv denotes the reduction of A modulo v.

For v 2 S but 62 Sp [ S1: AðKZÞp ¼ 0 if v 2 Sram; AðKZÞp is divisible if v 62 Sram.

For v 2 S1: If p ¼ 2, Fv ffi R, and KZ ffi C, then AðFvÞ is connected. No condi-

tion if p 6¼ 2 or if Fv ¼ KZ.

The sufficiency of this set of conditions is easy to explain. For vj1, if AðFvÞ is con-

nected, then the integer ev defined in (B) is zero. For vjp, if ~AAðkZÞp ¼ 0, then

kerðav0 Þ ¼ 0 by Proposition 4.2 and kerðdv0 Þ ¼ 0 simply because DðKZÞ ¼ 0. For

v 62 Sp [ S1 [ Sram, the triviality of kerðrv0 Þ if AðKZÞp is divisible follows from the

remark after the proof of Proposition 4.1.

In the conditions for nonarchimedean v 2 S, if GðKZ=FvÞ happens to be pro-p, then

one can simply require that

~AAð fvÞp ¼ 0 for vjp and AðFvÞp ¼ 0 for v j= p;

which would be easier to verify.

(ii) When is kerðrK=F 0 Þ 6¼ 0 for all F 0? Here are two sufficient conditions:

There is a v 2 Sp such that iv 6¼ 0 and ~AAvð fvÞp 6¼ 0,

or

There is a v 62 Sp such that mv ¼ 2 and AtðFvÞp 6¼ 0.

For the first condition, note that ~AAvð f
0
v0 Þp 6¼ 0 for any F 0 and any v0jv, where f 0v0

denotes the residue field for v0. Also, since iv 6¼ 0, KZ=Fv is a deeply ramified exten-

sion. Then, by (4), we have kerðrv0 Þ � kerðav0 Þ and, by Proposition 4.2, we have

kerðav0 Þ 6¼ 0. For the second condition, note that since mv ¼ 2, we have

kerðrv0 Þ ¼ H1ðF 0v0 ;A½ p
1	Þ and this group has the same order as AtðF 0v0 Þp. Since

AtðFvÞp � AtðF 0v0 Þp, we have kerðrv0 Þ 6¼ 0.

(iii) When is the exponent of kerðrK=F 0 Þ bounded ? This will be true if and only if both

of the following conditions hold:

For v 2 Sp, either iv ¼ 0 or ~AAðkZÞp is finite.

For v 62 Sp [ S1, either mv < 2 or mv ¼ 2 and AðKZÞp ¼ 0.

If iv ¼ 0 for vjp, then the inertia subgroup of GðKZ=FvÞ is finite. One can then apply

Proposition 4.3 (first taking a suitably fixed finite extension of Fv). If iv 6¼ 0, then KZ

is deeply ramified. One can apply Proposition 4.2. The finiteness of ~AAðkZÞp is equi-

valent to the assertion that kerðav0 Þ has bounded exponent. (Note: jkerðav0 Þ½ p	j is

bounded.) The finiteness of ~AAðkZÞp also implies that the order of kerðdv0 Þ is bounded.

If iv ¼ dv, then kZ is itself finite and hence so is ~AAðkZÞp. But if iv 6¼ dv, then GkZ has

280 RALPH GREENBERG

https://doi.org/10.1023/A:1023251032273 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023251032273


profinite order prime to p. Hence ~AAðkZÞp is divisible. Thus
~AAðkZÞp is finite if and only

if ~AAðkZÞp ¼ 0, in the case where iv 6¼ dv.
If v 2 S1, then kerðrv0 Þ has exponent at most 2. Now assume that v 62 Sp [ S1.

Then our remarks in (A), III show that kerðrv0 Þ has bounded order if and only if

either mv < 2 or mv ¼ 2 and AðKZÞp is finite. The boundedness of the order and of

the exponent are equivalent since jkerðrv0 Þ½ p	j is certainly bounded. If mv ¼ 2, then

GKZ has profinite order prime to p. Hence, AðKZÞp must be divisible. Therefore, in this

case, the finiteness of AðKZÞp is equivalent to AðKZÞp ¼ 0.

(iv) When is kerðrK=F 0 Þ½ p	 of bounded order? Here is a sufficient condition:

For all v 2 S such that mv < m, we have kerðrv0 Þ ¼ 0 for all v0jv.

Note first that, for any fixed v, jkerðrv0 Þ½ p	j has bounded order. Also, note that the

number of primes v0 of F 0 lying over v is bounded (as F 0 varies) if and only if mv ¼ m.

Sufficient conditions for the triviality of kerðrv0 Þ are described above (for the ques-

tion about when kerðrK=F 0 Þ ¼ 0). Note that mv ¼ 0 for archimedean primes, which

can be important if p ¼ 2. As we pointed out in the case K ¼ FðA½ p1	Þ and as later

examples will illustrate, it is often true that kerðrK=F 0 Þ½ p	 has unbounded order.

(E) The kernel of gK=F 0

The above results help to study the behavior of

kerðgK=F 0 Þ ¼ kerðrK=F 0 Þ \ GAðF
0Þ:

As mentioned at the beginning of (D), we have kerðrK=F 0 Þ � PS
AðF

0Þ, where S is a

finite set of primes of F containing S1;Sp;Sbad, and Sram. Then K � FS, the maxi-

mal extension of F unramified outside S. We let GS
AðF

0Þ denote the image of the map

gF 0 : H
1ðFS=F

0;A½ p1	Þ ! PS
AðF

0Þ:

Then we have kerðgK=F 0 Þ ¼ kerðrK=F 0 Þ \ GS
AðF

0Þ. That is, kerðgK=F 0 Þ is just the kernel

of the natural map kerðrK=F 0 Þ ! PS
AðF

0Þ=GS
AðF

0Þ. One can study cokerðgF 0 Þ ¼
PS

AðF
0Þ=GS

AðF
0Þ by using the global duality theorems of Poitou and Tate and hence

obtain information about the structure of kerðrK=F 0 Þ=kerðgK=F 0 Þ. Referring to Pro-

position 4.13 in [G1], which gives a rather general result about this, one has

dimZ=pZðcokerðgF 0 Þ½ p	Þ4rF 0 þ 2 dimðAÞ; ð7Þ

where rF 0 ¼ corankZp
ðSelAðF

0ÞpÞ. Also, corankZp
ðcokerðgF 0 ÞÞ4rF 0 . If rF 0 ¼ 0, then

cokerðgF 0 Þ ffi AtðF 0Þbp.
Assuming the finiteness ofSAðF

0Þp, we would have rF 0 ¼ rankZðAðF
0ÞÞ. Very little

is known about the behavior of this quantity as F 0 varies. (See chapter 1 of [G2] for a

discussion of this in some cases.) On the other hand, it is relatively easy to study the
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behavior of kerðrK=F 0 Þ. For example, if K ¼ FðA½ p1	Þ, then we remarked at the end

of DII that dimZ=pZðkerðrK=Fn
Þ½ p	Þ is unbounded as n!1 unless A satisfies a

rather stringent condition. We do not know at the present time when

dimZ=pZðkerðgK=Fn
Þ½ p	Þ is unbounded, but a sufficient condition for this would be that

dimZ=pZðkerðrK=Fn
Þ½ p	Þ � rFn

is unbounded. We will discuss the behavior of kerðgK=F 0 Þ

further in Sections 5 and 6.

5. Control Theorems

We can now discuss the kernels and cokernels of the maps sK=F 0 . We first consider the

two special cases.

I. K=F is a Zp-extension

From Section 3 we see that kerðhK=F 0 Þ is finite and of bounded order as F 0 varies.

We also see that cokerðhK=F 0 Þ ¼ 0. Section 4 shows that kerðrK=F 0 Þ is finite and of

bounded order, assuming of course that A has potentially ordinary reduction at

all primes v of F lying over p. The exact sequence (1) then gives the following result,

slightly generalizing proposition 6.4(i) of Mazur [M].

PROPOSITION 5.1. Assume that A has potentially ordinary reduction at all primes

of F lying over p. Let K be any Zp-extension of F. Then the kernel and cokernel of sK=F 0

are finite and of bounded order as F 0 varies.

IfAðF Þp ¼ 0, thenAðK Þp ¼ 0 also, and hence kerðhK=F 0 Þ is trivial. Therefore, sK=F 0 is

injective for all F 0. It is possible for sK=F 0 to be injective even if AðF Þp 6¼ 0. To simplify

our discussion of this, we will assume thatA has good ordinary reduction at all vjp. For

such v, we defineFv ¼ ker
�
AðFvÞp!

~AAvð fvÞp
�
, where fv is the residue field ofFv and the

map is reduction modulo v. For non-Archimedean primes v not lying over p, we define

Fv ¼ AðFvÞ \ ðAðF
unr
v ÞpÞdiv. For all v,Fv is a subgroup ofAðFvÞp. If v j= p andA has good

reduction at v, then Fv ¼ AðFvÞp. We define the following subgroup of

AðF Þp: F ¼
T

vðAðF Þ \ FvÞ, where the intersection is over all non-Archimedean primes

v of F. (It suffices to let v run over Sp [ Sbad.) We then have the following result.

PROPOSITION 5.2. Assume that K=F is a Zp-extension in which every v 2 Sp is

ramified and every v 2 Sbad is finitely decomposed. ðFor example, the cyclotomic Zp-

extension of F has these properties.Þ Assume that A has good, ordinary reduction at the

primes of F lying above p. Suppose also that F ¼ 0. Then sK=F 0 is injective if ½F
0: F 	 is

sufficiently large.

Proof. For v 2 Sp, let Iv denote the corresponding inertia subgroup of

G ¼ GðK=F Þ. For v 2 Sbad, let Gv denote the corresponding decomposition subgroup

of G. (Note: v6 j p implies that v is unramified in K=F.) By assumption, the Iv’s and

Gv’s have finite index in G. Now AðK Þp is in fact finite. This follows easily from the
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hypothesis that Iv is nontrivial for all v 2 Sp. Now choose an open subgroup U of G
such that U � Iv for v 2 Sp, U � Gv for v 2 Sbad, U acts trivially on AðK Þp, and on

AðKZÞp=ðAðKZÞpÞdiv for all v 2 Sbad, where Z is any prime of K lying over v. Such a

choice of U is clearly possible. Let F 0 be such that GðK=F 0Þ � U. Then we will show

that kerðsK=F 0 Þ ¼ 0.

Suppose to the contrary that kerðsK=F 0 Þ contains a nonzero element s. Now
AðK Þp ¼ AðF 0Þp and so s 2 HomðGðK=F 0Þ;AðF 0ÞpÞ. For each v 2 Sp [ Sbad, and

for any v0jv, let sv0 ¼ s
		
GF 0

v0

, regarded as a 1-cocycle with values in A½ p1	. Also,

for each such v0, define a subgroup Fv0 of AðF
0
v0 Þp just as Fv was defined above for

Fv. For v 2 Sp, we will have sv0 2 imðlv0 Þ since s 2 SelAðF 0Þp. Now the inertia sub-

group IF 0
v0
acts trivially on ~AA½ p1	, which implies that sv0

		
IF 0

v0

has values in Cv. Since

v0 is totally ramified in K=F 0, it follows that imðs0Þ ¼ sv0 ðIF 0
v0
Þ is contained in

AðF 0Þp \ Fv0 . Now if v 2 Sbad, then sv0 ¼ 0 in H1ðFv0 ;A½ p
1	Þ. But sv0 is in

H1ðGðKZ=F
0
v0 Þ; AðKZÞpÞ, which is canonically isomorphic to HomðGðKZ=F

0
v0 Þ;

AðKZÞp=ðAðKZÞpÞdivÞ. Thus, the values of sv0 are in ðAðKZÞpÞdiv ¼ AðKZÞ\

ðAðF unr
v ÞpÞdiv. (Note that GðF

unr
v =KZÞ has profinite order prime to p.) Thus, the values

of the cocycle s are in the subgroup F0 ¼
T

v0 ðAðF
0Þp \ Fv0 Þ. But one verifies easily

that F ¼ ðF0ÞGðF
0=F Þ. Hence, F0 ¼ 0 since GðF 0=F Þ is a p-group. Thus s0 ¼ 0, showing

that sK=F 0 is injective when GðK=F 0Þ � U. &

If F 6¼ 0, then one can reverse the above proof to show that kerðrK=F 0 Þ is nonzero

when ½F 0: F 	 � 0 provided that imðlv0 Þ is divisible for all v0jp (and so coincides with

imðkv0 Þ). This would be true if ~AAvð fvÞp ¼ 0 for all primes v of F lying above p. For

then we also have ~AAvð fv0 Þp ¼ 0 for v0jv and this means that imðlv0 Þ is indeed divisible

(as a consequence of Proposition 4.2).

It is possible for sK=F to have a nontrivial kernel even if F ¼ 0. For example, one

might have AðK Þp ¼ AðF Þp and H1ðG;AðK ÞpÞ ¼ HomðG;AðF ÞpÞ could contain a

nontrivial element which has trivial restrictions to some or all of the decomposition

subgroups of G for primes in Sp or Sbad.

Consider the special case where F ¼ Q and K ¼ Q1, the cyclotomic Zp-exten-

sion of Q. Then p is totally ramified in Q1=Q. If p is odd, then F ¼ 0. This is

clear since the inertia subgroup of GQp
acts on kerðA½ p	 ! ~AAp½ p	Þ by the Teich-

müller character o, which has order p� 1 > 1. The proof of Proposition 5.2 shows

that kerðsQ1=QÞ ¼ 0 too. But for p ¼ 2, it is possible that F 6¼ 0 and, nevertheless,

it still turns out that kerðsQ1=QÞ ¼ 0. (We will not go into the proof of this last

assertion here. It involves identifying the elements of order p in H1ðQp;CpÞdiv,

where Cp ¼ kerðA½ p1	 ! ~AAp½ p
1	Þ.) An example where F 6¼ 0 is the elliptic curve

A defined by y2 þ xy ¼ x3 � 784x� 8515. The conductor of this curve is 21. It

has good, ordinary reduction at p ¼ 2 and multiplicative reduction at 3 and 7.

One sees easily that Fv 6¼ 0 for v 2 f2; 3; 7g. The discriminant for this curve is

3 � 72 and so QðA½2	Þ ¼ Qð
ffiffiffi
3
p
Þ. Since

ffiffiffi
3
p
62 Qv for v ¼ 2; 3, and 7, it follows that

AðQvÞ½2	 ffi Z=2Z and hence Fv½2	 ¼ AðQvÞ½2	 for those primes. But AðQÞ has order

2 itself. Therefore, it is clear that F ¼ AðQÞ for the above elliptic curve A.
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Our results in Section 4 give a sufficient condition for cokerðsK=F 0 Þ to vanish for all

F 0, namely: If v 2 Sp and is ramified in K=F, then p6 j j ~AAð fvÞj. If v 2 Sbad, then AðF unr
v Þp

is divisible. No condition is needed for vj1, since Archimedean primes split comple-

tely in K=F. We also note that, for v 2 Sbad, it would suffice that AðFvÞp ¼ 0. For then

AðKZÞp ¼ 0.

II. K ¼ FðA½ p1	Þ

Applying the results of Sections 3 and 4 to this case provides a proof of Theorem 4

stated in the introduction. For we have shown that kerðhK=F 0 Þ and cokerðhK=F 0 Þ are

finite. With the hypothesis on the behavior of A at vjp, we have seen that

kerðrK=F 0 Þ, and hence kerðgK=F 0 Þ, is finite. Therefore, diagram (1) again implies the

finiteness of the kernel and cokernel of sK=F 0 , proving Theorem 4.

We noted in Section 3 that kerðhK=F 0 Þ has unbounded order. But, nevertheless, we

can prove the following result.

PROPOSITION 5.3. Suppose that dimðAÞ ¼ 1 and that A has potentially ordinary

reduction at all vjp. For n5 0, let Fn ¼ FðA½ pn	Þ. Let K ¼ FðA½ p1	Þ. Then kerðsK=Fn
Þ

has bounded order as n varies.

Proof. We will use the notation and observations given in Section 3, II. Thus

kerðhK=Fn
Þ ¼ HomðGðMn=FnÞ;A½ p

n	Þ. Let s: GðMn=FnÞ ! A½ pn	 be an arbitrary ele-

ment of kerðhK=Fn
Þ. We will show that if s 2 kerðsK=Fn

Þ ¼ kerðhK=Fn
Þ \ SelAðFnÞp, then

the order of s is bounded independently of n. (We will only use the local conditions

for primes of Fn lying above p to show this.) This suffices because kerðhK=Fn
Þ½ p	 is of

bounded order too. Assuming that n is sufficiently large, s will factor through

GðLn=FnÞ, where Ln ¼Mn \ F2n. We have GðLn=FnÞ ffi ðZ=p
nZÞm�1. If vn is any prime

of Fn lying above p, let Ivn denote the corresponding inertia subgroup of GðLn=FnÞ.

Replacing F by F1 (or F2 if p ¼ 2) if necessary, we can assume that A has good,

ordinary reduction at the primes of F lying above p. If v is the prime of F lying below

vn, let ~AAv denote A modulo v and let Cvn ¼ kerðA½ pn	 ! ~AAv½ p
n	Þ, where the map is

reduction modulo vn. Since Ivn acts trivially on
~AAv½ p

n	, it follows that if s 2 kerðsK=Fn
Þ,

then sðIvn Þ � Cvn for all primes vn of F lying above p.

Let TpðAÞ denote the Tate module for A. If Z is any prime of K lying above v (a

prime of F above p), let UZ ¼ kerðTpðAÞ ! Tpð ~AAvÞÞ. Then TpðAÞ=UZ ffi Zp, and the

action of the Galois group GðKZ=FvÞ on this quotient is given by an unramified

character c: GðKZ=FvÞ ! Z�p of infinite order. Now there must be a prime Z0 of K
lying above p such that UZ0 6¼ UZ. For otherwise, U ¼ UZ would be invariant

under the action of GðK=F Þ and this group would act on [TpðAÞ=U ] by a

character C: GðK=F Þ ! Z�p which has infinite order and is unramified at all

primes of F lying above p. But it is easy to see that no such C exists. Thus, we

can choose Z0 so that UZ0 6¼ UZ. It follows that UZ þUZ0 is a subgroup of TpðAÞ of

finite index pk.

Suppose that vn and v0n are the primes of Fn lying below Z and Z0, respectively. Then
Cvn and Cv0n

are the images of UZ and UZ0 under the natural map TpðAÞ ! A½ pn	.
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Now jCvn \ Cv0n
j is equal to the index of Cvn þ Cv0n

in A½ pn	, and this is bounded by pk

for all n. Let J ¼ Ivn \ Iv0n . If s 2 kerðsK=Fn
Þ, we must have sðJÞ � Cvn \ Cv0n

. That is,

sjJ has order bounded by pk. Furthermore, if g 2 GðFn=F Þ, then g acts on GðLn=FnÞ

as an inner automorphism. We have IgðvnÞ ¼ gðIvnÞ and CgðvnÞ ¼ gðCvn Þ, and similarly

for v0n. It follows that sðgðJÞÞ � gðCvn \ Cv0n
Þ if s 2 kerðsK=Fn

Þ, and hence sjgðJÞ has
order 4 pk. Let Vn be the subgroup of GðLn=FnÞ generated by the subgroups gðJÞ,

g 2 GðFn=F Þ. Then if s 2 kerðsK=Fn
Þ, it follows that sjVn

has order bounded by pk.

To prove the proposition, it is enough to show that ½GðLn=FnÞ: Vn	 is bounded as

n!1.

The action of GðKZ=FvÞ on TpðAÞ is triangular. If g 2 GðKZ=FvÞ, then g acts on

TpðAÞ by a matrix jðgÞ �

0 cðgÞ

� �
. Here c is an unramified character of infinite order

and j ¼ wc�1, where w denotes the cyclotomic character. If A has complex multipli-

cation, then this action is diagonalizable and GðKZ=FvÞ is a two-dimensional p-adic

Lie group. Its inertia subgroup IðKZ=FvÞ is one dimensional. If A does not have

complex multiplication, then it can be shown that GðKZ=FvÞ is a three-dimensional

p-adic Lie group and IðKZ=FvÞ is two-dimensional. In both cases, if ZZ denotes the

subgroup of GðKZ=FvÞ which acts on TpðAÞ as multiplication by a scalar, then

IðKZ=FvÞ \ ZZ is trivial. We will identify GðKZ=FvÞ with the decomposition subgroup

of GðK=F Þ for Z, and IðKZ=FvÞ with the inertia subgroup. If Z denotes the subgroup

of GðK=F Þ acting on TpðAÞ as scalars, then IðKZ=FvÞ \ Z is trivial. Thus the image of

IðKZ=FvÞ in GðM=F Þ, which is the corresponding inertia subgroup of GðM=F Þ, is a

p-adic Lie group of dimension 1 if A has complex multiplication, and of dimension

2 otherwise.

Assume that A has complex multiplication. Then GðK=FnÞ ffi Z2
p if n� 0 and the

inertia subgroup IðKZ=FvÞ \ GðK=FnÞ will then be a direct summand. It follows that

the inertia subgroup for vn (the prime of Fn lying below Z) in GðF2n=FnÞ ffi ðZ=p
nZÞ2 is

cyclic of order pn. Its intersection with GðF2n=LnÞ is trivial and, hence, Ivn is cyclic of

order pn. Thus, Ivn ¼ GðLn=FnÞ. The same will be true for Iv0n . The proposition follows

immediately from this.

If A does not have complex multiplication, then we have instead GðF2n=FnÞ ffi

ðZ=pnZÞ4 and the image of IðKZ=FvÞ \ GðK=FnÞ in this group will be isomorphic to

ðZ=pnZÞ2 for n� 0. The intersection with GðF2n=LnÞ is trivial and so we have

Ivn ffi ðZ=p
nZÞ2. The same is true for Iv0n . Since GðLn=FnÞ ffi ðZ=p

nZÞ3, it is not hard

to see that J ¼ Ivn \ Iv0n must contain a subgroup isomorphic to Z=pnZ (for n� 0).

It follows that the GðFn=F Þ-module GðLn=FnÞ has a quotient Wn ¼ GðLn=FnÞ=Vn

which is isomorphic to ðZ=panZÞ � ðZ=pbnZÞ for some an; bn 5 0. The proposition will

follow if we show that an and bn are bounded as n!1.

By a well-known theorem of Serre, the image of the representation GF ! GL2ðZpÞ

giving the Galois action on TpðAÞ is of finite index in GL2ðZpÞ. Let VpðAÞ ¼

TpðAÞ �Qp. Then the adjoint representation AdjðVpðAÞÞ ¼ Sym2
ðVpðAÞÞ � det�1 of

GF will be irreducible. Now it is easy to define a natural isomorphism

GðLn=FnÞ ffi AdjðA½ pn	Þ as modules for GðFn=F Þ. Also AdjðA½ pn	Þ can be identified
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with the GF-module AdjðTpðAÞÞ=p
nAdjðTpðAÞÞ. Assume that an and/or bn is unboun-

ded as n!1. This implies that the GF-module AdjðTpðAÞÞ has a sequence of quo-

tients which are isomorphic to ðZ=pmZÞe (as groups) for all m5 1, where e is either 1

or 2. It is not hard to deduce from this that AdjðTpðAÞÞ must then have a GF-quotient

isomorphic to Ze
p (as a Zp-module). This contradicts the fact that AdjðVpðAÞÞ is

irreducible. &

It seems reasonable to believe that the hypotheses that A has potentially ordinary

reduction at primes over p or that dimðAÞ ¼ 1 in Proposition 5.3 are not necessary,

although we have not looked at those questions closely. We also have not considered

the behavior of kerðsK=F 0 Þ when F 0 is allowed to vary over all the finite extensions of

F contained in K. But it is interesting to consider the infinite extensions Mn of F. We

allow the dimension of A to be arbitrary. We assume that F has been replaced, if

necessary, by F1 (or F2 if p ¼ 2) so that A has good, ordinary reduction at all primes

over F. Also we assume that F contains mp (or m4 if p ¼ 2) so that K is just the com-

positum of Mn with the cyclotomic Zp-extension of F. Thus GðK=MnÞ ffi Zp. Now

K=Mn is unramified at all primes of Mn not lying over p. For the primes above p,

the argument in the proof of Proposition 5.3 concerning inertia groups is easily

adapted to show that the inertia subgroup of GðK=MnÞ for primes over p is trivial,

i.e. K=Mn is unramified everywhere. The earlier arguments in part I of Section 3

show in this case that kerðhK=Mn
Þ and cokerðhK=Mn

Þ are trivial. The local arguments

are easily adapted to show that kerðrK=Mn
Þ is trivial too. In fact, they are quite easy

in this case because AðKZÞp is certainly divisible for any Z. (In verifying the triviality

of the contribution to kerðrK=Mn
Þ for any Z, one should note that GðKZ=ðMnÞZÞ is

either trivial or isomorphic to Zp. Also ðMnÞZ=Fv is a deeply ramified extension

and so imðkðMnÞZ
Þ ¼ imðlðMnÞZ

Þ.) From these remarks, one obtains the following

result.

PROPOSITION 5.4. Assume that A has good, ordinary reduction at all primes of

F lying over p and that F contains mp ðor m4 if p ¼ 2Þ. The natural map

sK=Mn
: SelAðMnÞ ! SelAðK Þ

GðK=MnÞ is an isomorphism for any n5 0.

Hence kerðsK=Fn
Þ ¼ kerðsMn=Fn

Þ and cokerðsK=Fn
Þ ¼ cokerðsMn=Fn

Þ for all n5 1 (or

n5 2 if p ¼ 2). We have essentially used this observation to study kerðsK=Fn
Þ above,

but the behavior of cokerðsK=Fn
Þ is much more difficult. In fact, we cannot show that

cokerðsK=Fn
Þ can be unbounded, although it seems likely that this sometimes happens.

The main difficulty is that we don’t understand how rankZðAðFnÞÞ grows as n!1.

We will now discuss this.

In (E) of Section 4, we mentioned that kerðgK=Fn
Þ½ p	 would be of unbounded

dimension if dimZ=pZðkerðrK=Fn
Þ½ p	Þ � rn is unbounded, where we recall that

rn ¼ corankZp
ðSelAðFnÞpÞ. If indeed this is so, then the exact sequence (1) together

with the fact that both kerðhK=Fn
Þ½ p	 and cokerðhK=Fn

Þ½ p	 have bounded dimension

show that dimZ=pZðcokerðsK=Fn
Þ½ p	Þ is unbounded as n!1. To state a more precise
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result, let S0 be the set of primes v of F such that either vjp or A fails to have poten-

tially good reduction at v. Let S0n be the primes of Fn lying above those in S0 and let

sn denote the cardinality of S0n. Let tn ¼ 2 dimðAÞsn � rn. Then we

have

PROPOSITION 5.5. Assume that tn !1 as n!1. Then cokerðsK=Fn
Þ contains a

subgroup isomorphic to ðZ=pn�cZÞtn�c
0

for all n� 0, where c and c0 are constants.

Proof. For every prime vn in S0n, the remarks in AII,(ii) and CII of Section 4 show

that kerðrvnÞ contains a subgroup isomorphic to ðZ=pn�cZÞ2 dimðAÞ for all n� 0, where

c is a constant depending only on the prime v of F lying below vn. Since S0 is finite, we
can assume that c is independent of v and, hence, that kerðrK=Fn

Þ contains a subgroup

isomorphic to ðZ=pn�cZÞ2 dimðAÞsn for all n� 0. The bound on dimZ=pZðcokerðgnÞ½ p	Þ
stated in (7) gives information about the structure of cokerðgnÞ. Taking that into

account together with analogous information about kerðhK=Fn
Þ and cokerðhK=Fn

Þ

implies the stated result. &

We will take up this topic again in Section 6, suggesting a possible source of exam-

ples where the hypothesis in Proposition 5.5 is satisfied.

III. Arbitrary K=F

Theorem 1 follows immediately from Propositions 3.1 and 4.8 by using the exact

sequence (1). Thus, under the hypotheses of that theorem (or with the considerably

weaker hypothesis that Av \ Bv ¼ f for all vjp), kerðsK=F 0 Þ is finite and of bounded

order and cokerðsK=F 0 Þ is finite. Theorem 2 follows from Propositions 3.3 and 4.8.

Theorem 3 is obtained as a corollary using Proposition 4.7.

It is useful to know if sK=F 0 is an isomorphism for all F 0. We will give one simple

result, which will give sufficient conditions for this to happen, and one useful corol-

lary. We assume that GðK=F Þ is pro-p, but it is not necessary to assume that it is a

p-adic Lie group.

PROPOSITION 5.6. Assume that K=F is Galois and that GðK=F Þ is a pro-p group.

Assume that AðF Þp is trivial. For all primes v of F lying over p, assume that A has good,

ordinary reduction and that ~AAvð fvÞp is trivial. For all primes v of F not dividing p which

are ramified in K=F or where A has bad reduction, assume that AðFvÞp is trivial. Then

sK=F 0 is an isomorphism for all extensions of F contained in K.

Proof. Since GðK=F Þ is pro-p and AðF Þp ¼ AðK ÞGðK=F Þp is trivial, it follows that

AðK Þp is trivial. Hence so are kerðhK=F 0 Þ and cokerðhK=F 0 Þ for all F
0. Similarly, the

triviality of ~AAvð fvÞp for all vjp implies that of
~AAvð f

0
v0 Þ for all primes v0 of F 0 lying above

v. Thus kerðav0 Þ ¼ 0 and DðKZÞ ¼ 0 for all primes Z of K lying above v. Hence,

kerðrv0 Þ ¼ 0 for all v0jp. For v6 j p, kerðrv0 Þ ¼ 0 for all primes v 0 of F lying over v if A has

good reduction at v and v is unramified in K=F, by proposition 4.3. For the other

primes, the assumption that AðFvÞp ¼ 0 implies that, for all Zjv, AðKZÞ ¼ 0 (since

GðKZ=FvÞ is pro-p). This implies that kerðrv0 Þ ¼ 0 for all v0jv. Hence, the hypotheses in
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Proposition 5.6 imply that kerðrK=F 0 Þ ¼ 0 for all F 0. Therefore, kerðgK=F 0 Þ ¼ 0 too.

The conclusion follows from the exact sequence (1). &

COROLLARY 5.7. Assume that K=F is Galois and that GðK=F Þ is a pro-p group. Let

A be an Abelian variety defined over F satisfying the following hypotheses:

ðiÞ AðF Þp ¼ 0 and SelAðF Þp ¼ 0.

ðiiÞ For all primes v of F lying above p, A has good, ordinary reduction at v and
~AAvð fvÞp is trivial, where fv denotes the residue field for v.

ðiiiÞ For all primes v of F not lying over p which are ramified in K=F or where A has bad

reduction, AðFvÞp is trivial.

Then SelAðF
0Þp ¼ 0 for all extensions F 0 of F contained in K.

Proof. The hypotheses imply that the map sK=F is an isomorphism. Since

SelAðF Þp ¼ 0, it follows that SelAðK Þ
GðK=F Þ
p ¼ 0. Now GðK=F Þ is a pro-p group acting

continuously on the discrete, p-primary, Abelian group SelAðK Þp. It is easy to see

that SelAðK Þ
GðK=F Þ
p ¼ 0 implies that SelAðK Þp ¼ 0. If F � F 0 � K, the map sK=F 0 is

injective (since AðK Þp ¼ 0) and so SelAðF
0Þp ¼ 0. &

There are also results in the opposite direction which are consequences of the basic

exact sequence (1) stated in the introduction and the observations in Section 4 about

kerðrK=F 0 Þ. Under rather general hypotheses, one can show that SelAðK Þp must be

‘large.’

PROPOSITION 5.8. Let K=F be any infinite Galois extension which is S-ramified

for some finite set S of primes of F. Let A be any Abelian variety defined over F.

Let At denote the dual Abelian variety. Suppose that AðK Þp ¼ AtðK Þp ¼ 0 and that

kerðrK=F 0 Þ 6¼ 0 for all finite extensions F 0 of F contained in K. Then SelAðK Þp is

infinite.

PROPOSITION 5.9. Let K=F be a S-ramified Galois extension such that GðK=F Þ is a

p-adic Lie group. Let A be any abelian variety defined over F.

ðaÞ Suppose that kerðrK=F 0 Þ½ p	 has unbounded order as F 0 varies over the finite exten-

sions of F contained in K. Then SelAðK Þp½ p	 is infinite.

ðbÞ Suppose that for any m; n5 1, there is a finite extension F 0 of F contained in K

such that kerðrK=F 0 Þ contains a subgroup isomorphic to ðZ=pmZÞn. Then SelAðK Þp
contains a direct sum of infinitely many copies of Qp=Zp.

Remark. Proposition 5.8 implies Theorem 5 of the introduction. Suppose that

v ¼ p satisfies the hypotheses of that theorem. Then, as explained in (ii) at the end of

Section 4, we do have kerðrv0 Þ 6¼ 0 for all v0jv and so kerðrK=F 0 Þ 6¼ 0 for all F 0. Another

condition guaranteeing this, and so implying that SelAðK Þp is infinite, is that there exists
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some prime v of F not lying over p such that v is infinitely ramified inK=F and such that

AtðFvÞp 6¼ 0. If A has good reduction at v, AtðFvÞp has the same order as
~AAvð fvÞ.

Proposition 5.9(b) implies Theorem 6 of the introduction. For if v ¼ p satisfies the
hypotheses in that theorem, then the residue field kZ for a prime Z of K lying above v

contains the unique Zp-extension of fv. This implies that ~AAvðkZÞp is divisible. Since
~AAvð fvÞp 6¼ 0, clearly ~AAvðkZÞp is infinite, and so the exponent of ~AAvð fv0 Þp is unbounded

as F 0 varies over the finite Galois extensions of F contained in K and v0 over the

primes of F 0 dividing v. Since the number of such primes v0 is unbounded and the

exponent of kerðrv0 Þ is also unbounded as F 0 varies, the hypothesis in Proposition

5.9(b) indeed holds.

Proof of Proposition 5:8. Since AðK Þp ¼ 0, it follows that kerðhK=F 0 Þ ¼ 0. Thus the

maps sK=F 0 are injective. Now SelAðK Þp ¼ lim
�!

SelAðF
0Þp and so if SelAðK Þp were

finite, then hK=F 0 would induce an isomorphism SelAðF
0Þp ! SelAðK Þp for some finite

extension F 0 of F contained in K. Then cokerðsK=F 0 Þ ¼ 0. It would follow from the

exact sequence (1) that kerðgK=F 0 Þ ¼ 0. But kerðrK=F 0 Þ 6¼ 0 by assumption. Since

kerðrK=F 0 Þ 6¼ kerðgK=F 0 Þ, the discussion in ðEÞ of Section 4 shows that cokerðgF 0 Þ 6¼ 0.

Since SelAðK Þp is assumed to be finite, so is SelAðF
0Þp. It then would follow that

cokerðgF 0 Þ ffi AtðF 0Þp ¼ 0, which gives a contradiction. &

Proof of Proposition 5:9. For part (a), assume to the contrary that SelAðK Þ½ p	 is

finite. Then SelAðK Þp ffi ðQp=ZpÞ
a
�(a finite group) for some a5 0. It follows that

cokerðsK=F 0 Þ½ p	 is finite and of bounded order. By the remark preceding Lemma 2.2,

kerðhK=F 0 Þ½ p	 is also of bounded order. Using (1), we see that kerðgK=F 0 Þ½ p	 has

bounded order too. Now kerðhK=F 0 Þ has bounded Zp-corank by Lemma 2.2. Hence, it

is clear that corankZp
ðSelAðF

0ÞpÞ must be bounded. Using the same notation as in ðEÞ

of section 4, it follows that kerðrK=F 0 Þ=kerðgK=F 0 Þ is isomorphic to a subgroup of

PS
AðF

0Þ=GS
AðF

0Þ ¼ cokerðgF 0 Þ. Now SelAðF
0Þp and SelAt ðF 0Þp have the same Zp-corank.

Since this is bounded, it follows from the inequality (7) that kerðrK=F 0 Þ½ p	 must be of

bounded order, contradicting the hypothesis.

To show (b), consider ðSelAðK ÞpÞdiv. It’s a divisible p-primary Abelian group and

so must be a direct sum of copies of Qp=Zp (see theorem 23.1 in [Fu]). It turns out

that SelAðK Þp=ðSelAðK ÞpÞdiv has bounded exponent. To see this, we regard SelAðK Þbp
as a L-module, where L denotes the completed group algebra Zp½½U		 for an open

pro-p subgroup U of GðK=F Þ. It is known that L is a Noetherian ring and that

SelAðK Þbp is a finitely generated L-module. The orthogonal complement of

ðSelAðK ÞpÞdiv is the torsion Zp-submodule T of SelAðK Þbp. This is a L-submodule of

SelAðK Þbp and so must be finitely generated as a L-module. Hence, T and its Pontrya-

gin dual SelAðK Þp=ðSelAðK ÞpÞdiv must indeed have bounded exponent.

Assume that ðSelAðK ÞpÞdiv is a direct sum of just finitely many copies of Qp=Zp. We

will get a contradiction by showing that SelAðK Þp contains a subgroup isomorphic to

ðZ=pmZÞn for arbitrarily large m; n (and using the observation of the previous para-

graph). It suffices to show that cokerðsK=F 0 Þ contains such a subgroup for some F 0.
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We will again use the exact sequence (1), taking advantage of the hypothesis con-

cerning kerðrK=F 0 Þ and the freedom to vary m and n. By the remark preceding Lemma

2.2, kerðhK=F 0 Þ½ p	 and cokerðhK=F 0 Þ½ p	 are of bounded order as F 0 varies. This of

course greatly restricts the structure of the groups kerðhK=F 0 Þ and cokerðhK=F 0 Þ. (Note

however that these groups could be infinite.) It therefore clearly suffices to show that

kerðgK=F 0 Þ contains a subgroup isomorphic to ðZ=pmZÞn for arbitrarily large m and n

(and for some F 0).

We are assuming that ðSelAðK ÞpÞdiv has finite Zp-corank. By Lemma 2.2, the

Zp-corank of kerðhK=F 0 Þ is bounded. Hence, corankZp
ðSelAðF

0ÞpÞ is also bounded.

Referring to the proof of part (a), it follows that cokerðgF 0 Þ½ p	 has bounded order.

This again restricts the structure of cokerðgF 0 Þ and hence of kerðrK=F 0 Þ=kerðgK=F 0 Þ.

The hypothesis about kerðrK=F 0 Þ therefore implies what we need about kerðgK=F 0 Þ,

giving the desired contradiction. &

6. Final Remarks and Examples

KerðsK=FÞ can be infinite. It is not hard to give examples of this phenomenon. Suppose

that A is an Abelian variety defined over a number field F and that the Mordell–Weil

group AðF Þ is infinite. Then SelAðF Þp contains the image of AðF Þ � ðQp=ZpÞ under

the Kummer map k. This is isomorphic to ðQp=ZpÞ
r, where r ¼ rankðAðF ÞÞ. Taking

imðkÞ as HF in the final remarks of Section 3, one can construct a p-adic Lie exten-

sion K=F such that imðkÞ � kerðhK=FÞ. Then, of course, imðkÞ � kerðsK=FÞ. One can

describe K explicitly. Let

E ¼ EA;F ¼ fQ 2 Að �QQÞ j pmQ 2 AðF Þ for some m5 1g:

Then K ¼ FðEÞ, the field generated by the coordinates of all elements of E. Since
A½ p1	 � E, one has L ¼ FðA½ p1	Þ � K. It is also clear that K � FS, where S is a

finite set of primes of F containing the primes over p or 1 and all primes where

A has bad reduction.

Now kerðhL=FÞ is finite. Hence, hL=FðimðkÞÞ is a subgroup of

H1ðL;A½ p1	Þ ¼ HomðGðLab=LÞ;A½ p1	Þ

which is isomorphic to ðQp=ZpÞ
r. A typical element of this subgroup is of the form

j ¼ jQ defined by jðgÞ ¼ gðQÞ �Q for all g 2 GðLab=LÞ, and all Q 2 E. By defini-

tion, the intersection of the kernels of the jQ’s is GðLab=K Þ. Thus GðK=LÞ can be

identified with a closed subgroup of HomððQp=ZpÞ
r;A½ p1	Þ ffi TpðAÞ

r. This identifi-

cation is compatible with the natural action of GðL=F Þ on GðK=LÞ and TpðAÞ
r. In

particular, if r ¼ 1 and if the GF-representation space VpðAÞ is irreducible, then

GðK=LÞ can be identified with a subgroup of TpðAÞ of finite index. The fact that

hK=FðimðkÞÞ ¼ 0 is clear since AðF Þ � E and E � ðQp=ZpÞ ¼ 0.

CokerðsK=FÞ can be infinite. We will give an example where all the hypotheses in

theorem 1 are satisfied except for the requirement that K=F be admissible. Since
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AðK Þp will be finite, so will be kerðhK=FÞ and cokerðhK=FÞ. Hence all we need is to

make kerðgK=FÞ infinite. In light of Proposition 4.6, we must find an example where

Av and Bv fail to be disjoint for some prime vjp. We will choose an example such that

SelAðF Þp is finite. Then, as mentioned previously, GS
AðF Þ will be of finite index in

PS
AðF Þ. It will therefore be enough to choose K so that kerðrK=FÞ is infinite. For that

purpose, let v be a fixed prime of F lying above p. We will choose K so that the kernel

of the map rv: HAðFvÞ ! HAðKZÞ is infinite. Here Z is a prime of K lying above v.

Although it is not necessary, we will assume for simplicity that dimðAÞ ¼ 1 and that

A has good reduction at v.

Now HAðFvÞ has Zp-corank ½Fv: Qp	. Choose a subgroupHv of HAðFvÞ isomorphic

to Qp=Zp. Let avðHvÞ denote the image of Hv under the map av. Then avðHvÞ is a sub-

group of H1ðFv;DvÞ isomorphic to Qp=Zp (since kerðavÞ is finite). One can apply the

construction described at the end of Section 3, taking HFv
to be avðHvÞ and obtaining

a certain extension KHv
of Fv. The action of GFv

on Dv is given by a character

cv: GFv
! Z�p of infinite order. Since A has good reduction at v, the character cv is

unramified and gives the action of GðF unr
v =FvÞ on Dv ¼ ~AAv½ p

1	. Let Lcv
¼ �FF

kerðcvÞ

v .

Then GðLcv
=FvÞ ffi D� Zp, where D is a finite group. The restriction map

H1ðFv;DvÞ!H1ðLcv
;DvÞ

GðLcv =FvÞ ¼ HomGðLcv =FvÞðGðL
ab
cv
=Lcv
Þ;DvÞ

is injective if p is odd (and has finite kernel if p ¼ 2). The image of avðHvÞ under

this map is still isomorphic to Qp=Zp and coincides with HomðGðKHv
=Lcv
Þ;DvÞ,

where KHv
is a Zp-extension of Lcv

and is Galois over Fv. In fact, GðKHv
=FvÞ is a

two-dimensional p-adic Lie group and the inertia subgroup is of finite index in

GðKHv
=Lcv
Þ ffi Zp. Thus KHv

=Fv is deeply ramified.

If we can choose K so that KZ contains KHv
, then we will have

avðHvÞ � kerðH1ðFv;DvÞ ! H1ðKZ;DvÞÞ: ð8Þ

Therefore, we will have Hv � kerðrvÞ, which makes kerðrvÞ infinite. Conversely,

assume that K=F is a p-adic Lie extension and that (8) holds. Then KHv
� KZ. To

see this, first note that KZ=Fv must be infinitely ramified. Otherwise, it is easy to

see that H1ðKZ=Fv;DvðKZÞÞ would be finite, contradicting (8). Also, (8) implies that

DvðKZÞ must be infinite. Now corankZp
ðDvÞ ¼ 1. Hence, DvðKZÞ ¼ Dv and hence

Lcv
� KZ. It is then clear that KHv

� KZ too.

To obtain such a field K, we will use an auxiliary elliptic curve E. Suppose that

E is an elliptic curve defined over F satisfying all of the hypotheses that we have

assumed for A. Assume that S0 is the finite set of primes consisting of all primes

of F lying over p or 1 and all primes where E has bad reduction. Since SelEðF Þp
is assumed to be finite, we know that GS0

E ðF Þ has finite index in PS0
E ðF Þ. It follows

easily from this that

H1ðFv; ~EEv½ p
1	Þdiv � imðH1ðFS0=F;E ½ p

1	Þ ! H1ðFv; ~EEv½ p
1	ÞÞ:
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Referring to the construction at the end of Section 1, we obtain a p-adic Lie exten-

sion K=F such that FðE ½ p1	Þ � K � FS0 and such that

H1ðFS0=F;E ½ p
1	Þ ¼ kerðH1ðF;E ½ p1	Þ ! H1ðK;E ½ p1	ÞÞ:

With this choice of K, it follows that

H1ðFv; ~EEv½ p
1	Þdiv � kerðH1ðFv; ~EEv½ p

1	Þ ! H1ðKZ; ~EEv½ p
1	Þ: ð9Þ

Now, in addition to all the previous assumptions about E, we require that ~EEv ffi ~AAv

over fv, the residue field for v. We then have an isomorphism ~EEv½ p
1	 ffi ~AAv½ p

1	 ¼ Dv

as GFv
-modules. Since avðHvÞ is divisible, it is a subgroup of H1ðFv;DvÞdiv and so (9)

implies that (8) holds. Therefore, we have KHv
� KZ, as we wanted. It remains to

show that A and E can be chosen so that AðK Þp is finite. This is not hard to arrange.

Assume that A does not have complex multiplication and that there is a prime l of F
such that A has bad reduction at l, but E has good reduction at l. Then l 62 S0 and
so l is unramified in K=F. But the action of GF on VpðAÞ is irreducible. This implies

that if AðK Þp is infinite, then AðK Þp ¼ A½ p1	. That is, FðA½ p1	Þ � K. But then l
would necessarily be ramified in K=F. Hence AðK Þp is indeed finite.

For the above choice of K=F, it is rather clear that Av \ Bv 6¼ f. Here we are using
the notation of (6). For the action of GðLcv

=FvÞ on GðKHv
=Lcv
Þ is given by the char-

acter cv. The inertia subgroup of GðKHv
=Lcv
Þ is isomorphic to Zp and Lcv

=Fv is an

unramified extension. Since KHv
� KZ, it is clear that a Frobenius automorphism u

will have cvðuÞ as one of its eigenvalues for its action on iv=i
0

v. By definition, cvðuÞ

is also the eigenvalue of u acting on TpðDðKZÞÞ �Zp
Qp since DðKZÞ ¼ Dv.

It is quite easy to find specific examples when F ¼ Q and p is a small prime. If

p ¼ 3, we could take A to be defined by y2 þ y ¼ x3 � x2, which is an elliptic curve

of conductor 11. It has good, ordinary reduction at p. Take E to be defined by

y2 þ y ¼ x3 � x2 � 33xþ 93, which has conductor 175. A theorem of Kolyvagin

implies that the Selmer groups over Q for both A and E are finite (since the values

at s ¼ 1 of the Hasse–Weil L-functions are nonzero). They clearly have the same

reduction modulo p. Also, A does not have complex multiplication, and we can take

l ¼ 11, as above, to see that AðK Þp is finite.

CokerðsK=F 0 Þ can have unbounded order even if K=F is admissible. Assume that

GðK=F Þ ffi Zm
p , where m5 2. Suppose that A is an elliptic curve defined over F satis-

fying the following hypotheses: (i) AðF Þ andSAðF Þp are both finite, (ii) A has poten-

tially ordinary reduction at the primes of F lying over p, and (iii) there is a prime v of

F not dividing p such that A has split, multiplicative reduction at v, the v-adic valua-

tion of the j-invariant jA of A is divisible by p, and v does not split completely in K=F.

Then it follows that dimZ=pZðcokerðsK=F 0 Þ½ p	Þ is unbounded. To see this, note that if Z
is a prime of K lying over p, then KZ=Fv must be the unramified Zp-extension of Fv

(which is the only Zp-extension of Fv). Thus GðKZ=FvÞ ffi Zp and so it is clear that
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there exists a Zp-extension F1=F such that F1 � K and v splits completely in F1=F.

Hypothesis (i) implies that SelAðF Þp is finite. It then follows from Theorem 2 that

SelAðF1Þ
GðF1=F Þ
p is finite. This implies that SelAðF1Þp is L-cotorsion, where

L ¼ Zp½½GðF1=F Þ		. Hence ðSelAðF1ÞpÞdiv is isomorphic to ðQp=ZpÞ
l for some

l5 0 and therefore rF 0 ¼ corankZp
ðSelAðF

0ÞpÞ4l for every subfield F 0 of F1.

On the other hand, by hypothesis (iii), we have that KZ=F
0
v0 is the unramified Zp-

extension when v0jv and Zjv0 and that kerðrv0 Þ 6¼ 0 since AðKZÞp will not be divisible.

(The last assertion is a consequence of the assumption on jA.) Thus we have

dimZ=pZðkerðrK=F 0 Þ½ p	Þ5 ½F 0: F 	. It then follows from the discussion in (E) of

Section 4 that dimZ=pZðkerðgK=F 0 Þ½ p	Þ is unbounded as F 0 varies over the subfields

of F1 containing F. Since kerðhK=F 0 Þ½ p	 and cokerðhK=F 0 Þ½ p	 have bounded dimension,

it is clear from the exact sequence (1) that dimZ=pZðcokerðsK=F 0 Þ½ p	Þ is also unboun-

ded. It is not hard to find specific examples where the hypotheses (i)–(iii) hold.

We will now describe another possible kind of example. Let K ¼ FðA½ p1	Þ, where

A is an Abelian variety=F with good, ordinary reduction at the primes of F above p.

We know that K=F is admissible. Let Fn ¼ FðA½ pn	Þ. For any prime v of F, the num-

ber of primes vn of Fn lying above v is, of course, just the index of the decomposition

subgroup for vn in GðFn=F Þ. If Z is a prime of K lying above v, let mv denote the

dimension of the p-adic Lie group GðKZ=FvÞ and let m ¼ mA denote the dimension

of GðK=F Þ. Then, for n� 0, the number of vn’s lying above v will be avpðm�mvÞn,

where av is a positive rational number. Let rn, sn, and tn be as defined just before

Proposition 5.5. Then sn ¼ Sv2S0avpðm�mvÞn. To show that tn !1 as n!1, which

suffices to imply that jcokerðsK=Fn
Þj is unbounded according to Proposition 5.5, one

must compare the growth of sn and rn.
It is interesting to consider the case where A is an elliptic curve defined over Q.

Assume that A has good, ordinary reduction at p and split, multiplicative reduc-

tion at primes l1; . . . ; lk where k5 1. Then A does not have complex multiplication.

Let F ¼ Q, Fn ¼ QðA½ pn	Þ and K ¼ QðA½ p1	Þ. We will assume that

GðK=QÞ ffi GL2ðZpÞ and so Gn ¼ GðFn=QÞ is isomorphic to GL2ðZ=p
nZÞ. We have

m ¼ 4, mp ¼ 3, and mli ¼ 2 for 14 i4 k. Then, by studying the index of a decom-

position subgroup of Gn for each li and for p, one obtains the lower bound

sn > kð1� p�2Þp2n þ ð1þ p�1Þpn.

To give an upper bound on rn, we will make a certain rather speculative (and per-
haps questionable) hypothesis. For each n5 0, let Vn ¼ AðFnÞ �Z C. We regard Vn

as a representation space over C for Gn. For each irreducible character w of Gn,

we let mw denote the multiplicity of the corresponding irreducible representation in

Vn. Thus

rankZðAðFnÞÞ ¼ dimCðVnÞ ¼
X
w

mwdw;

where w runs over all irreducible characters of Gn. The hypothesis that we will make

is that mw ¼ 0 if w 6¼ �ww and mw ¼ 0 or 1 if w ¼ �ww, with a number of exceptions which is
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bounded as n!1. (For a discussion of this hypothesis and related examples, see

chapter 1 of [G2].) Assuming also thatSAðFnÞp is finite for all n, it would follow that

rn 4dn þ c, where dn ¼ Sw¼�wwdw and c is a fixed constant. (The sum is over all irredu-

cible characters w of Gn which are real-valued.) Note that dn is a purely group-

theoretic quantity. One can show that dn < 2pn. In addition to the other hypotheses

that we are making, assume that k5 2. Then tn ¼ 2sn� rn!1 as n!1 and so

the conclusion in Proposition 5.5 would be valid.

The control theorem for S. Assume that A is an Abelian variety defined over F. For

any algebraic extension L of F, we can define SAðLÞ by the exact sequence

0! AðLÞ �Z ðQ=ZÞ ! SelAðLÞ !SAðLÞ ! 0:

Suppose that K=F is a p-adic Lie extension. One can ask about the behavior of the

maps

mK=F 0 : AðF
0Þ �Z ðQp=ZpÞ ! AðK Þ �Z ðQp=ZpÞ

GðK=F 0Þ;

tK=F 0 : SAðF
0Þp!SAðK Þ

GðK=F 0Þ
p :

Assuming that kerðsK=F 0 Þ and cokerðsK=F 0 Þ are both finite and thatSAðF
0Þp is finite, it

follows easily that kerðmK=F 0 Þ and cokerðmK=F 0 Þ are finite too. If SAðF
0Þp is finite, as

conjectured, then obviously so is kerðtK=F 0 Þ.

However, cokerðtK=F 0 Þ can be infinite. Examples of this phenomenon are given in

[Br] for the special case where K=F is a Zp-extension. In that paper, F is taken to be

an imaginary quadratic field and A is an elliptic curve with complex multiplication

by the ring of integers of F. The Zp-extension K=F is chosen so that a certain p-adic

height pairing becomes degenerate. Specific examples are the curves A defined by

y2 ¼ x3 �Dx for D ¼ 17, �63, �33, and 117, where the CM-field is F ¼ QðiÞ and

p ¼ 5. In each case, there is a Zp extension K=F such thatSAðK Þ
GðK=F Þ
p is infinite even

though SAðF Þp is finite. The rank of AðF Þ over EndðAÞ is 1. It is conjectured that

this kind of phenomenon cannot occur if F is any number field, A is any Abelian

variety/F with potentially ordinary reduction at the primes above p, and K=F is

the cyclotomic Zp-extension. That is, under those hypotheses, SAðK Þ
GðK=F 0Þ
p should

be finite and, hence, so will cokerðtK=F 0 Þ for all finite extensions F 0 of F contained

in K.

Multiplicative reduction at primes over p. Suppose first that A is an elliptic curve

defined over Q with split, multiplicative reduction at a prime p. Manin shows in

[Ma] that the control theorem for the Selmer group of A in the cyclotomic Zp-

extension Q1=Q follows from the assertion that qA=p
a is not a root of unity, where

a ¼ OrdpðqAÞ. Here qA denotes the Tate period for A=Qp, which is an element of Q�p .

The essential reason is that qA is then not a universal norm for the extension

ðQ1Þp=Qp, where p is the unique prime of Q1 lying over p. Now it has recently been

proven that qA is actually transcendental. (See [BDGP].) The control theorem there-

fore holds for Q1=Q and, more generally, for the cyclotomic Zp-extension of an
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arbitrary number field F. But if K=F is an arbitrary Zp-extension, then the control

theorem may fail. This can happen if qA is a universal norm for KZ=Fv, where v is

a prime of F lying above p which is infinitely ramified in K=F and Z is a prime of

K lying above v.

Assume more generally that A is an Abelian variety=F. For every vjp, A achieves

semistable reduction over a finite extension of Fv. Let hv denote the height of the for-

mal group for a Néron model of A over the integers in such a finite extension. The

p-power torsion points on that formal group define a subgroup Cv of A½ p
1	 which is

GFv
-invariant and isomorphic to ðQp=ZpÞ

hv as a group. One can then define the

GFv
-module Dv ¼ A½ p1	=Cv, which is isomorphic to ðQp=ZpÞ

2g�hv as a group, where

g ¼ dimðAÞ. We will assume that hv ¼ g for all vjp so that the situation seems quite

analogous to the case where A has potentially ordinary reduction at all vjp.

Let K=F be a p-adic Lie extension which is S-ramified for some finite set S of

primes of F. Assume that either AðK Þp is finite or that the Lie algebra g of GðK=F Þ

is reductive (as in Theorems 1, 2 stated in the introduction). Then kerðsK=F 0 Þ will be

finite for all finite extensions F 0 of F contained in K. To prove that cokerðsK=F 0 Þ is

finite, one must show that kerðrv0 Þ is finite for all v
0jp. If v0jv and A has potentially

ordinary reduction at v, then the hypothesis d0v ¼ i0v suffices to imply this. (Proposi-

tion 4.5.) The key ingredient in proving that result is verifying that kerðdv0 Þ is finite,

where dv0 is the map occurring in the commutative diagram (5). However, the hypoth-

esis d0v ¼ i0v is not sufficient to imply the finiteness of kerðdv0 Þ if we assume only that

hv ¼ g.

Using the notation of part C of Section 4, the assumption hv ¼ g implies that

imðlv0 Þ and imðkv0 Þ have the same Zp-corank. The inclusion imðkv0 Þ � imðlv0 Þ implies
that imðkv0 Þ ¼ imðlv0 Þdiv. If K=F is infinitely ramified, then Proposition 4.3 of [CG]

states that imðkZÞ ¼ imðlZÞ. It follows from these results that kerðav0 Þ is finite and

that the finiteness of kerðrv0 Þ is equivalent to that of kerðbv0 Þ. It is clear from (5)

that kerðbv0 Þ ffi kerðdv0 Þ \ imðpv0 Þ. If DvðKZÞ ¼ D
GKZ
v is finite, then it follows that

kerðdv0 Þ ¼ H1ðKZ=F
0
v0 ;DvðKZÞÞ is finite and hence so is kerðbv0 Þ.

We will assume now that A is an elliptic curve defined over F which has split, multi-

plicative reduction at a prime vjp. In this case, we have Dv ffi Qp=Zp and the action of

GFv
on Dv is trivial. For brevity, let L ¼ F 0v0 and U ¼ GðKZ=LÞ, which is just an open

subgroup of GðKZ=FvÞ. We also let dv denote the Lie algebra of GðKZ=FvÞ. Then

kerðdv0 Þ ffi HomðU=U 0;DvÞ: If U is a sufficiently small open subgroup of GðKZ=FvÞ,

then kerðdv0 Þ has Zp-corank equal to dimQp
ðdv=d

0

vÞ.

On the other hand, Proposition 3.6 of [G1] provides a description of imðpv0 Þ. Let
qA 2 F�v denote the Tate period for A. Then imðpv0 Þ is a certain subgroup of

HomðGðLab= LÞ;DvÞ and a homomorphism f is in imðpv0 Þ if and only if recLðqAÞ is in
kerðjÞ. Here recL: L

�!GðLab=LÞ denotes the reciprocity map of local class field

theory. The difference between kerðbv0 Þ and kerðdv0 Þ depends therefore on the restric-

tion of recLðqAÞ to GðLab \ KZ=LÞ ¼ U=U 0. We have corankZp
ðkerðbv0 ÞÞ ¼

rankZp
ðU=U 0Þ � E, where E ¼ 0 if this restriction has finite order and E ¼ 1 if this

restriction has infinite order.
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In particular, if dimQp
ðdv=d

0

vÞ5 2, then kerðrv0 Þ is infinite whenever GðKZ=F
0
v0 Þ is a

sufficiently small open subgroup of GðKZ=FvÞ. But if dv ¼ d0v, then kerðrv0 Þ will always
be finite. Consider the case where dimQp

ðdv=d
0

vÞ ¼ 1. One can then choose a normal,

open subgroup U of GðKZ=FvÞ so that U=U 0 ffi Zp. Let L ¼ KU
Z so that L is a finite

Galois extension of Fv and KZ contains a unique Zp-extension L1 of L. If GðL=FvÞ

acts nontrivially on GðL1=LÞ (by inner automorphisms), then it is not hard to see

that recLðqAÞjL1 is trivial. In this case, kerðrv0 Þ will be infinite if GðKZ=F
0
v0 Þ � U.

But if GðL=FvÞ acts trivially on GðL1=LÞ, then there exists a unique Zp-extension

Fv;1 of Fv contained in KZ. If qA is a universal norm for the Zp-extension Fv;1=Fv

(i.e. if recFv
ðqAÞ

		
Fv;1

is trivial), then kerðrv0 Þ is always infinite. Otherwise, kerðrv0 Þ is

always finite. In the special case where K ¼ FðA½ p1	Þ, one has dimðdv=d
0

vÞ ¼ 1 and

KZ contains the cyclotomic Zp-extension of Fv. The Tate period qA is a universal

norm for that Zp-extension if and only if NFv=Qp
ðqAÞ is of form zpa, where z is a root

of unity. It is doubtful that this can happen, but not known.
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113–184.
[Fu] Fuchs, L.: Infinite Abelian Groups, Vol. 1, Academic Press, New York, 1970.
[G1] Greenberg, R.: Iwasawa theory for elliptic curves, In: Lecture Notes in Math. 1716,

Springer, New York, 1999, pp. 51–144.

[G2] Greenberg, R.: Introduction to Iwasawa theory for elliptic curves, In: IAS/Park
City Math. Ser. 9, Amer. Math. Soc., Providence, 2001, pp. 407–464.

[H] Harris, M.: p-adic representations arising from descent on abelian varieties, Com-

positio Math. 39 (1979), 177–245.
[Ma] Manin, Y. I.: Cyclotomic fields and modular curves, Russian Math. Surveys 26(6)

(1971), 7–78.

296 RALPH GREENBERG

https://doi.org/10.1023/A:1023251032273 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023251032273


[M] Mazur, B.: Rational points of abelian varieties with values in towers of number

fields, Invent. Math. 18 (1972), 183–266.
[P] Perrin-Riou, B.: Arithmetique des courbes elliptiques et théorie d’Iwasawa, Mém.
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