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Abstract. This paper concerns the Galois theoretic behavior of the p-primary subgroup
Sel4(F), of the Selmer group for an Abelian variety 4 defined over a number field F in an
extension K/F such that the Galois group G(K/F) is a p-adic Lie group. Here p is any prime
such that 4 has potentially good, ordinary reduction at all primes of F lying above p. The prin-
cipal results concern the kernel and the cokernel of the natural map sx/r: Sels(F’), —
Sel 4 (K),?(K/F/) where F’ is any finite extension of F contained in K. Under various hypotheses
on the extension K/F, it is proved that the kernel and cokernel are finite. More precise results
about their structure are also obtained. The results are generalizations of theorems of
B. Mazur and M. Harris.
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1. Introduction

Let A be an Abelian variety defined over a number field F. Let K denote the cyclo-
tomic Z,-extension of F, where p is any prime. Thus the Galois group G(K/F) is iso-
morphic to Z,, the additive group of p-adic integers. For any algebraic extension F’
of F, we let Sel4(F’), denote the p-primary subgroup of the Selmer group Sel4(F’)
for A over F’. The purpose of this article is to consider some generalizations of
the following classical theorem of Mazur.

THEOREM. Assume that A has good, ordinary reduction at all primes of F lying
over p. Let F’ be a finite extension of F contained in K. Then the natural map
Sely(F’), — Sely(K )5(1(/ ) has finite kernel and cokernel. The orders of the kernels
and cokernels are bounded as F' varies.

This is Mazur’s ‘Control Theorem’, which he proves for any Z,-extension K/F
satisfying certain mild conditions. Actually the theorem is true for the full Selmer
group since one can show easily that, for any prime ¢ # p, the g-primary subgroups

Supported partially by a National Science Foundation grant.

https://doi.org/10.1023/A:1023251032273 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023251032273

256 RALPH GREENBERG

of Selmer groups behave very well Galois theoretically. That is, the maps
Sel4(F’), — Sel (K )g(K/ ) are isomorphisms.

We will consider Galois extensions K/F such that G(K/F) is a p-adic Lie group.
For any field F’ such that F € F' C K, we let sg/r denote the natural restriction
homomorphism

sk Sela(F'), — Sel (K )§*/™).

For our main theorems we will need to assume that K/F is ‘X-ramified’ for some
finite set X of primes of F. That is, every prime v of F not in X is unramified in
K/F. We will make this assumption throughout the article. Let p be a prime of F
lying over p. Let D, and I, denote the decomposition and inertia subgroups of
G(K/F) for some prime of K lying over p. Both D, and I, are closed subgroups
of G(K/F) and hence are also p-adic Lie groups. Let Dy, and 1, denote their Lie alge-
bras. They are subalgebras of the Lie algebra g of G(K/F).

DEFINITION. We say that K/F is admissible if, in addition to being a X-ramified
p-adic Lie extension for some X, we have b; = i;) for all p lying over p.

Here, for any Lie algebra [, we let [ denote the derived Lie subalgebra of [. (That is, [
is the ,-subspace spanned by [x, y], x, y € [, which is an ideal of [.) Now i; is actu-
ally an ideal of dy. The equality b, = i; is equivalent to saying that the Lie algebra
b,o/i;J is Abelian. In attempting to prove the finiteness of the cokernel of sk/r, this
condition arises quite naturally as a hypothesis. Examples where it is satisfied are
rather abundant. Any Z,-extension K/F is admissible. More generally, if the Lie
algebra g is Abelian (i.e., if G(K/F) contains a subgroup of finite index isomorphic
to ZZ for some d), then K/F is admissible. The condition b; = i; for p|p is obviously
satisfied since Dy, is Abelian and so b;) = 0. Another class of examples are those where
the inertia subgroup I, has finite index in G(K/F) for all p|p. Then b, =1, = g and
S0 again b; = i; obviously holds. An important class of examples, which we discuss
below, are those where G(K/F) admits a faithful, finite-dimensional p-adic represen-
tation which is of Hodge-Tate type at the primes p of F above p.

In our first theorem, we assume that the p-primary subgroup A(K), of A(K) is
finite. In this and other theorems, the hypothesis that 4 has potentially ordinary
reduction at the primes of F lying above p means that 4 achieves good, ordinary
reduction at those primes over some finite extension of F.

THEOREM 1. Assume that A has potentially ordinary reduction at all primes of F
lying over p. Assume that K/F is admissible and that A(K), is finite. Then, for every
finite extension F' of F contained in K, the kernel and cokernel of sk are finite.

Note that the hypotheses in the above theorem are preserved when K/F is replaced

by K/F’ for any finite extension F’ of F contained in K. Thus, it would be enough to
prove just that ker(sx,r) and coker(sg,r) are both finite. The same remark applies to
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Theorems 2 and 3 below. Nevertheless, we will usually present the proofs allowing F’
to vary in order to see how the order and structure of the kernel and cokernel
behave. Under the hypotheses of Theorem 1, the kernel of sg/r is relatively easy
to bound. In fact, it would suffice to just assume that K/F is a p-adic Lie extension
and that A(K), is finite to conclude that ker(sk/r) is of bounded order as F’ varies.
For this one needs no hypothesis on the reduction of A. (See Proposition 3.1.) How-
ever, as will become clear later, one cannot expect coker(sg/r) to have bounded
order as F’ varies unless one imposes rather stringent hypotheses.

It is not difficult to prove that if the Lie algebra g of G(K/F) is semisimple (i.c., a
direct product of simple, non-Abelian Lie algebras), then 4(K), is necessarily finite.
(See Proposition 3.2 for this and some other sufficient conditions for the finiteness of
A(K),.) It seems that for the p-adic Lie extensions K/F which arise in various natural
ways in number theory, the corresponding Lie algebra g is often reductive (i.e., a
direct product of a semisimple Lie algebra and an abelian one). In this case, it is cer-
tainly possible for A(K), to be infinite. Nevertheless, one can use Theorem 1 to prove
the following result.

THEOREM 2. Assume that A has potentially ordinary reduction at all primes of F
lying over p. Assume that K/ F is admissible and that § is reductive. Then Ker(sg,r) and
coker(sg/r) are finite for every finite extension F' of F contained in K.

Suppose that p: Gr — GL,(Q)) is a continuous, finite- d1mens1ona1 Qp-representa-
tion of the absolute Galois group Gr = G(@/F ). If welet K =Q erte , then p induces
an isomorphism of G(K/F) to the compact subgroup im(p) of GLn(@p). Such a sub-
group must be a p-adic Lie group of dimension d < n>. We suppose also that p is
unramified outside a finite set £ of primes of F and so K/F is Z-ramified. If p is a
completely reducible representation of Gp, then the Lie algebra of im(p) (which is
isomorphic to g) must be reductive. For every prime p of F lying over p, we can
restrict p to a decomposition subgroup obtaining the representation p|g, 5 of the local
Galois group Gp, = G(@ /Fy). We will prove later (Proposmon 4.7) that if p|G isa
Hodge—Tate representation, then the equality b = I does hold. As a consequence
we obtain the following result, which perhaps is the most interesting theorem of
this article.

THEOREM 3. Assume that p is completely reducible and that ,0|GFp is Hodge—Tate
for all primes b of F lying above p. Assume that the Abelian variety A has potentially
ordinary reduction at the primes of F lying over p. Then, for every finite extension F' of
F contained in K, the kernel and cokernel of sx/r are finite.

The hypothesis in Theorem 3 are often known to be true for p-adic representations
p that arise naturally in number theory. For example, suppose that B is an arbitrary
Abelian variety defined over F and let V,(B) = T,(B) ®z, Q,, where T,(B) denotes
the Tate module for B. Then the representation p: Gr — Autg,(V,(B)) giving the
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natural action of Gy on V,(B) is unramified outside the set X of primes of F lying
above p or where B has bad reduction. Faltings has proven that p is completely
reducible. It is also known that p|GFp is Hodge—Tate for the primes p of F above p.
(A result of Tate when B has good reduction at p, extended by Raynaud to the gen-
eral case.) In this example, K = F(B[p*°]).

As another example, let /= Q and let p, be the n-adic representation of Gg asso-
ciated to a cusp form of level N. Here = is a prime of the field E generated by the
coefficients in the g-expansion for f. The representation p; is of dimension 2 over
the completion E;. Then p,is known to be irreducible. (See thm 2.3 in [R].) That suf-
fices to imply that the Lie algebra g is reductive. Faltings has proven that pf|G@p is
Hodge-Tate. This means that the (,-representation p of dimension 2[E,: Q]
defined by p, is H_olgr%g:;Tate. Since ker(p) = ker(p,), Theorem 3 can be applied to
K/Q, where K=0Q .

Faltings has also proven that the Q,-representations giving the action of G, on
the p-adic étale cohomology of a nonsingular, projective algebraic variety X defined
over F, is Hodge-Tate. If X is defined over the number field F, then it is also expec-
ted that the corresponding (,-representations of Gr are completely reducible.

In this article, we will single out the case K = F(A[ p*°]). As mentioned above, Theo-
rem 3 applies to this case (since we can take B = A in the discussion following that
theorem). Thus, as a corollary, we have

THEOREM 4. Assume that A is an Abelian variety defined over F which has poten-
tially ordinary reduction at all primes of F over p. Let K = F(A[ p*>°]). Then, for every
finite extension F' of F contained in K, ker(sg/r) and coker(sx/r) are finite.

This theorem is equivalent to a result proved by M. Harris. (See the ‘effectivity
theorem’ of [H]. The statement there seems rather different, but can be shown to
be equivalent to Theorem 4.) Although this theorem is a consequence of Theorem
3, it seems worthwhile to treat it separately and as directly as possible. In the case
where dim(4) = 1, we will prove that ker(sk,r,) is actually of bounded order, where
F, = F(A[p"]). A similar result may possibly be true for Abelian varieties of arbitrary
dimension.

Under various sets of assumptions about 4 and K/F, one can show that
coker(sg/r) is nontrivial for all F’ or that this group grows in some way. Such results
would obviously give information about the structure of Sel (K )g(K/ ) and, hence,
of Sel4(K), itself. Here are two sample theorems of that kind. In both theorems, we
assume that K/Fis a p-adic Lie extension which is Z-ramified for some finite set X of
primes of F. We assume that the Abelian variety 4 has good, ordinary reduction at a
prime p of Flying over p, but make no assumption about the reduction of 4 at other
primes of F. Let f, denote the residue field for p and A~p denote the reduction of 4
modulo p. The group of points fip( fp) is of course finite. Let A’ denote the dual
Abelian variety.
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THEOREM 5. Assume that /Ip(fp)p # 0. Assume also that p is infinitely ramified in
K/F and that A(K), = A'(K), = 0. Then Sel4(K), is infinite.

THEOREM 6. Assume that /Ip(fp)p # 0. Assume also that there are infinitely many
primes of K lying above p, that the residue field k, for any such prime n is infinite, and
that p is infinitely ramified in K/F. Then (Sel4(K),)qiy is isomorphic to an infinite (but
countable) direct sum of copies of Q,/Z,,.

The hypothesis that A~p( /v), #0 plays an important role in [M]. Following
Mazur, one calls p an anomalous prime for 4 if A has good ordinary reduction
at p and /Ip(fp)p # 0. For a given A/F, it seems likely that infinitely many such
primes should exist. The hypothesis that p is infinitely ramified in K/F simply
means that 1, # 0. Infinitely many primes lying above p exist if D, # g and the resi-
due field for such primes is infinite if i, # Dp. It is also worth remarking that if
G(K/F) is pro-p, then A(F), = A'(F), = 0 easily implies that 4(K), = A'(K), = 0.
In particular, if K/F is the cyclotomic Z,-extension and if dim(4) =1 (so that
A = A"), then just assuming that A(F), = 0 and that some prime p|p is anomalous
for A4 would imply that Sel4(K), is infinite. (This is Proposition 8.5 in [M] when
F=Q. See also Proposition 5.3 in [GI1].) If Sel(K), is infinite, then either
(Sel4(K),)giv # 0 or Sel4(K)[ p] is infinite. Both cases can occur. If (Sel4(K),)g;y 18 infi-
nite, then either 4(K)®z (Q,/Z,) is infinite or (IL4(K),)gy, is infinite. Again, both
cases can occur.

To illustrate Theorem 6, consider again the case of an elliptic curve 4/F. Assume
that 4 does not have complex multiplication and that 4 has potentially ordinary
reduction at a prime p of F lying over p. Let K = F(A[p*]). If one replaces F by
F' = F(A[ p)) (or by F' = F(A[4]) if p = 2), then all the hypotheses in Theorem 6
are satisfied. 4 now has good, ordinary reduction at any prime p’ of F’ above b,
we have /Ip/(fp/)p # 0, and the Lie algebras g, by, and iy are distinct because they
have dimensions 4, 3, and 2, respectively. Hence (Sel4(K),)q;, is an infinite direct
sum of copies of Q,/Z,. A proof of essentially the same result is given in [CH2].

This article should be regarded as a sequel to [CG]. In that paper one finds a rather
simple description of the local conditions occurring in the definition of the Selmer
group. This description makes it easy to study Galois theory for the Selmer group,
especially in the case where A has potentially ordinary reduction.

Our proofs will be based on a certain exact sequence which we now explain. Let A
be an arbitrary Abelian variety defined over F. Let L be any algebraic extension of F.
For any prime v of F, let F, denote the v-adic completion of F. If  is any prime of L
lying over v, we let L, denote the union of the #-adic completions of all finite exten-
sions of F contained in L (so that L, is an algebraic extension of F,). We denote by
the corresponding Kummer homomorphism

iyt A(Ly) ® (Qy/Z,) — H'(Ly, A[p™)).
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For each n, we let H4(L,) = H'(L,, A[ p*])/im(x,). Then the p-Selmer group for 4
over L is defined by

Sely(L), = ker(H'(L, A[p™)) — [ [ Ha(Ly)).
n

where the map is induced by restricting cocycles to decomposition groups. Here #
runs over all primes of L, including the Archimedean primes (important only for
p=2). We will let Py(L)= Hn H4(L,) for brevity. Also we put G4(L) =
im(H1 (L, A[ p>]) — PA(L)).

Now suppose that K/F is a Galois extension and F’ is an intermediate field. We
then obtain the following commutative diagram with exact rows.

0 ——Sely(F'), ———H'(F', A[p*]) ———G4(F') ——0

l SK/F l hg/F l gK/F

0— SelA(K)g(K/F’) —s H'(K, A[p®]) KT s G 4(K)OE/F)
The snake lemma then gives the exact sequence

0 — ker(sx/r) — ker(hg/r) — ker(gg/r) —> coker(sg/r') —> coker(hg/r)

(D
As mentioned above, this exact sequence will be the basis of our proofs. In the lit-
erature it has often been used in a similar way, especially in the case of Z,-extensions.
(See [CM], [P] for example.) We also use certain basic results about compact p-adic
Lie groups, recalled in Section 2. In the subsequent two sections we will study
ker(hg/r) and coker(hg/r), and ker(gg,r). This will of course give information
about the kernel and cokernel of sk, r, which is the subject of Section 5. In each sec-

tion we first consider the two important special cases where G(K/F) = Z, and where
K = F(A[p™)].

2. Cohomology of Compact p-Adic Lie Groups

We will collect here several useful results. Let G be a compact p-adic Lie group. Let
d denote the dimension of G. In the following lemma, we regard Z/pZ as a trivial
G-module.

LEMMA 2.1. (i) Let V be a closed subgroup of G. Then H\(V,Z/pZ) is finite. Its
order is bounded. There exists an open subgroup U of G such that |H\(V, Z/pZ)| < p?
for all closed subgroups V of U.

(i) Let V be a closed subgroup of G. Then H>(V,Z/pZ) is finite. Its order is
bounded.

Proof. We will use the notation and results of [DSMS]. Let P be a Sylow pro-p
subgroup of G. Then P is an open subgroup and the restriction map H"(G, Z/pZ) —
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H"(P,Z/pZ) is injective, for any n > 1. It suffices to prove Lemma 2.1 for open
subgroups V of P. P is a pro-p p-adic analytic group, and so P has finite rank in the
sense of [DSMS]. This means that d(V) = dimz/,,Z(H1 (V, Z/pZ)), which is the car-
dinality of a minimal topological generating set for )V, is finite and bounded as V
varies over closed subgroups of P. Also P contains an open subgroup U, which is
uniformly powerful (thm. 9.34 of [DSMS]). Thus, if V is any closed subgroup of i,
then d(V) < dU) = dim(Uf) = d (thms 9.36, 9.38, Proposition 4.4 of [DSMS]). These
results prove (i).

As for (ii), #(V) = dim(H*(V, Z/pZ)) is the number of relations for a minimal topo-
logical generating set for V), which is finite (thm 4.25). For a uniformly powerful sub-
group U, we have {(UU) = d(d — 1)/2 (thm 4.26). Using this, one can give an explicit
upper bound for #)) valid for all closed subgroups of G. (See exercise 9, p. 83 of
[DSMS].) O

Remark. We will apply this lemma to the subgroups V = G(K/F’) of the p-adic
Lie group G = G(K/F). These subgroups are open (and hence closed) if [F': F] < oo.
In fact, G(K/F) has a base of open subgroups V such that H'(V, Z/pZ) has order p?
and H?(V, Z/pZ) has order p@=V/2 where d = dim(G). For arbitrary closed sub-
groups V, the bound on the order of H(V, Z/pZ) depends only on G.

Now let V' be a finite-dimensional Q,-vector space on which G acts continuously.
Let T be a G-invariant Z,-lattice in V. Let M = V//T. Then M[p] = (Z/ pZ)3 ™) et
i=1 or 2. By a simple devissage argument, it follows from Lemma 2.1 that
H(V, M p)) is finite and of bounded order as V varies over all closed subgroups
of G. But H'(V, M)[p] is a homomorphic image of H(V, M[p]) and, therefore, also
has bounded order. It follows that the p-primary group H'(V, M) is cofinitely gene-
rated as a Z,-module. It also follows that the Z,-corank of H'(V, M) is bounded as V
varies over all closed subgroups of G. Here is a more precise result for open sub-
groups. ]

LEMMA 2.2. Let g be the Lie algebra of G. Let i = 1 or 2. For every open subgroup V
of G, we have

corankz, (H'(V, M)) < dimg, (H'(g, V).

There exists an open subgroup U of G such that equality holds for all open subgroups V
of U.

Proof. We have corankz,(H'(V, M)) = dimg,(H'(V, V)). If V|, V, are any two
open subgroups of G with V, C V|, then the restriction map H'(V, V) — H'(V,, V)
is injective. There exists an open subgroup U of G such that H'(V, V') = H'(g, V) for
all open subgroups V of Y. Lemma 2.2 follows from these remarks. O

Remark. As a consequence, if H'(g, V) =0, then H'(V, M) is finite for all open
subgroups V of G. In particular, this applies if g is a semisimple Lie algebra.
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3. The Kernel and Cokernel of hg/r

By the inflation-restriction exact sequence we have
ker(hg/r) = H' (K/F', AKK),).

As a group, A(K), = (Q,/Z,)"x(a finite group), where 0 < 7 < 2g, g = dim(4). Note
that ker(sk/r) = ker(/ig/r) N Sel4(F’),. This is often smaller than ker(/ig/r), but we
will postpone the discussion of this issue. The inflation-restriction sequence also gives

coker(hg/r) = ker(H*(K/F', A(K),) — H*(F', A[p™])).

But H*(F', A[p™]) = @, H*(F!,, A[p*]), where v/ varies over the real primes of F’.
(This follows from Corollary 6.24 in [Mi].) It follows that H>(F’, A[p>®°]) = 0 if p is
odd and is a finite elementary 2-group if p = 2. We will simply use the upper bound

|coker(hx )| < [HX(K/F', A(K),|

which is an equality if p is odd or if F’ is totally complex.

1. K/F is a Z,-extension

Assume that gy is a topological generator of G(K/F) = Z,. The finite extensions F’
of F contained in K form a tower F= Fy C F; C --- C F,, C ---, where F,/F is cyclic
of degree p" and G(K/F,) is generated topologically by a(’;”. We have

H'(K/F,, A(K),) = A(K), /() — DA(K),.

We consider a’(;” — 1 as an endomorphism of the Abelian group A(K),. Its kernel is
the finite group A(F,),. This implies that the restriction of o —1 to the maximal
divisible subgroup (A4(K),)q;, is surjective. Hence it follows that

(A(K))aw S (0 — DA(K), € A(K),

for all n, and therefore H'(K/F,, A(K ),) is finite. Its order is bounded above by the
index [A(K),: (A(K),)qy] with equality for n>> 0. Thus |ker(/ig/r)| is finite and
bounded as F’ varies.

Since Gal(K/F’) is isomorphic to Z, and so has p-cohomological dimension 1, it
follows that H*(K/F’, A(K),) = 0. Consequently, we have that coker(hg/r) = 0 for
all F’.

II. K= F(A[p™])

A theorem of Serre (corollaire of Theoreme 2, [Se]), implies the finiteness of
H"(G(K/F"), A[ p*]) for all n = 0 and all finite extension F’ of F contained in K.
In particular, ker(hg/# ) is finite. But its order turns out to be unbounded. More pre-
cisely, we have the following result: Let F,, = F(A[p"]) for n = 1. Then

ker(hK/F/,) o~ (Z/pnz)2g(m—l) (2)
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for n > 0. Here m = m 4 denotes the dimension of the p-adic Lie group G(K/F). One
can show easily that m > 1 and hence indeed |ker(/ik/f/)| is unbounded as F' varies.

To justify (2), consider the subgroup Z of G(K/F) defined as follows. Let
o€ GK/F). Then, 0 € Z<4 ¢ acts on T,(4) as multiplication by a scalar
0(o0) € 1 +2pZ,. According to a result of Bogomolov [B], 6 defines an isomorphism
of Z to an open subgroup of 1+ 2pZ,, i.e., Z2=7Z,. Let M = K*. For n > 1, let
M, = F,M = M(A[p"]). We assume hereon that n is sufficiently large. Then
1+ p"Z, € 6(Z). We have G(K/M,) = Z,, where Z, = o1+ p" »). We also have
AMy), = A(Fy), = A[p"]. Now since Z, is topologically cyclic and 4(M,), is finite,
one sees easily that H'(Z,, A[ p*]) = 0 and, hence, the inflation-restriction sequence
gives an isomorphism

H'(M,,/F,, A[p"]) = H'(K/F,, A[p™)).

Therefore, ker(hg/r,) = Hom(G(M,/F,), A[p"]). We have an isomorphism
G(M,/F,) =2 GM/MNF,)=H,, say. This is an open subgroup of the p-adic Lie
group G(M/F), which has dimension m — 1. Using Lemma 2.1, one sees that H,
can be generated topologically by m — 1 elements. Also, [F,yi: F,] =p™ and
[M,+1: M,]=p from which it follows that [H,: H,.1] =p"~'. Now G(F»,/F,) is
Abelian and of exponent p". It follows that H,/H,, is Abelian, of exponent p”,
and of order p"~V. The above remarks imply that H,/H,, = (Z/p"Z)"" and that
H,, = (H,, H,)H?", which justifies (2).

Serre’s theorem referred to earlier states that H>(K/F', A[p*]), and hence
coker(hg/F), are finite. Alternatively, one can prove the finiteness as follows. Define
M as above. For any F’, let M'=F'M. Then K/M' =27, and so we have
H*(K/M', A[p>®]) = 0. Since H'(K/M’, A[ p>°]) = 0 also, we obtain an isomorphism

HX(M'[F', AM"),) > HK/F', A[ p™]).

Now A(M'), is finite. If V is the Sylow pro-p subgroup of the p-adic Lie group
G(M'/F'"), then H*(V,Z/pZ) is finite. The finiteness of H*(V, A(M"),) and hence
of coker(hg/r) follows by devissage. Lemma 2.1 (ii) asserts that we have
dimz,z(H*(V, Z/pZ)) < C, for some C. Then an upper bound for |coker(hg/r)|
would be |A(M’),,|C. But note that [A(M"),| is unbounded as F' varies.

1. Arbitrary K/F
Here is one general result valid for any Abelian variety defined over F.

PROPOSITION 3.1. Let K/F be a Galois extension such that G(K/F) is a p-adic Lie
group. Assume that A(K), is finite. Then ker(hg,r') and coker(hg,r) are finite and have
bounded order as F' varies over all extensions of F contained in K.

Proof. A(K), is a finite G(K/F)-module. It is enough to bound the order of
H'(V, A(K),) for all open pro-p subgroups V of G(K/F), where i = 1 or 2. But A(K),
has a V-composition series with corresponding quotients isomorphic to Z/pZ. Thus,
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by devissage, one can bound the order of Hi(V,A(K)p) by |A(K)p|d"(v), where
d(V) = dimg,,z(H'(V, Z/pZ)). By Lemma 2.1, di()) is bounded. O

There are various hypotheses which imply that 4(K), is finite, some of which are
included in the following result. A number of other results can be found in articles of
Zarhin. (See [Z1], [Z2], and some of the references there.) We assume only that A4 is
an abelian variety defined over F and that G(K/F) is a p-adic Lie group.

PROPOSITION 3.2. A(K), is finite if any of the following conditions are satisfied.

(1) There exists a nonarchimedean prime n of K not lying over p such that the corre-
sponding residue field k,, is finite.
(1) The Lie algebra q is solvable, A has potentially ordinary reduction at all primes of
F lying above p, and the residue field k, is finite for all primes yn of K lying above p.
(iii) The Lie algebra g is semisimple.

Proof of (). Suppose that v is the prime of F lying below # and that v|/, / # p. The
stated condition is actually equivalent to asserting that K, is a finite extension of F.
For G(K,/F,) is a p-adic Lie group of dimension <2. If it has positive dimension,
then K, must contain the cyclotomic Z,-extension of F, (which is the only Z,-
extension of F, and is unramified). Then the residue field k, would be infinite. Since
K, is a finite extension of F,, it is now obvious that A(K}),, is finite, and hence so is
A(K )yors and, in particular, A(K),.

Proof of (i1). Replacing F and K by finite extensions, we can assume that A4 has
good, ordinary reduction at all primes v of F lying above p. The other conditions still
hold. Assume that A(K), is infinite. Let W), = HO(K, V,(4)). That is, W, =
Ty(A(K),) ®z, Qp, where T,(A(K),) denotes the Tate module of A(K),. Then
dim(W,) = 1 and we can consider the representation p: G(K/F) — Aut(W,) induced
from the action of G(K/F) on A(K),. Since /]D(k,]) is finite, it follows that
W, C ker(V,(4) — V,(A,)). Let A" denote the dual Abelian variety for 4. Then A’
also has good reduction in v and the action of Gr, on V,,(:I;) is unramified. Since we
are assuming that 4 has ordinary reduction at v, the Weil pairing
V,(A) x V,y(A") — Qp(1) induces an isomorphism

ker(V,(4) — Vy(4,)) =2 Hom(V,(4), Q,(1))

as representation spaces for Gp,. Let y: Gp — Z; denote the cyclotomic character
and let 6 = p ® !, which gives the action of Gy on Hom(Q,(1), W,). Then o is a
finite-dimensional representation of Gr and its restriction a|g, gives the action of
Gr, on some nonzero subspace of Hom( Vp(;lv{,), Q,) and, hence, is unramified and

has infinite image. It follows that L = F k) s an infinite p-adic Lie extension of
F which is unramified at all primes of F lying over p. A conjecture of Fontaine
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and Mazur implies that such an extension L/F cannot exist. If g is solvable, then the
nonexistence of L/F is easy to show. Then the Lie algebra of G(L/F) is also solvable.
Replacing F by a finite extension, if necessary, we can assume that G(L/F)/G(L/F)
is infinite and hence L must contain a Z,-extension I, of F. But the only primes of F
which can ramify in F,/F are those lying over p, and at least one such prime must
ramify. This proves that 4(K), must be finite.

Proof of (iii). All that we need is that the Lie subalgebra q’ is equal to g. If
0: G(K/F) — Z;( denotes the determinant of the representation p of G(K/F) giving
the action on W), then it follows that ¢ is a character of finite order. Hence, 6|, ,r,)
also has finite order, where v is any prime of F and # is a prime of K lying above v.
Choose v to be a prime not lying over p where 4 has good reduction. Then the
natural action of Gf, on V,(4), and hence on W), is unramified. The eigenvalues of
the Frobenius automorphism ¢, in G(F"/F,) on V,(A) are algebraic numbers
which have absolute value \/W at all Archimedean primes (of @). Here f, is the
residue field for v. Assume that 4(K), is infinite. Then dim(W,) > 1 and the above
discussion shows that |, must have infinite order and hence so does 6. This is not
possible and, hence, 4(K), must be finite. OJ

As a step towards proving Theorems 2 and 3, we now consider the case where g is
reductive. As mentioned in the introduction, such K/F arise naturally.

PROPOSITION 3.3. Assume that the Lie algebra g of G(K/F) is reductive. Then
ker(hg/r) and coker(hg/r) are finite.

Proof. Let n denote the radical of g. The proof of this proposition will be based
just on the hypothesis that 11 is Abelian, which is true by definition if g is reductive.
Let n=dimg,(n). It follows that G(K/F) contains an open subgroup G and a
normal subgroup N of G such that N = ZZ and the Lie algebra g/n of G/N is
semisimple. To simplify notation, we replace F by the finite extension K and so
have G = G(K/F). Let L = KV. If F' is any finite extension of F, let L' = F'L and let
N = G(K/L'), which is also isomorphic to Z['ﬁ. The Lie algebra of G(L'/F’) is still g/n
and, hence, Proposition 3.2 implies that A(L"), is finite. That is, for every subgroup
N of N of finite index, we have that H'(N, A(K )p) 1s finite. This last property is all
that we need. We will show that H'(G, A(K),) and H*(G, A(K),) are both finite. This
implies that ker(/k,r) and coker(/ix/r) are finite. Proposition 3.3 then follows since F
can be replaced by any finite extension F’. (It simplifies the notation to just consider
the case K/F.)

As before, we let W), = T)(A(K),) ®z, Qp, where T,(A(K),) denotes the Tate
module for A(K),. The inflation-restriction sequence gives an exact sequence

H'(G/N, W)y — H'(G, W,) - H'(N, W)).

Since WI’,v = 0, the first term is trivial. To show that the last term is trivial, we show
that N contains a subgroup Z isomorphic to Z, with the property that Wf =0.
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Using the inflation-restriction sequence again, it will then follow that H'(N, W) is
isomorphic to a subspace of H'(Z, W,) = W,/(z — 1)W,, where z is a topological
generator for Z. But W7 =0 implies that H'(Z, W,) = 0. Hence, H'(N, W,) =0
and therefore H'(G, W,) is indeed trivial. The fact that H'(N, W,) = 0 gives another
exact sequence

H*(G/N, W)) — H*(G, W,) - H*(N, W,).

Just as above, the first term is trivial and the last term is isomorphic to a subspace of
H?(Z, W), which is trivial because Z has p-cohomological dimension 1.

To prove the existence of such a subgroup Z, consider W), as a representation
space for N. Since N is Abelian, all of its irreducible representations over @p are
one-dimensional. Thus the composition factors in the representation space
W, ®aq, (I.:,D,, are one-@i}r(nensional and the action of N on them is given by homo-
morphisms y;; N — @p for 1 <i< dimg,(W)). Since HOW, W,) = 0 for every sub-
group N of finite index in N, it is clear that y,| is nontrivial for each i. (Otherwise,
the elements of A" would have 1 as a common eigenvalue and a common eigenvector
would exist since N is Abelian.) Thus, each y; has infinite order. Hence
rankyz, (ker(y;)). One must just choose Z = 7, so that Z ®z, Q, is not contained in
any of the proper subspaces ker(y;)®z, @, of N®z, Q,, which is certainly
possible. O

We also include a proof of the following simple result.

PROPOSITION 3.4. Let K/F be any Galois extension such that G(K/F) is a p-adic
Lie group. Then ker(hg r )| p] and coker(hg )| p] have bounded order as F' varies.
Also ker(hg/r) and coker(hg; ) have bounded Z,-corank as F' varies.

Proof. Let B = (A(K),)q, and C = A(K),/(A(K),)qiy- Let i =1 or 2. Since C is
finite, the proof of Proposition 3.1 shows that H'(K/F’, C) has bounded order.
Also, B[p] is finite and so H'(K/F’, B[p]) has bounded order. Since B is divisible,
one has a surjective map from H'(K/F', B[p]) to H(K/F’', B)[p], which therefore
also has bounded order. It follows easily that |H'(K/F’, A(K ),)Lp]l is bounded as F’
varies, which gives the first assertion in Proposition 3.4. The second assertion
follows from this. Or one could use Lemma 2.2 to get the bound dim@p(Hl (g, W)
on the Z-corank of ker(/ix/r') and the bound dimg, (H*(g, W,)) for the Z,-corank of
coker(hg/r'), where g is the Lie algebra of G(K/F) and W, = (1<i£1 B[p") ®z, Q,. O

Remark. The finiteness of ker(/ix/r/) for all F' is equivalent to the vanishing of
H'(g, W,). The finiteness of coker(hg ) for all F' is equivalent to the vanishing of
H2(g, W)).

It is possible for ker(/ix/r:) to have positive Z,-corank. For example, let 4 be any
Abelian variety defined over a number field F. Let Fx be the maximal extension of F
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unramified outside X, where X is the set of primes of F lying over p or oo or where A
has bad reduction. Then H'(Fx/F, A[ p*]) is a cofinitely generated Z,-module and so
H'(Fs/F, A[p®Dgiv = (Q,/Z,)", where [F: Q]g < a < oo. This follows from the fact
that the Euler—Poincaré characteristic of the G(Fx/F)-module A[p™] is —[F: Q]g.
Let L = F(A[p™]). Let Hy be any subgroup of H'(Fs/F, A[p™]) isomorphic to
Q,/Z,. Then Hy = hy;r(HF) is a subgroup of HomG(L/F)(G(L"‘b/L), A[ p*°]) which
is also isomorphic to Q,/Z,, since ker(/;,r) is finite by Serre’s theorem. It is clear
that H; determines a unique extension K/L such that H; € Hom(G(K/L), A[ p*])
and K is minimal. It is not hard to see that K/F is Galois and that G(K/L) = Zf,
for some b ( <2g). Therefore G(K/F) is a p-adic Lie group. Also, K/F is X-ramified.
It is clear that ‘Hr C ker(/g/r), which therefore has Z,-corank >1.

More generally, one could take Hy to be an arbitrary subgroup of
H'(Fs/F, A[p>®]). One obtains just as above a p-adic Lie extension K/F such that
K C Fs and Hp C ker(hg/r). A similar construction works locally. Let v be a prime
of F. Suppose that D, is any Gr,-module of finite Z,-corank. Then H'(F,, D,) also
has finite Z,-corank. Let Hr, be any subgroup of H!(F,, D,). Then one can construct
a p-adic Lie extension K of F, such that Hp, is contained in the kernel of the restric-
tion map H'(F,, D,) - H'(K, D,).

4. The Kernel of gg/r/

We will study the kernel of the natural restriction map on each factor of P 4(F"). This
will give information about the kernel of the natural map rx/r: P4(F') = P4(K).
We have ker(gg/r) = G4(F') Nker(rg/r) and hence we will obtain information
about ker(gg/r/). If v/ is any prime of F’, let v denote the prime of F such that v'|v
and let n denote any prime of K lying over v'. We let r, denote the restriction
map ry: H(F,) = H4(K,). The kernel of r, doesn’t depend on the choice of . This
section will have five parts A—E. The cases A: v/ p or co, B: v|oco, and C: v|p will be
considered separately. We then bring these cases together in part D, where we study
ker(rg/r). Finally, we will say what we can about ker(gk,r/) in part E. In parts A-D,
we discuss the cases I, II, and III as in Section 3.

(A) v} p, v non-Archimedean

In this case, Proposition 4.1 of [CG] states that the image of the Kummer maps r,
and k, are both zero. Thus the map ry is simply the restriction map
H'(F,, A[p>]) - H'(K,, A[p™]) and so

ker(ry) = H'(K,/Fy, A(Ky),)-

Now results of Tate imply easily that H'(F,, A[ p>]) is finite and so obviously ker(r,))
is also finite. The question therefore is whether the order of ker(r,) is bounded or
unbounded as F’ varies and as v’ varies over primes of F’ lying over v.
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1. K/F is a Z,-extension
In this case it is well known that v is unramified in K/F. We will prove the following
general result which will be useful for other p-adic Lie extensions too.

PROPOSITION 4.1. Assume that v] p and that K, /F, is unramified. Then there is a
constant ¢P) (which depends only on A, F,, and p) such that |ker(r,)| < ¢\P. If A has
good reduction at v, then ker(ry) = 0.

Proof. We first give the bound ¢{”. Let I, denote the inertia subgroup of
Gr, = Gal(Fv/Fu), where F, denotes an algebraic closure of F,. Let F;™ = FU’“, the
maximal unramified extension of F,. Then we let

P = [A(F™),: (AF™),) g ).

Now |ker(r,)| is bounded by the order of the kernel of the restriction map
(H'(F!,, A[p>®]) — H'(F"™, A[p>]), which is isomorphic to

v
H' (F™ [F,, A(F™),) 22 A(F™), /(6" — DA(F™),.

Here ¢’ denotes a topological generator of G(F,;™ /F" ). The kernel of ¢’ — 1 acting
on A(F;™), is A(F),, which is finite, and so the cokernel of ¢’ — 1 is also finite.
It follows that

(ACF™) ) € (6 = DA™, € AGE™),

Thus indeed |ker(ry)| < cf}’). For the final part of Proposition 4.1, note that if 4 has
good reduction at wv, then the action of I, on A[p™] is trivial. Hence,
A(F™), = A[p™] is divisible and so ¢ = 1. O

Remark. The bound ¢, can often be improved. If K, /F, is an infinite extension,
then the pro-p Sylow subgroup of G(K,/F,) is isomorphic to Z,. The above argu-
ment would show that

[ker(ry)| < [A(Kﬂ)p: (A(Kn)p)div]'

Now G(K,/F,) acts on A(K;),/(A(K,),div through a finite quotient group. Hence
(0" — DA(Ky), = A(Ky),div if F, is sufficiently large. Then the above inequality
becomes an equality. As a special case, if K/Fis a Z,-extension and A(F,), = 0, then
one sees easily that A(K;), =0 too, and so ker(ry) = 0. On the other hand, it can
happen that v splits completely in K/F (i.e., K, = F;). In that case, it is obvious that
ker(ry) = 0.

The invariant ¢{” of an Abelian variety A/F, has the following interpretation. Let
A, denote the reduction modulo v of the Néron model for 4 over the ring of integers
in F,. Then A, is an abelian algebraic group defined over the residue field f;. Let
[ = char(f,). For any finite extension of F,, the kernel of the reduction map is a
pro-/ group. Since /# p, it follows easily that A(F;™), = /Iv(fv)p, where f, is an
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algebralc closure of f,. Let B, denote the connected component of the 1dent1ty in A,.
Then B( ﬁ) is divisible and has finite index in A o ﬁ) Therefore, (A,( ﬁ) div =
B, (ﬂ)p and, since A +(f,) is a torsion group, it follows that c(p) is just the order of
the Sylow p-subgroup of the group C, = A o ﬁ)/B ( ﬁ) of connected components
for A,.

If K,/F, is an infinite, unramified, p-adic Lie extension, then K, is just a finite
extension of the unramified Z,-extension of F,. Letting k, denote the residue field
for u, the group B w(ky), 18 still divisible. (This follows easily from the fact that
G( ﬁ /ky,) has profinite order not divisible by p.) We therefore have
(A (ky )p)d1V =B, (ky),- Onchan then see that A(K; )p/(A(Kn)p)dw =~ C, 9 and that
ker(ry) is isomorphic to C,*" /(¢' — 1)C, ", where ¢’ is a topoGloglcal generator for

G(K,/F,). As a consequence, ker(r,) has the same order as C, v

II. K= F(A[p™])

Since v{p, the criterion of Serre-Tate states that v is ramified in K,/ F,, if and only if 4
has bad reduction at v. Thus, if 4 has good reduction at v, then Proposition 4.1

implies that ker(r,) = 0. If 4 has bad reduction at v, we consider two cases.

(1) 4 has potentially good reduction at v.

Equivalently, the inertia group 7, acts on A[ p°°] through a finite quotient group A. In
fact, A = A(F,, A) is independent of p. Also, A achieves good reduction over
F,(A[m]) for any m > 3 such that vfm. (See Section 2 of [ST].) It is rare for p to divide
the order of A. (For the case where g = dim(A4) = 1, this could happen only for p = 2
or 3. For g > 1, the set of primes which can divide |A] is finite and depends only on
g.) If pf|A|, then Proposition 4.1 implies that ker(r,) = 0.

On the other hand, if p does divide |A|, one can remark that there is a bound on
|ker(r, )| which depends only on g. Let L be a fixed finite Galois extension of F, over
which 4 achieves good reduction. (One can choose L to depend only on g and not on
A.) Tt suffices to bound the order of Hl(LKﬂ/F’v,, A[ p™]). But, by Proposition 4.1,
this is H'(LF,/F), A(LF}),) and its order is bounded by that of
H'\(P', A(LF/, )p)» where P’ is a p-Sylow subgroup of G(LF,/F). P" has bounded
order (dividing [L: F,]). It is an easy exercise (by devissage) to bound the order of
H'(P', B), where B is any finite p-primary P’-module, in terms of |P'| and |B[p]|,
which justifies our remark.

(i1) 4 doesn’t have potentially good reduction at v.

Thus the image of I, in Autz,(7,(A4)) is infinite. Assume v|/, where / is a rational
prime (and /# p). Since Autz,(7,(A4)) contains a pro-p subgroup of finite index,
the same is true for the image of 1, and one can see easily by local class field theory
that K, contains the field F,(u,, ’Y1). This implies that G, has profinite order
prime to p. Thus H'(K,, A[p>]) = 0. As a consequence, ker(r) is as large as it could
be ker(ry) = H'(F!,, A [ °]). This group is finite and isomorphic to H*(F!,, T,(A)).
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To see this we use the exact sequence 0 — T),(4),(4) - A[p>] — 0 together with
the fact that H'(F/,, V,(4)) = 0 for i = 1, 2. By using Tate’s local duality theorem,

v
one sees that H*(F,, T)(4)) is dual to H(F},, A'[p>]) = A'(F)),, where A" is the
dual Abelian variety. Thus ker(ry) and A'(F,), have the same order. But since 4
and A" are isogenous over F,, we have K, = F,(4'[p™]). Thus, it is clear that
|ker(ry)| will be unbounded in this case. One can be somewhat more precise about
the structure of ker(r,) if one takes F' = F,, = F(A[p"]) and if v' = v, is some prime
of F, lying above v. Then it is not hard to show that ker(r,,) ~ (Z/p"Z)* as n — .
Here the notation A, ~ B, as n — oo, where 4,, B, are two sequences of groups,
means that there are homomorphisms f,: 4, — B, whose kernels and cokernels

are finite and of bounded order as n — oo.

I1. Arbitrary K/F

The Galois group G(K,/F,) is a p-adic Lie group. Local class field theory implies that
dim(G(K,/F,)) < 2. If G(K,/F,) is finite, there is little to say. The order of ker(ry) is
trivially bounded. (This can occur. For example, it is possible for a prime v of F to
split completely in K/F, in which case ker(r,y) = 0.) If dim(G(K,/F,)) = 1, then the
Lie algebra of G(K,/F,) is abelian. Let Kj =K, NF™. One must have
[Ky: K}] < oo. Then, by using Proposition 4.1, it is easy to verify that [ker(ry)| is
bounded.

Finally, if dim(G(K,/F;)) = 2, it follows that G, has profinite order relatively
prime to p and, hence, H'(K,, A[p>]) =0. In this case, we have, as in II(ii),
ker(ry) = H'(F!,, A[ p*]), which is isomorphic to the dual A’(F;/)p of the finite group
A'(F,),. This is of bounded order if and only if 4'(K}), is finite. Note that 4'(Kj)), is
finite if and only if A(K}), is ﬁPite. If 4 has good reduction at v/, then the kernel of
the reduction map A(F) — Ay (fy) is a pro-/ group. Here f, denotes the residue
field for v' and / denotes its characteristic. Since the reduction map is surjective, it
follows tha} A(F), = /L«(fvr)p. Also, A’ Will~ have good reduction at v and
A'(F), = A'y(fy), will have the same order as Ay(fy),- Thu~s, if 4 has good reduc-
tion at 77, then ker(r,/) will have bounded order if and only if A(k,), is finite, where k;
denotes the residue field of . We also remark that, since K/F is a Galois extension,
both G(K,/F,) and A(Ky), are independent of the choice of 17 lying over a fixed prime
vof F.

(B) v Archimedean

We need only worry about the case when p =2, F, = R, and K, = C. This does not
occur when K/Fis a Z,-extension, since Archimedean primes of F will split comple-
tely in K/F. If K = F(A[2*°]), then K, = C for all Archimedean primes of K. If one
restricts attention to fields F’ which are totally complex (e.g. those containing
F(A[4])), then again ker(ry) = 0. Let K/F be arbitrary. Assume now that F/, =R,
K, = C. We again have Im(x,) = 0, Im(x,) = 0. Thus ker(ry) = H'(C/R, A[2*)),
where one considers 4 as an Abelian variety/R by the identification F, = R, (and
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v is the prime of F lying below ¢). Let ¢ be the nontrivial element of G(C/R). Then
we have ker(r,) = ker(1 4+ o)/im(1 — o), when 1 4+ 0, 1 — ¢ are regarded as endo-
morphisms of A[2*°]. One verifies easily that ker(r,) = (Z/2Z)*, where e, =
dimgz/2z(A(R)[2]) — g. This of course can be positive.

(©) vip

Before we discuss the special cases I and II, we must recall some of the results of [CG]
and make some general observations. Let L be any algebraic extension of F,. Let
kr: A(L) ® (Q,/Z,) — H'(L, A[p>®]) denote the Kummer homomorphism for A
over L. Then k; is injective. If L is a finite extension of F,, then as explained in
[CG] (see page 150), we have

im(rcL) 2 (Q,/Z, 5 @, HY(L, A[p™Dgy = (@2, ) (3)

as groups. On the other hand, a certain canonical Gr,-invariant subgroup C of A[ p™]
is defined in [CG], p. 150-151, which can be characterized in the following way:
D = A[p™]/C is the maximal Gf,-quotient of A[p*>] on which some subgroup of
finite index in the inertia group /I, acts trivially. (That is, D is ‘almost’ unramified.)
This subgroup C is isomorphic to (@,,/Zp)h as a group, where / is the height of
the formal group F for a Néron model for A over the integers in a finite extension
of F, where A achieves semistable reduction. In fact, C = F(m)[ p>°]. (Later we may
write C, for C and D, for D.) We define /;: H'(L, C) — H'(L, A[ p*]). According to
(4.9) of [CG], we have im(x;) € im(4,) for all L. Proposition 4.3 of [CG] states that
equality holds if L is ‘deeply ramified’. We quickly recall one of the equivalent defi-
nitions of this concept. For each w > — 1, let GS&:) denote the wth ramification sub-
group of G, in the upper numbering (which is defined even for infinite extensions)
and let Ff]"") denote the fixed field for Gg). An algebraic extension L of F, is deeply
ramified if and only if L ¢ F") for all w. A theorem of Sen implies that a p-adic Lie
extension L/F, which is infinitely ramified must be deeply ramified. (See Theorem
2.13 of [CG]).

Assume that the inertia subgroup of G(K,/F,) is infinite. Then Kj, is deeply rami-
fied. For any L, let H (L) = H'(L, A[ p>°])/im(x) as before. Note that Ha(Ky) =
H' (Ky, A[p™])/im(/g,). Hence we can factor the map r, as indicated by the follow-
ing commutative diagram (where we let 1, = },F;/ for brevity):

HA(Fl) —5 H\(F),, A[p™])/im(%y)

Ty by
HA (Kn)

Clearly ker(a,) C ker(r,). Furthermore, we have isomorphisms

ker(ay) = im(4y)/im(ky), ker(ry)/ker(ay) = ker(by),
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the last isomorphism because a, is surjective. Thus we can study ker(r,) by studying
im(4,)/im(x,) and ker(b,). Ker(b,) can be studied by the following commutative
diagram

H'(F, C) —— H\(F,,A[p®) —— H\(F,.D)

] le

HI(KH,C) — Hl(KmA[POO]) —nl> HI(K’PD)'

Thus obviously ker(b,) is isomorphic to a subgroup of ker(d,). In many cases, the
map 7, is surjective and hence we would have an isomorphism ker(b,) = ker(dy).
(This is true, for example, if 4 has potentially good reduction at v since then one sees
easily that H*(F/,, C) = 0.)

Assume that 4 has potentially ordinary reduction at v. Then, by Proposition 4.5 of
[CG], we have im(x,) = im(Ay)g;,- (This is not hard to show. It involves simply
showing that im(x,) € im(4y) and that these groups have the same Z,-corank.)
Using this, we can prove the following result. Here C'C A[p™] and
D" = A'[p>]/C" are the Gf,-modules associated to A’ which are defined analogously
to C and D.

PROPOSITION 4.2. Assume that A has potentially ordinary reduction at v and that
the inertia subgroup of G(K,/F,) is infinite. Then Kker(ay) is finite and
[ker(ay)| < [HO(F!,, D")|. If A has good, ordinary reduction over F', then one has
equality. Inﬂthis case, |ker(ay)| = |fiv/(f;,)p|, where [, = Op;, /mpl/‘, is the residue field
for v and Ay is the reduction of A at v'.

Proof. We have ker(ay) = im(Ay)/im(Ay)g;,- This is a homomorphic image of the
group H'(F!,, C)/H'(F',, C)4;,- Therefore

Iker(ay)| < |H'(Fly, O)/H'(F}y, O)gyyl.

Now H*(F!,,C)=0 and so, by considering the exact sequence 0 — C[p"] —
%€ — 0, for n>> 0, one sees that H' (F!,, O)/H'(F!,, C)g, = H*(F',, C[p"]). This
last group is dual to H°(F!,, D[ p"]) which coincides with the group H°(F/,, D') for
n 3> 0. This gives the inequality in Proposition 4.2. The second statement is part of
Proposition 4.6 of [CG]. O

Remark. 1f L denotes a fixed finite extension of F, where A (and hence /y) has
good reduction, then an obvious bound for |H(F),, D")| is |H(F/,L, D")| = |4"(K'),|

v

where k' denotes the residue field of F/, L. Since k' is a finite field, A’(k"), and A(K),

have the same order, although they are not necessarily isomorphic. If 4 has good,
ordinary reduction over F,, then we have ker(a,) = H(F|,, A'[p>]) = A'()),.

We need one more general result.
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PROPOSITION 4.3. Assume that A has good reduction at v and that K,/F, is
unramified. Then ker(ry) = 0 for all F’ and all v'.

Proof. Here we use the following consequence of Tate’s duality theorem for
Abelian varieties over local fields. For any extension K,/F),, we have the iso-
morphism

ker(ry) 2= (A4'(F}))/ Nk, /r,(4"),,

where ker(ry) is the dual of ker(r,). Thus it suffices to prove that Nk, ;r (4") =
A'(F’,) under the above hypotheses. We have an exact sequence

0— Fa(mp,)— AF)) — A'(f) = 0

where /7, is the residue field for F', and F 4 is the formal group for a Néron model of
A" over OF,. By Proposition 3.9, of [CG], the norm map for a formal group is sur-
jective for unramified extensions. Thus F AI(mF;J) is contained in Nk, JF, (4"). Hence
it suffices to verify that if f”/f’ is any finite extension of finite fields, then
Ny /,v(Z( )= Z?( f7). This amounts to the assertion that H2(f”/f’, A'(f")) vani-
shes since G(f”/f") is cyclic. To verify it, note that H2(f"/f', A'(f")) has the same
order as H'(f"/f’, A'(f")). To prove this is trivial, it is then enough to show that
H'(f, fif(f’)) =0, where j_” denotes an algebraic closure of f”. But this is not hard
to show by using the facts that G(f’/f") = Z and A'(f") is a divisible group. O

1. K/F is a Z,-extension

Assume first that K,,/F, is unramified. (This can occur!) If 4 has good reduction over
F,, then Proposition 4.3 asserts that ker(r,) = 0. If 4 has potentially good reduction,
then Proposition 4.3 easily implies that |ker(r,)| is bounded as F’ varies.

Assume now that K /F, is ramified and that 4 has potentially ordinary reduction.
The inertia group I(K,/F,) must have finite index in G(K,/F;). This means that the
residue field /7, is of bounded degree over f,, as F’ varies. Then by proposition 4.2
and the subsequent remark it follows that ker(a,) has bounded order. (In the case
of good ordinary reduction the obvious fact that A(f7,) stabilizes is enough.) Now
consider d,: H'(F!,, D) — H'(K,, D). We have ker(d,) = H'(K,/F!,, D(K,)). Let L
be again a fixed finite extension of F, where 4 has good reduction. Let k& be the resi-
due field for LK,, which is a finite field. Thus D(LK,) = /I(k)p is finite and therefore
so is D(K). It is then obvious that ker(d,) and hence ker(b,) are finite and of boun-
ded order as F’ varies. Combining these observations, it follows that ker(r,) is finite
and has bounded order as F’ varies.

Under certain hypotheses we can assert that ker(ry) =0 for all F’. We have
already shown this if v is unramified in K/F and A has good reduction over F,.
Assume now that v is ramified in K/F. Assume also that 4 has good ordinary reduc-
tion at v and that the order of /I(fv) is not divisible by p. Since /7, /f, is a p-extension,
it clearly follows that /i(f;,)p =0 for all F'. Hence, by Proposition 4.2, ker(ay) = 0.
The residue field k of K, is also a finite p-extension of f,. Thus D(K,) = A(k) =0
again. It follows that ker(b,) = 0. Therefore the hypotheses that K/F is a Z,-exten-
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sion, 4 has good, ordinary reduction at v, and A( Jv), = 0 are sufficient to conclude
that ker(ry) = 0 for all intermediate fields F”.

II. K= F(A[p™])

In this case we will show that ker(r,) is finite but of unbounded order as F’ varies,
under the assumption that 4 has potentially ordinary reduction at v. The finiteness
of ker(ay) is clear because it is isomorphic to im(i,)/im(4y)g, and H'(F!,, C) is
cofinitely generated over Z,. Now A achieves good, ordinary reduction over
F,(A[p]) for odd p (and over F,(A[4]) if p =2). Proposition 4.2 implies that
|ker(ay)| is unbounded since the same is true of |/I(f/v,)p|. In fact, if we take
F' = F, = F(A[p"])) for any n>2 and if v, is a prime of F, lying above v, then
|A( Jo)pl = p*",  where f, ~ denotes the residue field for v, We have
ker(ay,) = A'(f,,) and one can verify that ker(a,,) ~ (Z/p"Z)* as n — oo.

Now we consider the finiteness of ker(d,). Note that D(K,) = D. Assume that I/ is
any open pro-p subgroup of G(K,/F;) such that the action of I/ on D is unramified.
(For example, U = G(K,,/F,(A[p"])) for n = 2. We will add a few more requirements
on the choice of U below.) It suffices to show that H'(i{/, D) is finite. Let V denote the
inertia subgroup of U. Then U/V = Z,. Let u € U be chosen so that «) is a topo-
logical generator of ¢/V. Then H°(U, D) = ker(u — 1) is finite (as pointed out in
the proof of Proposition 4.2) and therefore H'(4/V, D) = D/(u — 1)D is trivial. Also
clearly H>(U/V, D) = 0. Therefore,

H'U, D)=~ H'(V, DV = Homyy(V/V, D).

Now U acts faithfully on the vector space V' = T,(4) ® Q,. Let V be the quotient
space T,,(/I) ® @p. (We assume that 4 has good reduction over K ff ) Let
W =ker(V— V). We will assume that U/ker(y) = Z,, where y:U — 1+pZ,
denotes the cyclotomic character. Let N =V nNker(y). Then NSV CU and
U/N = Z; is Abelian. Now V acts trivially on ~17 and by X|V on W. Hence, N is a sub-
group of Aut(¥") which acts trivially on both ¥ and W and so can be identified with a
subgroup of Hom(¥, W). This shows that N is Abelian, isomorphic to Z’p” for some
m > 0, and also that V/N acts on N by x|v. It follows that [N: V'] < co. The finite-
ness of H'(U, D) follows immediately because Homy,y(V/N, D) is isomorphic to
H'U, D).

We can take U = G(K,/(F,),,) for n>> 0, where F, = F(A[p"]) and v, is a prime
above v as before. The above discussion shows that H°(U, D) =~ /i(fvn)p is a homo-
morphic image of ker(d,,) = H'(U, D). It follows that ker(d,,) contains a subgroup
isomorphic to (Z/p"Z)*. One can verify that ker(d,,) ~ (Z/p"Z)* as n — co. We
noted previously that the same statement is true for ker(a,,). By carefully studying
the structure of the groups H'((F,),, . C), H'((Fy),, . A[p™]) and H'((F,), . D), one
can show that ker(r,,) ~ (Z/p"Z)* as n — oc.

We remark that the preceding discussion shows that K/F is admissible if 4 has
potentially ordinary reduction at all primes p of F lying over p, as we will now
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explain. We already mentioned that G(K/F) is a p-adic Lie group and that K/Fis Z-
ramified for a finite set Z of primes of F. Now if we take v = p, then d, and i, are the
Lie algebras for ¢ and V, respectively. The Lie algebra for N is i;, which coincides
with b}, since Dy/1, is the Lie algebra for the Abelian group U/N.

I11. Arbitrary K/F

Let b, denote the Lie algebra for G(K,/F,). Let 1, be the Lie subalgebra corres-
ponding to the inertia subgroup of G(K,/F,). Let D(K,) = HY(K,, D). We prove
the following results, assuming still that 4 has potentially ordinary reduction at v.
Note that if 4 has good reduction at v, then D(K,) = /L,(k,]), where /IU is the reduc-
tion of A4 at v and k, denotes the residue field for #.

PROPOSITION 4.4. Assume that D(K,) is finite. Then ker(ry) is finite and has
bounded order as F' and v' vary. In particular, this is true if D, = 1,.

PROPOSITION 4.5. Assume that D, = 1.. Then ker(ry) is finite.

Proof of Proposition 4.4. Since A and A’ are isogenous over F,, there is a sur-
jective Gr,-homomorphism from D’ to D, with finite kernel. Hence, D'(K,)) is finite.
Proposition 4.2 implies that |ker(a,)| is bounded by |[D'(K,)|. By Lemma 2.1, we see
that H'(U, D(K,)) is finite and has bounded order, where U varies over all closed
subgroups of G(K,/F,). Thus ker(d,) is finite and has bounded order. Note that the
bound depends only on v and not on the choice of the prime # lying over v. If b, = 1,
then the residue field k, of K, is finite. Since A’ has potentially good, ordinary
reduction at v, one can bound |D'(K,)| by |D[(K:7)| = |/I’(k;])|, where K is a finite
extension of K, such that A" has good reduction over K and k; denotes the cor-
responding residue field, which will still be finite. OJ

It is worth remarking that if G(K,/F,) is a pro-p group and if both H°(F,, D) and
H°(F,, D) vanish, then D(K,)= D'(K,) =0 and so the above proof shows that
ker(ry) = 0 for all F’ and v'. In particular, this is true if 4 has good, ordinary reduc-
tion at v, pf|A(f;)], and G(K,/F,) is pro-p. For in this case, A(f,) and fit(fv) have the
same order and HO(F,, D) = /i(fv)p, HC(F,,D") = /I’(fv)p are both trivial. Since
G(Ky,/F,) is pro-p, it follows easily that D(K,) and D'(K,) are both trivial.

Proof of Proposition 4.5. We might as well assume that D(K,,) is infinite. We know
that ker(a,) is finite. We must show that ker(d,) is also finite. But this follows
essentially as in II above, using the hypothesis that D/ = i . It suffices to show that
H'U, D(Ky)) is finite for all sufficiently small open subgroups U of G(K,/Fy). (This
then is true for all open U{.) We assume that I/ is pro-p, that the inertia subgroup V of
U acts trivially on D(K,), and that [U": V'] < oco. Here U’ and V' denote the com-
mutator subgroups of & and V), respectively. Now clearly H (U, D(K,)) is finite and
U/V =7, As in 11, the inflation-restriction sequence shows that H'(U, D(K,)) is
isomorphic to Homyy(V/V', D(K,)). But since U'/V" is finite, it is enough to show
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that Homy,y(V/U', D(K,)) is finite. But this is obvious because ¢//V acts trivially on
V/U', HU, D(K,)) is finite, and V is topologically finitely generated. O

In the proof of proposition 4.5, the key fact is that Homy,y (V/V', D(Kj))) is finite
for all sufficiently small open subgroups U of G(K,/F,). This leads to a simple
necessary and sufficient condition for the conclusion of that proposition. Suppose
that ¢/ is an open pro-p subgroup of G(K,/F,), that its inertia subgroup V acts trivi-
ally on D(K,), and that the Lie algebra of V' is 1. (It can happen that the Lie algebra
of V' is bigger than i.) These assumptions hold for any sufficiently small open sub-
group of G(K,/F,). Let u € U be chosen so that uV is the Frobenius element of ¢/ V.
Now the map x — uxu~! for x € V induces a linear transformation of the vector
space (V/V) ®z, Q, over @, (of dimension e = dim(i,) — dim(i}) > 0) with eigenva-
lues {o}, 1 < 5 < e. (Counting multiplicity, although that will be of no importance.)
Also, u acts linearly on the vector space 7,(D(K;)) ®z, Q,, with eigenvalues {f,},
1 <1</ Here T,(D(Ky)) is the Tate module for D(K,) and f = corankz, (D(K))).
On the residue field of K, u induces the map y — »9, where ¢ = p” for some
m = 1. We denote m by deg(u). We define the following sets:

Av - {Ing(OCS)/ deg(u)}l <s<er Bv - {logp(ﬁt)/ deg(u)}l <t < f- (6)

These sets are independent of the choice of . The first set depends only on the
Galois extension K,/F, (and, in fact, only on K,, which is independent of #|v).
The second set depends only on the G(k/k)-representation space T, »(D(Ky) @ Q,,
where k is the residue field of any finite extension of F, over which A4 achieves good
reduction. This representation space is a subspace of the G(k/k)-representation space
Tp(fi) ® Q,. Thus the §,’s are algebraic numbers (in fact, Weil numbers), since they
are contained in the set of eigenvalues of a Frobenius automorphism acting on
Tp(/I) ® Q, (where one must suitably adjust the residue field). These eigenvalues
are just the p-adic unit eigenvalues associated to T)(4) ® @, for any prime / # p.
We remark that A, = ¢ when i, =1, and B, = ¢ when D(K,) is finite.
We will prove the following result.

PROPOSITION 4.6. Assume that A has potentially ordinary reduction at v. Then the
following statements are equivalent:

(a) ker(ry) is finite for all F' and v'.
(b) A, and B, are disjoint.

Proof. By Proposition 4.2, ker(ay) is always finite. Thus (a) is equivalent to the
assertion that ker(dy) is always finite. We might as well assume that I//V = 7Z,,.
(Otherwise, Y/ =V and one sees easily that D(K,) is finite. Then B, is empty and
ker(r,) is finite by Proposition 4.4.) The finiteness of ker(d,) for all F' and v’ is
equivalent to the finiteness of Homy,(V/V', D(Kj,)) for all U as described above. If
this last group is infinite for some choice of U/, then clearly {o,} and {f,} will fail to be
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disjoint. Thus A, N B, will be nonempty. Conversely, if A, N B, is nonempty, then
we will have ocls’" = ﬁi’k for some s, ¢, and k, where 1 < s<e, 1 <r</f and k> 0.
(Since U is pro-p, the ay’s, f,’s are principal units in some finite extension of Q,.) We
can assume that k =0, i.e., that oy = 5, (replacing U by Uy it necessary). Thus o
and f, have the same minimal polynomial over @Q,. Then the (U/V)-representation
space (V/V') ® Q, will have a nontrivial quotient which is isomorphic to a U/V)-
invariant subspace of 7,(D(K,)) ® Q,. This will imply that Hom,»(V/V', D(K,)) is
infinite for suitably chosen /. ]

Our final result about the case v|p is the following.

PROPOSITION 4.7. Assume that there is a continuous representation p,. Gp, —
GL,(Q,) such that K, = FX"") and such that p, is Hodge—Tate. Then D, = 1..

Proof. Gp, acts on the Q,-vector space D, through the natural adjoint repre-
sentation of G(K,/F,) on its Lie algebra d,. This action induces a representation
o,: Gp, — Autg, (D, /11). We have an exact sequence

0 — 1,/i, = 0,/1, > /i, > 0

of finite-dimensional Q,-representation spaces for Gr,. Of course, we can assume
that d, # i, and so dimg,(d,/i,) = 1. Let & be an open subgroup of G(K,/F,) and
let V denote the inertia subgroup of Y. If U is sufficiently small, then the Lie algebra
of V will be 1, and the Lie algebra of V' will be /. Also, the adjoint representation of
U induces the trivial representation on d,/1,. The adjoint representation of V induces
the trivial representation on 1,/i,. Thus, if ¢ is chosen sufficiently small, V' acts tri-
vially on both 1,/i, and d,/1,. Therefore, these Q,-representation spaces of G, are
Hodge-Tate and the corresponding Hodge-Tate weights are all 0’s. (Remark: The
Hodge-Tate property for a representation of Gr, and the corresponding weights
are unaffected by replacing F, by a finite extension Kff . The weights depend only
on the restriction to the inertia subgroup G KV For these elementary facts, see [Fo].)

The assumption that p, is Hodge-Tate turns out to imply that ¢, is also Hodge-
Tate. The corresponding weights for ¢, would be all 0’s. According to a theorem of
Sen (corollary to theorem 11 in [Se]), the image of the inertia subgroup Grwr under o,
must then be finite. It follows that if I is chosen sufficiently small, the natural action
of V on U/V’ by inner automorphisms will be trivial. That is, V/V' will be a subgroup
of the center of U/V'. Since U/V is topologically cyclic, it then follows that U//)" is
abelian. But then &' =)' and so D, =1, as claimed.

It remains to show that g, is Hodge—Tate. The category of Hodge-Tate represen-
tation is closed under tensor products, contragredients, subrepresentations and quo-
tients. Let ¥, be the underlying Q,-vector space for p,. Let p;/ denote the
contragredient of p,. Then p, ® p, is Hodge-Tate. This representation gives the
action of Gr, on Hom(V,, V). The Lie algebras d,, 1,, and i, are Q,-subspaces which
are invariant under the action of Gf,. The action on D, is the adjoint representation
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of G(K,/F,). It follows that ¢, which gives the action of G, on d,/1, induced by that
on Hom(V/,, V), must indeed be Hodge-Tate. O

(D) The kernel of rx/r

We will conclude this section by combining the previous observations to study
the kernels of the maps rg/r: P4(F') = P4(K), where K/F is a given p-adic
Lie extension, S-ramified for some finite set .S of primes of F, and where F’ varies
over all finite extensions of F contained in K. We assume always that 4 has poten-
tially ordinary reduction at all primes p of F lying over p. The kernel of gk, is
just ker(rg/r) N G4(F'). Let X be a finite set of primes of F containing S, all primes
lying over p and oo, and all primes where 4 has bad reduction. If v¢ X, then Pro-
position 4.1 implies that ker(ry) =0. Thus, in fact, ker(rg ') C P%(F') where
PL(F') = [1, Ha(F'), v running over the set X(F’) of primes of F’ lying over
the primes in X. We regard Pi(F’) as a subgroup of P,(F’). We first discuss
two special cases.

I. K/F is a Z,-extension

Let v € X. If v splits completely in K/F, then ker(ry) = 0 for all F" and all v/|v. If v
does not split completely, then the decomposition subgroup of G(K/F) for v has
finite index, i.e., v is finitely decomposed in K/F. But our previous observations
show that |ker(r,)| is finite and has bounded order for all such v (and v|v). Hence,
it follows that ker(rg,/r) is finite and of bounded order as F’ varies.

1I. K = F(A[p*)])

Since we have shown that the groups ker(r,) are all finite in this case, it follows that
ker(rg/r/) is finite for all F’. But its order is unbounded as F’ varies. In fact,
ker(rg/r/)[ p] is often of unbounded order. To discuss this, we will consider the sub-
fields F' = F, = F(A[p"]) for n > 0. The growth of ker(rk,r,) exhibits some regulari-
ties. Let m = my4 denote the dimension of the p-adic Lie group G(K/F). For every
nonarchimedean prime v € X, let m, denote the dimension of a decomposition sub-
group G(K,/F;) (for any n|v). Here we can take X to consist of all primes of F" which
divide p or oo or where A4 has bad reduction. For n > 0, G(F,,/F) has order ap™" and
the image of G(K,/F,) in G(F,/F) has order bp"", where a, b > 0 are fixed positive
constants. Thus the number of primes of F, lying over v is tp~")" for n >> 0, where
t = t, > 0. We denote any of these primes by v,. Since F,,/F and K/F are Galois, the
structure of the group ker(r,,) is the same for all primes v, of F, lying over v. There
are several distinct cases:

(1) v|l, I # p or oo, A has potentially good reduction at v. Then A4 has good reduction
over (F), forn =1 (orn>2if p=2)and all v,|v. Also, K/F, is unramified at
v,. Thus, by Proposition 4.1, we then have ker(r,,) = 0.

(i) v|l, [ # p or oo, A does not have potentially good reduction at v. In this case
ker(r,,) coincides with the corresponding factor Hl((Fn)U", A[p™]) in Pi(Fn),
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which is isomorphic to 4'((F,),,),- Thus, ker(r,,) has unbounded exponent as n
varies, but ker(r, )[ p] has order p* for n > 0. As pointed out earlier, m, = 2.
The number of such v,’s is 7,p"" 2" for large n.

(iii) v|p. From our earlier discussion, it is clear that ker(r,, ) has unbounded exponent
since that is true for ker(a,,). But ker(a,,)[p] has order p¢ for n>1 and
H'(U, D)[p] also has bounded order as U/ varies over open subgroups of
G(K,/F,). (See the remark preceding lemma 0.2.) Thus |ker(r,,)[ p]| is at least
p%, and is bounded as n varies. It is clear that m, > 2.

(iv) v|oo. The infinite primes of F, are complex. Thus ker(r,,) = 0 when n > 2 in this
case. Note however that, if v is real, then there will be subfields F’ of K of arbi-
trarily high degree in which v splits completely. Then, if ¢, > 0 and if p = 2, the
archimedean contribution to ker(rg,r/) will be of exponent 2 but of unbounded
order.

We have the following consequences. The exponent of ker(rk,r,) is unbounded as
n — oo. The order of ker(rg,r,)[ p] is also unbounded unless m, = m for all primes of
Flying over p or where A4 does not have potentially good reduction. This condition is
quite stringent, but it does hold, for example, when 4 is an elliptic curve with com-
plex multiplication. In that case, 4 has potentially good reduction at all primes and
m, = m = 2 when v|p. It is possible that no examples exist with m > 2.

I1. Arbitrary K/F
We immediately have the following result.

PROPOSITION 4.8. Assume that K/F is admissible. Then ker(rg,r) is finite for all
finite extensions F' of F contained in K.

Remark. The conclusion that ker(rg,r) is always finite is valid under the fol-
lowing substantially weaker hypothesis: A, N B, = ¢ for all primes v of F lying over p.
Here A, and B, are the sets A and B defined in (6), which depend only on A4, v, and
K/F.

Under various sets of hypotheses on 4 and on K/F, one can prove more precise
statements about ker(rg/r/). To simplify our remarks, we assume that 4 has good,
ordinary reduction at all v lying over p. We let ¥ =X, UZX, U Xpq U Zram, wWhere
Y denotes the set of archimedean primes of F, X, the set of primes lying over p,
2bad the set of primes where A has bad reduction, and X, the set of primes rami-
fied in K/F. We are assuming that X, N Xpq = ¢, although it is likely that
2, N Zam # ¢ and possible that Xpag N Zram # ¢. We will discuss several types of
behavior for ker(rg/r/), being content in each case to give convenient sufficient con-
ditions for that behavior. For v ¢ X, Proposition 4.1 shows that the contributions
of ker(ry) to ker(rg/r) is trivial for all v'|[v. Hence, it is enough to study the beha-
vior of the contributions when v € £, which our previous observations in this sec-
tion determine.
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(i) When is ker(rg/r) = 0 for all F'? This will be true if all of the following condi-
tions hold:

Forve X, /Iv(k,,)p = 0, where k, denotes the residue field for K correspond-
ing to some 5|v and A4, denotes the reduction of 4 modulo v.
ForveXZbutg X, U Xy A(Ky), =0 ifv e Ziam; A(Ky), is divisible if v & X am.
Forve X, :If p=2, F, 2R, and K, = C, then A(F,) is connected. No condi-
tion if p # 2 or if F, = K,,.

The sufficiency of this set of conditions is easy to explain. For v|oo, if A(F,) is con-
nected, then the integer e, defined in (B) is zero. For v|p, if 141(1@1)1J =0, then
ker(ay) =0 by Proposition 4.2 and ker(dy) =0 simply because D(K,)=0. For
g X, UXo UZyn, the triviality of ker(ry) if A(Kn)p is divisible follows from the
remark after the proof of Proposition 4.1.

In the conditions for nonarchimedean v € X, if G(K,/F;) happens to be pro-p, then
one can simply require that

/i(fv)p =0 for vlp and A(F)), = 0 for v|p,

which would be easier to verify.

(ii) When is ker(rg/r) # 0 for all F'? Here are two sufficient conditions:

There is a v € X, such that i, # 0 and /Iv(fv)p #0,
or
There is a v ¢ £, such that m, =2 and 4'(F,), # 0.

For the first condition, note that fiu(f;,)p # 0 for any F’ and any v'|v, where f7,
denotes the residue field for v'. Also, since i, # 0, K,;/F, is a deeply ramified exten-
sion. Then, by (4), we have ker(r,) D ker(ay) and, by Proposition 4.2, we have
ker(ay) #0. For the second condition, note that since m, =2, we have
ker(ry) :HI(F;,,A[pOO]) and this group has the same order as A'(F,),. Since
A'(Fy), C A(F},),, we have ker(ry) # 0.

(iil) When is the exponent of Ker(rg,r') bounded ? This will be true if and only if both
of the following conditions hold:

For v € X, either i, = 0 or /I(k,?)p is finite.
Forv ¢ X, UZ, either m, <2 or m, =2 and A(Ky), = 0.

If i, = 0 for v|p, then the inertia subgroup of G(K,/F,) is finite. One can then apply
Proposition 4.3 (first taking a suitably fixed finite extension of F,). If i, # 0, then K,
is deeply ramified. One can apply Proposition 4.2. The finiteness of /I(kn)p is equi-
valent to the assertion that ker(a,) has bounded exponent. (Note: |ker(ay)[p]| is
bounded.) The finiteness of /](ky,)p also implies thgt the order of ker(d,) is bounded.
If i, = D,, then ky is itself finite and hence so is 4(k;),. But if i, # D,, then Gy, has

https://doi.org/10.1023/A:1023251032273 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023251032273

GALOIS THEORY FOR THE SELMER GROUP OF AN ABELIAN VARIETY 281

proﬁnite order prime to p. Hence /i(kﬂ)p is divisible. Thus /I(k,,)[7 is finite if and only
if A(k,), =0, in the case where i, # D,.

If v € X, then ker(ry) has exponent at most 2. Now assume that v ¢ X, U Z.
Then our remarks in (A), III show that ker(r,,) has bounded order if and only if
either m, <2 or m, =2 and A(Kp), is finite. The boundedness of the order and of
the exponent are equivalent since |ker(r,)[p]| is certainly bounded. If m, = 2, then
G, has profinite order prime to p. Hence, A(Kj), must be divisible. Therefore, in this
case, the finiteness of A(Kj), is equivalent to A(K,;), = 0.

(iv) When is ker(rg p)[ p] of bounded order? Here is a sufficient condition:

For all v € £ such that m, < m, we have ker(r,) = 0 for all v'|v.

Note first that, for any fixed v, |ker(r,)[ p]| has bounded order. Also, note that the
number of primes v’ of F’ lying over v is bounded (as F’ varies) if and only if m, = m.
Sufficient conditions for the triviality of ker(r,) are described above (for the ques-
tion about when ker(rg/r) = 0). Note that m, = 0 for archimedean primes, which
can be important if p = 2. As we pointed out in the case K = F(A[ p*°]) and as later
examples will illustrate, it is often true that ker(rk,r/)[ p] has unbounded order.

(E) The kernel of gx/r
The above results help to study the behavior of

ker(gg/r) = ker(rk/r) N Ga(F').

As mentioned at the beginning of (D), we have ker(rg/r) C P5(F'), where X is a
finite set of primes of F containing Zo, ,, Zpad, and Zpm. Then K C Fs, the maxi-
mal extension of F unramified outside X. We let gﬁ (F’) denote the image of the map

yps H'(Fg/F', A[p™]) — P5(F").

Then we have ker(gg/r) = ker(rg/r) N gi(F’). That is, ker(gg/¢) is just the kernel
of the natural map ker(rg/r) — ?i(F /)/QE(F ). One can study coker(yp) =
Pi(F ’)/Qi(F ") by using the global duality theorems of Poitou and Tate and hence
obtain information about the structure of ker(rx/r)/ker(gx/r ). Referring to Pro-
position 4.13 in [G1], which gives a rather general result about this, one has

dimz,,z(coker(yp)[p]) < pp 4 2 dim(A), )

where pp = corankzp(SelA(F ),)- Also, corankz, (coker(ys)) < pp. If ppr =0, then
coker(y) = A'(F'),.

Assuming the finiteness of IlL4(F"),, we would have pp = rankz(A(F")). Very little
is known about the behavior of this quantity as F’ varies. (See chapter 1 of [G2] for a
discussion of this in some cases.) On the other hand, it is relatively easy to study the
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behavior of ker(rg/r/). For example, if K = F(A[p*]), then we remarked at the end
of DII that dimgz,,z(ker(rk/r,)[p]) is unbounded as n — oo unless A satisfies a
rather stringent condition. We do not know at the present time when
dimgz,,z(ker(gx/r,)[ p]) is unbounded, but a sufficient condition for this would be that
dimz,,z(ker(rg/r,)[ p]) — pr, is unbounded. We will discuss the behavior of ker(gg/r')
further in Sections 5 and 6.

5. Control Theorems

We can now discuss the kernels and cokernels of the maps sg/r. We first consider the
two special cases.

1. K/F is a Z,-extension

From Section 3 we see that ker(/ig/r/) is finite and of bounded order as F' varies.
We also see that coker(/ix/r') = 0. Section 4 shows that ker(rg/r') is finite and of
bounded order, assuming of course that 4 has potentially ordinary reduction at
all primes v of F lying over p. The exact sequence (1) then gives the following result,
slightly generalizing proposition 6.4(i) of Mazur [M].

PROPOSITION 5.1. Assume that A has potentially ordinary reduction at all primes
of F lying over p. Let K be any 7 ,-extension of F. Then the kernel and cokernel of sg/r
are finite and of bounded order as F’ varies.

If A(F), = 0, then A(K), = 0 also, and hence ker(/ix,r) is trivial. Therefore, sk/r is
injective for all F'. It is possible for sk, r to be injective even if A(F), # 0. To simplify
our discussion of this, we will assume that 4 has good ordinary reduction at all v|p. For
such v, we define @, = ker (A(F,), — /Iv(fv)p), where f, is the residue field of F, and the
map is reduction modulo v. For non-Archimedean primes v not lying over p, we define
O, = A(F,) N (AF™),)giy- For all v, ®, is a subgroup of A(F,),. If vf p and 4 has good
reduction at v, then ®,= A(F,),. We define the following subgroup of
A(F),: ® = (,(A(F) N ®,), where the intersection is over all non-Archimedean primes
v of F. (It suffices to let v run over X, U Xp,q.) We then have the following result.

PROPOSITION 5.2. Assume that K/F is a Z,-extension in which every v e X, is
ramified and every v € Zyaq is finitely decomposed. (For example, the cyclotomic Z,-
extension of F has these properties.) Assume that A has good, ordinary reduction at the
primes of F lying above p. Suppose also that ® = 0. Then sgp is injective if [F': F] is
sufficiently large.

Proof. For ve X, let I, denote the corresponding inertia subgroup of
I' = G(K/F). For v € Zy,gq, let T', denote the corresponding decomposition subgroup
of I'. (Note: v/ p implies that v is unramified in K/F.) By assumption, the /,’s and
I';’s have finite index in I'. Now A(K), is in fact finite. This follows easily from the
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hypothesis that /, is nontrivial for all v € X,. Now choose an open subgroup I/ of I'
such that Y C I, forve X,, U CI', for v € Zpaq, U acts trivially on A(K),, and on
A(Ky),/(A(Ky),)aiy for all v € Zpaq, where 17 is any prime of K lying over v. Such a
choice of U is clearly possible. Let F’ be such that G(K/F’) € U. Then we will show
that ker(sK/F/) =0.

Suppose to the contrary that ker(sg/r) contains a nonzero element o. Now
A(K), = A(F'), and so o € Hom(G(K/F'), A(F'),). For each v € X, U Zp,4, and
for any v'|v, let 0, = ‘7|G,., , regarded as a l-cocycle with values in A[p™]. Also,
for each such v/, define a sv{lbgroup ®, of A(F,), just as @, was defined above for
F,. For ve %,, we will havg oy € im(4y) since o € Sel4(F’),. Now the inertia sub-
group Ir:, acts trivially on A[ p*], which implies that avr| I has values in C,. Since
v is totally ramified in K/F’, it follows that im(¢’) ='6,(/f/,) is contained in
A(F'), N ®y. Now if v€ T, then o, =0 in H'(Fy, A[p™]). But o, is in
H\(G(K,/F"), A(Ky),), which is canonically isomorphic to Hom(G(K,/F),
A(Ky),/(A(Ky),)aiv)- Thus, the values of ¢y are in (A(Ky),)qw = AK)IN
(A(F)™),)giv- (Note that G(F;™/K;) has profinite order prime to p.) Thus, the values
of the cocycle ¢ are in the subgroup @ = (), (A(F "), N @y). But one verifies easily
that ® = (@)Y Hence, ® = 0 since G(F'/F) is a p-group. Thus ¢’ = 0, showing
that sk is injective when G(K/F’) C U. O

If ® # 0, then one can reverse the above proof to show that ker(rg,r/) is nonzero
when [F': F] > 0 provided that im(4,) is divisible for all ¢'|p (and so coincides with
im(x,)). This woulc~1 be true if /L.(fv)p =0 for all primes v of F lying above p. For
then we also have 4,(fy), = 0 for v|v and this means that im(4,) is indeed divisible
(as a consequence of Proposition 4.2).

It is possible for sk/r to have a nontrivial kernel even if ® = 0. For example, one
might have A(K), = A(F), and H'\(T, A(K),) = Hom(I', A(F),) could contain a
nontrivial element which has trivial restrictions to some or all of the decomposition
subgroups of I" for primes in X, or Zpaq.

Consider the special case where F=Q and K = (., the cyclotomic Z,-exten-
sion of @. Then p is totally ramified in Q4 /Q. If p is odd, then ® = 0. This is
clear since the inertia subgroup of Gg, acts on ker(A[p] — /Ip[ p]) by the Teich-
miiller character w, which has order p — 1 > 1. The proof of Proposition 5.2 shows
that ker(sq. @) = 0 too. But for p =2, it is possible that ® # 0 and, nevertheless,
it still turns out that ker(sg_,g) =0. (We will not go into the proof of this last
assertion here. It involves identifying the elements of order p in H'(Q 2 Cp)divo
where C, = ker(A4[p*>°] — /Ip[ p*].) An example where ® # 0 is the elliptic curve
A defined by y? + xy = x* — 784x — 8515. The conductor of this curve is 21. It
has good, ordinary reduction at p =2 and multiplicative reduction at 3 and 7.
One sees easily that @, #0 for v € {2,3,7}. The discriminant for this curve is
3.7% and so Q(4[2]) = Q(+v/3). Since v/3 ¢ @, for v=2,3, and 7, it follows that
A(Q,)[2] = Z/27 and hence ®,[2] = A(Q,)[2] for those primes. But A(Q) has order
2 itself. Therefore, it is clear that ® = A(Q) for the above elliptic curve 4.
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Our results in Section 4 give a sufficient condition for coker(sk,r) to vanish for all
F’, namely: If v € X, and is ramified in K/F, then PIAS)). If v € Ziad, then AF,™),
is divisible. No condition is needed for v|oo, since Archimedean primes split comple-
tely in K/F. We also note that, for v € Xy,,4, it would suffice that A(Fv)p = 0. For then
A(Ky), = 0.

II. K= F(A[p™])
Applying the results of Sections 3 and 4 to this case provides a proof of Theorem 4
stated in the introduction. For we have shown that ker(hg/r) and coker(hg/r') are
finite. With the hypothesis on the behavior of 4 at v|p, we have seen that
ker(rg/r'), and hence ker(gg/r ), is finite. Therefore, diagram (1) again implies the
finiteness of the kernel and cokernel of sk, proving Theorem 4.

We noted in Section 3 that ker(/ig/r/) has unbounded order. But, nevertheless, we
can prove the following result.

PROPOSITION 5.3. Suppose that dim(A) = 1 and that A has potentially ordinary
reduction at all v|p. For n = 0, let F, = F(A[p"]). Let K = F(A[p™]). Then ker(sg/F,)
has bounded order as n varies.

Proof. We will use the notation and observations given in Section 3, II. Thus
ker(hg/r,) = Hom(G(M, /Fy,), A[p"]). Let 6: G(M,,/F,) — A[p"] be an arbitrary ele-
ment of ker(hg/r,). We will show that if o € ker(sk,r,) = ker(hg/r,) N Sely (Fn)ps then
the order of ¢ is bounded independently of n. (We will only use the local conditions
for primes of F, lying above p to show this.) This suffices because ker(/ig/, )| p] is of
bounded order too. Assuming that n is sufficiently large, ¢ will factor through
G(L,/F,), where L, = M, N F»,. We have G(L,/F,) = (Z/p"Z)"~". If v, is any prime
of F, lying above p, let I, denote the corresponding inertia subgroup of G(L,/F,).
Replacing F by F) (or F, if p = 2) if necessary, we can assume that 4 has good,
ordinary reduction at the primes of Flying above p. If v is the prime of F lying below
v, let A, denote 4 modulo v and let C,, = ker(A4[p"] — A,[p"]), where the map is
reduction modulo v,. Since 7, acts trivially on /IU[ p"], it follows that if ¢ € ker(sk/r,),
then o(f,,) C C,, for all primes v, of F lying above p.

Let T,(A) denote the Tate module for 4. If 5 is any prime of K lying above v (a
prime of F above p), let U, = ker(T,(4) — Tp(/L,)). Then T,(A4)/U, = Z,, and the
action of the Galois group G(K,/F,) on this quotient is given by an unramified
character y: G(K,/F,) — Z; of infinite order. Now there must be a prime 5’ of K
lying above p such that U, # U,. For otherwise, U= U, would be invariant
under the action of G(K/F) and this group would act on [7,(4)/U] by a
character ¥: G(K/F) — ZPX which has infinite order and is unramified at all
primes of F lying above p. But it is easy to see that no such W exists. Thus, we
can choose #' so that U, # U,. It follows that U, + U, is a subgroup of T,(4) of
finite index p*.

Suppose that v, and v}, are the primes of F, lying below 1 and n’, respectively. Then
C,, and C, are the images of U, and U, under the natural map 7,(4) — A[p"].
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Now |Cy, N Cy | is equal to the index of C,, + Cy, in A4[p"], and this is bounded by A
for all n. Let J = I, N 1,. If ¢ € ker(sk/r,), we must have ¢(J) C Cy,, N Cy. That is,
|, has order bounded by p*. Furthermore, if g € G(F,/F), then g acts on G(L,/F,)
as an inner automorphism. We have I, = g(1,,,) and Cg,) = g(C,,), and similarly
for v,. It follows that a(g(J)) C g(Cy,, N Cy) if o € ker(sk/r,), and hence aly, has
order < p*. Let V, be the subgroup of G(L,/F,) generated by the subgroups g(J),
g € G(F,/F). Then if ¢ € ker(skyr,), it follows that o], has order bounded by -
To prove the proposition, it is enough to show that [G(L,/F,): V] is bounded as
n— oo.

The action of G(K,/F,) on T,(A) is triangular. If g € G(K,/F,), then g acts on

T,(A) by a matrix ["’gg) wfg)}. Here  is an unramified character of infinite order

and ¢ = yy~!, where y denotes the cyclotomic character. If 4 has complex multipli-
cation, then this action is diagonalizable and G(K,/F,) is a two-dimensional p-adic
Lie group. Its inertia subgroup I/(K,/F,) is one dimensional. If 4 does not have
complex multiplication, then it can be shown that G(K,/F,) is a three-dimensional
p-adic Lie group and /(K /F,) is two-dimensional. In both cases, if Z, denotes the
subgroup of G(K,/F,) which acts on 7,(4) as multiplication by a scalar, then
I(K,/F,) N Z, is trivial. We will identify G(KX,/F,) with the decomposition subgroup
of G(K/F) for n, and I(K,/F,) with the inertia subgroup. If Z denotes the subgroup
of G(K/F) acting on T,(A) as scalars, then I(K,/F,) N Z is trivial. Thus the image of
I(K,/F,) in G(M/F), which is the corresponding inertia subgroup of G(M/F), is a
p-adic Lie group of dimension 1 if 4 has complex multiplication, and of dimension
2 otherwise.

Assume that 4 has complex multiplication. Then G(K/F,) = Zﬁ if > 0 and the
inertia subgroup I(K,/F,) N G(K/F,) will then be a direct summand. It follows that
the inertia subgroup for v, (the prime of F, lying below 1) in G(F»,/F,) = (Z/p"Z)* is
cyclic of order p". Its intersection with G(F»,/L,) is trivial and, hence, 1, is cyclic of
order p". Thus, 1, = G(L,/F,). The same will be true for 1,,. The proposition follows
immediately from this.

If A does not have complex multiplication, then we have instead G(Fy,/F,) =
(Z/p"Z)* and the image of I(K,/F,) N G(K/F,) in this group will be isomorphic to
(Z/p"Z)* for n>> 0. The intersection with G(Fs,/L,) is trivial and so we have
I, = (Z/p"Z)*. The same is true for I . Since G(L,/Fy) = (Z/p"Z)%, it is not hard
to see that J = I,, N [, must contain a subgroup isomorphic to Z/p"Z (for n > 0).
It follows that the G(F,/F)-module G(L,/F,) has a quotient W, = G(L,/F,)/Vy
which is isomorphic to (Z/p“Z) x (Z/p"Z) for some a,, b, > 0. The proposition will
follow if we show that a, and b, are bounded as n — oo.

By a well-known theorem of Serre, the image of the representation G — GL»(Z))
giving the Galois action on T,(A4) is of finite index in GLy(Z,). Let V,(4) =
T,(4) ® Q,. Then the adjoint representation Adj(V,(4)) = Sym*(V,(4)) ® det™" of
Gr will be irreducible. Now it is easy to define a natural isomorphism
G(L,/F,) = Adj(A[p"]) as modules for G(F,/F). Also Adj(A[p"]) can be identified
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with the Gp-module Adj(7,(A4))/p"Adj(T,(A4)). Assume that a, and/or b, is unboun-
ded as n — oco. This implies that the Gp-module Adj(7,(4)) has a sequence of quo-
tients which are isomorphic to (Z/p™Z)° (as groups) for all m > 1, where e is either 1
or 2. It is not hard to deduce from this that Adj(7,(4)) must then have a Gp-quotient
isomorphic to Z; (as a Z,-module). This contradicts the fact that Adj(V,(4)) is
irreducible. O

It seems reasonable to believe that the hypotheses that 4 has potentially ordinary
reduction at primes over p or that dim(4) = 1 in Proposition 5.3 are not necessary,
although we have not looked at those questions closely. We also have not considered
the behavior of ker(sg,r) when F' is allowed to vary over all the finite extensions of
F contained in K. But it is interesting to consider the infinite extensions M, of F. We
allow the dimension of A4 to be arbitrary. We assume that F has been replaced, if
necessary, by F; (or F; if p = 2) so that 4 has good, ordinary reduction at all primes
over F. Also we assume that F contains p, (or yy if p = 2) so that K is just the com-
positum of M, with the cyclotomic Z,-extension of F. Thus G(K/M,) = Z,. Now
K/M, is unramified at all primes of M, not lying over p. For the primes above p,
the argument in the proof of Proposition 5.3 concerning inertia groups is easily
adapted to show that the inertia subgroup of G(K/M,) for primes over p is trivial,
i.e. K/M, is unramified everywhere. The earlier arguments in part I of Section 3
show in this case that ker(/k/as,) and coker(hg/y,) are trivial. The local arguments
are easily adapted to show that ker(rg/ay,) is trivial too. In fact, they are quite easy
in this case because A(Kp), is certainly divisible for any . (In verifying the triviality
of the contribution to ker(rk/u,) for any 5, one should note that G(K,/(M,),) is
either trivial or isomorphic to Z,. Also (M,),/F, is a deeply ramified extension
and so im(k(y,), ) = im(4y,, ).) From these remarks, one obtains the following
result.

PROPOSITION 5.4. Assume that A has good, ordinary reduction at all primes of
F lying over p and that F contains w, (or w4 if p=2). The natural map
Sk/m,: Sely(My,) — Sel ((K)P®™MD s an isomorphism for any n = 0.

Hence ker(sg/r,) = ker(sy,/r,) and coker(sg/r,) = coker(sy,/r,) for all n > 1 (or
n = 2 if p = 2). We have essentially used this observation to study ker(sg/r,) above,
but the behavior of coker(sk,r,) is much more difficult. In fact, we cannot show that
coker(sk/r,) can be unbounded, although it seems likely that this sometimes happens.
The main difficulty is that we don’t understand how rankz(A4(F;)) grows as n — oo.
We will now discuss this.

In (E) of Section 4, we mentioned that ker(gg/r,)[ p] would be of unbounded
dimension if dimgz/,z(ker(rg/r,)[pl) — p, is unbounded, where we recall that
pn = corankz, (Sel,(F,),). If indeed this is so, then the exact sequence (1) together
with the fact that both ker(/ig/r,)[ p] and coker(hg/r,)[ p] have bounded dimension
show that dimz,,z(coker(sk,r,)[ p]) is unbounded as n — oo. To state a more precise
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result, let X' be the set of primes v of F such that either v|p or A fails to have poten-
tially good reduction at v. Let X be the primes of F, lying above those in X’ and let
o, denote the -cardinality of ZX/. Let t,=2dim(4)o,—p, Then we
have

PROPOSITION 5.5. Assume that t, — 0o as n — 00. Then coker(sk/r,) contains a
subgroup isomorphic to (Z/p”_"Z)T”_C, for all n > 0, where ¢ and ¢ are constants.
Proof. For every prime v, in X, the remarks in AIL,(ii) and CII of Section 4 show
that ker(r, ) contains a subgroup isomorphic to (Z/p"~Z)*%™“ for all n > 0, where
¢ is a constant depending only on the prime v of Flying below v,,. Since X' is finite, we
can assume that c is independent of v and, hence, that ker(rg,r,) contains a subgroup
isomorphic to (Z/p"“’Z)zdim(A)”” for all n > 0. The bound on dimgz,,z(coker(y,)[ p])
stated in (7) gives information about the structure of coker(y,). Taking that into
account together with analogous information about ker(sg/r,) and coker(sig/r,)
implies the stated result. [

We will take up this topic again in Section 6, suggesting a possible source of exam-
ples where the hypothesis in Proposition 5.5 is satisfied.

II1. Arbitrary K/F

Theorem 1 follows immediately from Propositions 3.1 and 4.8 by using the exact
sequence (1). Thus, under the hypotheses of that theorem (or with the considerably
weaker hypothesis that A, N B, = ¢ for all v|p), ker(sk,/r) is finite and of bounded
order and coker(sk/#') is finite. Theorem 2 follows from Propositions 3.3 and 4.8.
Theorem 3 is obtained as a corollary using Proposition 4.7.

It is useful to know if sk, is an isomorphism for all F’. We will give one simple
result, which will give sufficient conditions for this to happen, and one useful corol-
lary. We assume that G(K/F) is pro-p, but it is not necessary to assume that it is a
p-adic Lie group.

PROPOSITION 5.6. Assume that K/F is Galois and that G(K/F) is a pro-p group.
Assume that A(F), is trivial. For all primes v of F lying over p, assume that A has good,
ordinary reduction and that A,(},), is trivial. For all primes v of F not dividing p which
are ramified in K/F or where A has bad reduction, assume that A(F,), is trivial. Then
SkyF s an isomorphism for all extensions of F contained in K.

Proof. Since G(K/F) is pro-p and A(F), = A(K)g(K/F) is trivial, it follows that
A(K), is tri\iial. Hence so are ker(/ig/r) an(~1 coker(hgyr/) for all F’. Similarly, the
triviality of 4,(f,), for all v|p implies that of 4,(f7,) for all primes v’ of F’ lying above
v. Thus ker(ay) =0 and D(K,) =0 for all primes n of K lying above v. Hence,
ker(r,) = 0 for all v/|p. For vfp, ker(ry) = 0 for all primes v’ of Flying over v if 4 has
good reduction at v and v is unramified in K/F, by proposition 4.3. For the other
primes, the assumption that A(F,), =0 implies that, for all nlv, A(Kj) =0 (since
G(K,/F,) is pro-p). This implies that ker(r,) = 0 for all ¢'|v. Hence, the hypotheses in
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Proposition 5.6 imply that ker(rg,r) = 0 for all F’. Therefore, ker(gx/r) = 0 too.
The conclusion follows from the exact sequence (1). O

COROLLARY 5.7. Assume that K/F is Galois and that G(K/F) is a pro-p group. Let
A be an Abelian variety defined over F satisfying the following hypotheses:

(i) A(F), =0 and Sel4(F), = 0.
(1) For all primes v of F lying above p, A has good, ordinary reduction at v and
/iv( Jv)p is trivial, where f, denotes the residue field for v.
(iii) For all primes v of F not lying over p which are ramified in K/ F or where A has bad
reduction, A(F), is trivial.

Then Sel4(F'), = 0 for all extensions F' of F contained in K.

Proof. The hypotheses imply that the map sx/r is an isomorphism. Since
Sel4(F), =0, it follows that SelA(K)If;(K/F) = 0. Now G(K/F) is a pro-p group acting
continuously on the discrete, p-primary, Abelian group Sel4(K),. It is easy to see
that SelA(K)g(K/F) =0 implies that Sel4(K), =0. If FC F' C K, the map sg/r is
injective (since A(K), = 0) and so Sel4(F"), = 0. O

There are also results in the opposite direction which are consequences of the basic
exact sequence (1) stated in the introduction and the observations in Section 4 about
ker(rg/pr). Under rather general hypotheses, one can show that Sel,(K), must be
‘large.’

PROPOSITION 5.8. Let K/F be any infinite Galois extension which is Z-ramified
for some finite set ¥ of primes of F. Let A be any Abelian variety defined over F.
Let A" denote the dual Abelian variety. Suppose that AK), = A’(K)p =0 and that
ker(rg/r) # 0 for all finite extensions F' of F contained in K. Then Sel,(K), is
infinite.

PROPOSITION 5.9. Let K/F be a Z-ramified Galois extension such that G(K/F) is a
p-adic Lie group. Let A be any abelian variety defined over F.

(a) Suppose that ker(rx )| p] has unbounded order as F' varies over the finite exten-
sions of F contained in K. Then Sel(K),[p] is infinite.

(b) Suppose that for any m,n = 1, there is a finite extension F' of F contained in K
such that ker(rgr) contains a subgroup isomorphic to (Z/p"Z)". Then Sel4(K),
contains a direct sum of infinitely many copies of Q,/Z,,.

Remark. Proposition 5.8 implies Theorem 5 of the introduction. Suppose that
v = p satisfies the hypotheses of that theorem. Then, as explained in (ii) at the end of
Section 4, we do have ker(r,) # 0 for all v/|v and so ker(rk/r) # O for all F’. Another
condition guaranteeing this, and so implying that Sel 4(K),, is infinite, is that there exists
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some prime v of Fnot lying over p such that v is infinitely ramified in K/F and such that
A'(Fy), # 0. If A has good reduction at v, A'(F,), has the same order as A, fy).

Proposition 5.9(b) implies Theorem 6 of the introduction. For if v = p satisfies the
hypotheses in that theorem, then the residue field &, for a prime n of K lying above v
contains the unique Z,-extension of f,. This 1mp11es that A ok )p is divisible. Since
A (o), # 0, clearly A v(ky), is infinite, and so the exponent of A »(/fv), is unbounded
as F’ varies over the finite Galois extensions of F contained in K and v’ over the
primes of F’ dividing v. Since the number of such primes v’ is unbounded and the
exponent of ker(r,) is also unbounded as F’ varies, the hypothesis in Proposition
5.9(b) indeed holds.

Proof of Proposition 5.8. Since A(K), = 0, it follows that ker(/g,r) = 0. Thus the
maps sk, are injective. Now Sel4(K), :li_n} Sel4(F’), and so if Sel4(K), were
finite, then Aig/r would induce an isomorphism Sel4(F"), — Sel4(K), for some finite
extension F' of F contained in K. Then coker(sg,r) = 0. It would follow from the
exact sequence (1) that ker(gx/r) =0. But ker(rg/r) #0 by assumption. Since
ker(rx/r') # ker(gg/r'), the discussion in (E) of Section 4 shows that coker(yz) # 0.
Since Sel4(K), is assumed to be finite, so is Sel4(F’),. It then would follow that
coker(yp) = A'(F’), = 0, which gives a contradiction. O

Proof of Proposition 5.9. For part (a), assume to the contrary that Sel,(K)[p] is
finite. Then Sel4(K), = (Q,/Z,)x(a finite group) for some a > 0. It follows that
coker(sg/r/)[ p] is finite and of bounded order. By the remark preceding Lemma 2.2,
ker(hg/r)[p] is also of bounded order. Using (1), we see that ker(gg,r)[p] has
bounded order too. Now ker(/ix/r') has bounded Z,-corank by Lemma 2.2. Hence, it
is clear that corankgz, (Sel4(#"),) must be bounded. Using the same notation as in (E)
of section 4, it follows that ker(rx/r)/ker(gx/r) is isomorphic to a subgroup of
775 (F’)/gi (F') = coker(yp). Now Sel4(F"), and Sel 4 (F’), have the same Z,,-corank.
Since this is bounded, it follows from the inequality (7) that ker(rg/r/)[ p] must be of
bounded order, contradicting the hypothesis.

To show (b), consider (Sel4(K),)q;,- It’s a divisible p-primary Abelian group and
so must be a direct sum of copies of Q,/Z, (see theorem 23.1 in [Fu]). It turns out
that Sel4(K),/(Sel4(K),)qiy has bounded exponent. To see this, we regard Sel (K )Ap
as a A-module, where A denotes the completed group algebra Z,[[U]] for an open
pro-p subgroup U of G(K/F). It is known that A is a Noetherian ring and that
Sel (K ) is a finitely generated A-module. The orthogonal complement of
(Sel4(K )p)d1V is the torsion Z,-submodule T of Sel (K ) This is a A-submodule of
Sel4(K), and so must be finitely generated as a A- module Hence, T and its Pontrya-
gin dUdl Sel4(K),/(Sel4(K),)q4iy must indeed have bounded exponent.

Assume that (Sel4(K),)q;, is a direct sum of just finitely many copies of Q,/Z,. We
will get a contradiction by showing that Sel4(K), contains a subgroup isomorphic to
(Z/p™Z)" for arbitrarily large m, n (and using the observation of the previous para-
graph). It suffices to show that coker(sk/r) contains such a subgroup for some F’.
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We will again use the exact sequence (1), taking advantage of the hypothesis con-
cerning ker(rg/r/) and the freedom to vary m and n. By the remark preceding Lemma
2.2, ker(hg/r)[ p] and coker(hg/r)[p] are of bounded order as F’ varies. This of
course greatly restricts the structure of the groups ker(/ix,r) and coker(hg/r ). (Note
however that these groups could be infinite.) It therefore clearly suffices to show that
ker(gx/r) contains a subgroup isomorphic to (Z/p™Z)" for arbitrarily large m and n
(and for some F’).

We are assuming that (Sel4(K),)g;, has finite Z,-corank. By Lemma 2.2, the
Z,-corank of ker(hg/r) is bounded. Hence, corankz,(Sel(F')p) is also bounded.
Referring to the proof of part (a), it follows that coker(y; )[ p] has bounded order.
This again restricts the structure of coker(yy ) and hence of ker(rg/r/)/ker(gk,r).
The hypothesis about ker(rg/r) therefore implies what we need about ker(gk,r),
giving the desired contradiction. O

6. Final Remarks and Examples

Ker(sk/r) can be infinite. It is not hard to give examples of this phenomenon. Suppose
that 4 is an Abelian variety defined over a number field F and that the Mordell-Weil
group A(F) is infinite. Then Sel4(F), contains the image of A(F) ® (Q,/Z,) under
the Kummer map «. This is isomorphic to (Q,/Z,)", where r = rank(A(F)). Taking
im(x) as Hp in the final remarks of Section 3, one can construct a p-adic Lie exten-
sion K/F such that im(x) C ker(/ig/r). Then, of course, im(x) C ker(sx/r). One can
describe K explicitly. Let

E=E4r=1{0 € AQ) | p"0 € A(F) for some m > 1}.

Then K = F(£), the field generated by the coordinates of all elements of £. Since
A[p*] C &, one has L = F(A[p™]) C K. It is also clear that K C Fy, where X is a
finite set of primes of F containing the primes over p or oo and all primes where
A has bad reduction.

Now ker(h,r) is finite. Hence, /;,r(im(x)) is a subgroup of

H'(L, A[p>]) = Hom(G(L*®/L), A[ p™])

which is isomorphic to (Q,/Z,)". A typical element of this subgroup is of the form
¢ = ¢¢ defined by ¢(g) = g(Q) — Q for all g € G(L*®/L), and all Q € £. By defini-
tion, the intersection of the kernels of the ¢,’s is G(L*/K). Thus G(K/L) can be
identified with a closed subgroup of Hom((Q,/Z,)", A[ p>]) = T,(A4)". This identifi-
cation is compatible with the natural action of G(L/F) on G(K/L) and T,(4)". In
particular, if r =1 and if the Gp-representation space V,(A4) is irreducible, then
G(K/L) can be identified with a subgroup of T,(A4) of finite index. The fact that
hg/r(im(x)) = 0 is clear since A(F) C £ and £ ® (Q,/Z,) = 0.

Coker(sg/r) can be infinite. We will give an example where all the hypotheses in
theorem 1 are satisfied except for the requirement that K/F be admissible. Since
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A(K), will be finite, so will be ker(hg,/r) and coker(ik,r). Hence all we need is to
make ker(gx/r) infinite. In light of Proposition 4.6, we must find an example where
A, and B, fail to be disjoint for some prime v|p. We will choose an example such that
Sel4(F), is finite. Then, as mentioned previously, QE(F ) will be of finite index in
Pi (F). It will therefore be enough to choose K so that ker(rg,r) is infinite. For that
purpose, let v be a fixed prime of F lying above p. We will choose K so that the kernel
of the map r,: H4(F,) = H4(K,) is infinite. Here # is a prime of K lying above v.
Although it is not necessary, we will assume for simplicity that dim(4) = 1 and that
A has good reduction at v.

Now H 4(F,) has Z,-corank [F,: Q,]. Choose a subgroup H, of H 4(F,) isomorphic
to Q,/Z,. Let a,(H,) denote the image of H, under the map a,. Then a,(H,) is a sub-
group of H'(F,, D,) isomorphic to Q,/Z, (since ker(a,) is finite). One can apply the
construction described at the end of Section 3, taking Hp, to be a,(H,) and obtaining
a certain extension Kj, of F,. The action of Gr, on D, is given by a character
v, Gp, — Z; of infinite order. Since A4 has good reduction at v, the character ¥, is
unramified and gives the action of G(F;™/F,) on D, = A,[p™]. Let Ly, = Fer)
Then G(Ly,/F;) = A x Z,,, where A is a finite group. The restriction map

v

H'(F,, D,)— H'(Ly,, D,)" /") = Homg, /Fv)(G(L;‘: /Ly.), Dy)

is injective if p is odd (and has finite kernel if p = 2). The image of a,(H,) under
this map is still isomorphic to Q,/Z, and coincides with Hom(G(K3,/Ly,), D),
where Ky, is a Z,-extension of Ly and is Galois over F,. In fact, G(Ky,/F,) is a
two-dimensional p-adic Lie group and the inertia subgroup is of finite index in
G(Kw,/Ly,) = Z,. Thus Ky, /F, is deeply ramified.

If we can choose K so that K, contains Ky,, then we will have

a,(H,) C ker(Hl (Fy, Dy) — H' (Ky, Dy)). ®)

Therefore, we will have H, C ker(r,), which makes ker(r,) infinite. Conversely,
assume that K/F is a p-adic Lie extension and that (8) holds. Then Ky, C K. To
see this, first note that K, /F, must be infinitely ramified. Otherwise, it is easy to
see that H' (Ky/Fy, Dy(Ky)) would be finite, contradicting (8). Also, (8) implies that
Dy(Ky) must be infinite. Now corankz (D,) = 1. Hence, D,(K;) = D, and hence
Ly, C K. It is then clear that Ky, C K, too.

To obtain such a field K, we will use an auxiliary elliptic curve E. Suppose that
E is an elliptic curve defined over F satisfying all of the hypotheses that we have
assumed for 4. Assume that ¥’ is the finite set of primes consisting of all primes
of F lying over p or oo and all primes where E has bad reduction. Since Selg(F),
is assumed to be finite, we know that QE’(F ) has finite index in PE(F ). It follows
easily from this that

H'(F,, E[p™)gy, C im(H'(Fy/F, E[p™]) — H'(F,, E,[p™))).
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Referring to the construction at the end of Section 1, we obtain a p-adic Lie exten-
sion K/F such that F(E[p>]) Cc K C Fs' and such that

H'(Fs /F, E[p™]) = ker(H'(F, E[p™]) - H'(K, E[p™])).
With this choice of K, it follows that
H'(F,, EJ[p™)aiy C ker(H'(F,, EJ[p™]) — H'(K,, E,[p*)). )

Now, in addition to all the previous assumptions about E, we require that E, =~ /IU
over f,, the residue field for v. We then have an isomorphism E,[ p>] = 4,[p>] = D,
as Gr,-modules. Since a,(H,) is divisible, it is a subgroup of H'(F,, D,)y;, and so (9)
implies that (8) holds. Therefore, we have Ky, C K, as we wanted. It remains to
show that 4 and E can be chosen so that 4(K), is finite. This is not hard to arrange.
Assume that 4 does not have complex multiplication and that there is a prime A of F
such that A has bad reduction at 4, but E has good reduction at 1. Then 12 & X" and
so A is unramified in K/F. But the action of G on V,(4) is irreducible. This implies
that if A(K), is infinite, then A(K), = A[p*]. That is, F(4[p>]) C K. But then 4
would necessarily be ramified in K/F. Hence A(K), is indeed finite.

For the above choice of K/F, it is rather clear that A, N 3, # ¢. Here we are using
the notation of (6). For the action of G(Ly, /F,) on G(K3, /Ly, ) is given by the char-
acter . The inertia subgroup of G(K3,/Ly,) is isomorphic to Z, and Ly /F, is an
unramified extension. Since Ky, C K, it is clear that a Frobenius automorphism u
will have (1) as one of its eigenvalues for its action on 1,/i,. By definition, ()
is also the eigenvalue of u acting on T,(D(Ky)) ®z, Q, since D(K;) = D,.

It is quite easy to find specific examples when F = Q and p is a small prime. If
p =3, we could take 4 to be defined by y* 4+ y = x* — x?, which is an elliptic curve
of conductor 11. It has good, ordinary reduction at p. Take E to be defined by
y? 4y =x3 — x* = 33x + 93, which has conductor 175. A theorem of Kolyvagin
implies that the Selmer groups over @ for both 4 and E are finite (since the values
at s = 1 of the Hasse—Weil L-functions are nonzero). They clearly have the same
reduction modulo p. Also, 4 does not have complex multiplication, and we can take
4 =11, as above, to see that A(K), is finite.

Coker(sg/r) can have unbounded order even if K/F is admissible. Assume that
G(K/F) = Z;’, where m > 2. Suppose that A4 is an elliptic curve defined over F satis-
fying the following hypotheses: (i) A(F) and Il 4(F), are both finite, (ii) 4 has poten-
tially ordinary reduction at the primes of F lying over p, and (iii) there is a prime v of
F not dividing p such that A4 has split, multiplicative reduction at v, the v-adic valua-
tion of the j-invariant j4 of A is divisible by p, and v does not split completely in K/F.
Then it follows that dimz/,7(coker(sk;#)[ p]) is unbounded. To see this, note that if 5
is a prime of K lying over p, then K, /F, must be the unramified Z,-extension of F,
(which is the only Z,-extension of F,). Thus G(K,/F,) = Z, and so it is clear that
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there exists a Z,-extension Fu,/F such that F,, C K and v splits completely in Fy,/F.
Hypothesis (i) implies that Sel(F), is finite. It then follows from Theorem 2 that
SelA(Foo),(,;(F ~/F) is finite. This implies that Sel 4(Fx), 1is A-cotorsion, where
A = Z)[[G(F/F)]l. Hence (Sel4(Fx),)giy 18 isomorphic to (@p/Zp)’1 for some
420 and therefore pp = corankg,(Sel4(F’),) </ for every subfield F’ of Fu.
On the other hand, by hypothesis (iii), we have that K, /F, is the unramified Z,-
extension when v'|v and n|v’ and that ker(r,) # 0 since A(Kj), will not be divisible.
(The last assertion is a consequence of the assumption on j,.) Thus we have
dimgz,pz(ker(rg/r)[ p]) = [F': F]. It then follows from the discussion in (E) of
Section 4 that dimgz,,z(ker(gx,¢)[p]) is unbounded as F’ varies over the subfields
of Fy, containing F. Since ker(/ix,r')[ p] and coker(/ix,#')[ p] have bounded dimension,
it is clear from the exact sequence (1) that dimz,,z(coker(sk,/r/)[ p]) is also unboun-
ded. It is not hard to find specific examples where the hypotheses (i)—(iii) hold.

We will now describe another possible kind of example. Let K = F(A[ p™]), where
A is an Abelian variety/F with good, ordinary reduction at the primes of F above p.
We know that K/F is admissible. Let F,, = F(A[p"]). For any prime v of F, the num-
ber of primes v, of F, lying above v is, of course, just the index of the decomposition
subgroup for v, in G(F,/F). If n is a prime of K lying above v, let m, denote the
dimension of the p-adic Lie group G(K,/F,) and let m = m, denote the dimension
of G(K/F). Then, for n>> 0, the number of v,’s lying above v will be a,p"—"",
where o, is a positive rational number. Let p,, o,, and 1, be as defined just before
Proposition 5.5. Then g, = X,y 0,p" . To show that 7, — 0o as n — oo, which
suffices to imply that |coker(sk/r,)| is unbounded according to Proposition 5.5, one
must compare the growth of ¢, and p,,.

It is interesting to consider the case where A is an elliptic curve defined over Q.
Assume that 4 has good, ordinary reduction at p and split, multiplicative reduc-
tion at primes /y, ...,/ where k = 1. Then A does not have complex multiplication.
Let F=Q, F,=QM[p"]) and K=QA4[p*>*]). We will assume that
G(K/Q) = GLy(Z,) and so G, = G(F,/Q) is isomorphic to GL»(Z/p"Z). We have
m=4, m, =3, and m;, =2 for 1 <i < k. Then, by studying the index of a decom-
position subgroup of G, for each /; and for p, one obtains the lower bound
an > k(1 —p=2)p* + (1 4+ p~")p".

To give an upper bound on p,, we will make a certain rather speculative (and per-
haps questionable) hypothesis. For each n > 0, let V,, = A(F,) ®7 C. We regard V,
as a representation space over C for G,. For each irreducible character y of G,,
we let m, denote the multiplicity of the corresponding irreducible representation in
V,. Thus

rankz(A(F,)) = dimg(V,) = Zmzdx’
p

where y runs over all irreducible characters of G,. The hypothesis that we will make
is that m, = 0if y # y and m, = 0 or 1 if y = x, with a number of exceptions which is
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bounded as n — oo. (For a discussion of this hypothesis and related examples, see
chapter 1 of [G2].) Assuming also that Il 4(F,), is finite for all n, it would follow that
P, < 0, + ¢, where 6, = X,—3d, and c is a fixed constant. (The sum is over all irredu-
cible characters y of G, which are real-valued.) Note that §, is a purely group-
theoretic quantity. One can show that ¢, < 2p”. In addition to the other hypotheses
that we are making, assume that k > 2. Then 1, = 20,— p,, = 00 as n — o0 and so
the conclusion in Proposition 5.5 would be valid.

The control theorem for III. Assume that 4 is an Abelian variety defined over F. For
any algebraic extension L of F, we can define Il 4(L) by the exact sequence

0— A(L) ®7 (Q/Z) — Sel4(L) — W 4(L) — 0.

Suppose that K/F is a p-adic Lie extension. One can ask about the behavior of the
maps

mysp: AF') ®2 (Q,/Z,) — AK) ®z (Q,/Z,)" ™,
txyp W4 (F'), — Ty (K) S,

Assuming that ker(sx/r') and coker(sk,r) are both finite and that III ,(F ’)p is finite, it
follows easily that ker(mg,r) and coker(mg,r) are finite too. If I4(F"),, is finite, as
conjectured, then obviously so is ker(¢g/F).

However, coker(fk/r/) can be infinite. Examples of this phenomenon are given in
[Br] for the special case where K/F is a Z,-extension. In that paper, F is taken to be
an imaginary quadratic field and A4 is an elliptic curve with complex multiplication
by the ring of integers of F. The Z,-extension K/F is chosen so that a certain p-adic
height pairing becomes degenerate. Specific examples are the curves 4 defined by
y? =x* — Dx for D =17, —63, —33, and 117, where the CM-field is F = Q(i) and
p = 5. Ineach case, there is a Z, extension K/F such that Il 4(K )g(K/ ) is infinite even
though II4(F), is finite. The rank of A(F) over End(4) is 1. It is conjectured that
this kind of phenomenon cannot occur if F is any number field, 4 is any Abelian
variety/F with potentially ordinary reduction at the primes above p, and K/F is
the cyclotomic Z,-extension. That is, under those hypotheses, III (K ),(,;(K/ ) should
be finite and, hence, so will coker(¢x/r ) for all finite extensions F’ of F contained
in K.

Multiplicative reduction at primes over p. Suppose first that 4 is an elliptic curve
defined over @ with split, multiplicative reduction at a prime p. Manin shows in
[Ma] that the control theorem for the Selmer group of A4 in the cyclotomic Z,-
extension Q,/Q follows from the assertion that ¢4/p“ is not a root of unity, where
a = Ord,(q4). Here g4 denotes the Tate period for 4/Q),, which is an element of @;.
The essential reason is that g4 is then not a universal norm for the extension
(Qw0),/Qp, where m is the unique prime of Q, lying over p. Now it has recently been
proven that ¢, is actually transcendental. (See [BDGP].) The control theorem there-
fore holds for @, /Q and, more generally, for the cyclotomic Z,-extension of an
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arbitrary number field F. But if K/F is an arbitrary Z,-extension, then the control
theorem may fail. This can happen if g4 is a universal norm for K, /F,, where v is
a prime of F lying above p which is infinitely ramified in K/F and 5 is a prime of
K lying above v.

Assume more generally that 4 is an Abelian variety/F. For every v|p, 4 achieves
semistable reduction over a finite extension of F,. Let &, denote the height of the for-
mal group for a Néron model of 4 over the integers in such a finite extension. The
p-power torsion points on that formal group define a subgroup C, of A[ p*>°] which is
Gr,-invariant and isomorphic to (@p/Zp)h” as a group. One can then define the
Gr,-module D, = A[ p*>]/C,, which is isomorphic to (@p/Zp)zg_hl‘ as a group, where
g = dim(A4). We will assume that /1, = g for all v|p so that the situation seems quite
analogous to the case where A has potentially ordinary reduction at all v|p.

Let K/F be a p-adic Lie extension which is X-ramified for some finite set X of
primes of F. Assume that either A(K), is finite or that the Lie algebra g of G(K/F)
is reductive (as in Theorems 1, 2 stated in the introduction). Then ker(sg/r/) will be
finite for all finite extensions F’ of F contained in K. To prove that coker(sg/r') is
finite, one must show that ker(ry) is finite for all v'|p. If v/|[v and 4 has potentially
ordinary reduction at v, then the hypothesis d), = i/ suffices to imply this. (Proposi-
tion 4.5.) The key ingredient in proving that result is verifying that ker(dy) is finite,
where d,, is the map occurring in the commutative diagram (5). However, the hypoth-
esis D) =1/ is not sufficient to imply the finiteness of ker(dy) if we assume only that
hy,=g.

Using the notation of part C of Section 4, the assumption /, = g implies that
im(4y) and im(xy) have the same Z,-corank. The inclusion im(x,) C im(/y) implies
that im(xy) = im(4dy)g;,- If K/F is infinitely ramified, then Proposition 4.3 of [CG]
states that im(x,) = im(4,). It follows from these results that ker(ay) is finite and
that the finiteness of ker(r,) is equivalent to that of ker(b,). It is clear from (5)
that ker(by) = ker(dy) Nim(ny). If Dy(K,) = ka" is finite, then it follows that
ker(dy) = H'(K,/F',, D,(K,)) is finite and hence so is ker(hy).

We will assume now that A is an elliptic curve defined over F which has split, multi-
plicative reduction at a prime v|p. In this case, we have D, = Q,/Z, and the action of
G, on D, is trivial. For brevity, let L = F, and U = G(K, /L), which is just an open
subgroup of G(K,/F,). We also let b, denote the Lie algebra of G(K,/F,). Then
ker(dy) 2 Hom(U/U', D,). If U is a sufficiently small open subgroup of G(K,/F;,),
then ker(dy) has Z,-corank equal to dimg,(b,/d}).

On the other hand, Proposition 3.6 of [G1] provides a description of im(n,). Let
g4 € F} denote the Tate period for 4. Then im(m,) is a certain subgroup of
Hom(G(L*®/ L), D,) and a homomorphism ¢ is in im(n,/) if and only if rec; (¢,) is in
ker(¢). Here rec;: L* — G(L*®/L) denotes the reciprocity map of local class field
theory. The difference between ker(b,) and ker(d,) depends therefore on the restric-
tion of reci(q4) to G(L*®NK,/L)=U/U. We have corankz, (ker(by)) =
rankz, (U/U') — ¢, where ¢ = 0 if this restriction has finite order and ¢ =1 if this
restriction has infinite order.
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In particular, if dimg, (d,/ D)) > 2, then ker(r,) is infinite whenever G(K,/F),) is a
sufficiently small open subgroup of G(K,/F,). Butif d, = D/, then ker(r,) will always
be finite. Consider the case where dimg, (,/ /) = 1. One can then choose a normal,
open subgroup U of G(K,/F,) so that U/U = Z,. Let L = Kln’ so that L is a finite
Galois extension of F, and K, contains a unique Z,-extension L, of L. If G(L/F,)
acts nontrivially on G(L/L) (by inner automorphisms), then it is not hard to see
that recz(q4)l,, is trivial. In this case, ker(r,) will be infinite if G(K,/F) C U.
But if G(L/F,) acts trivially on G(L/L), then there exists a unique Z,-extension
F, o of F, contained in K. If g4 is a universal norm for the Z,-extension F, o/ F,
(ie. if recFv(qA)| F o is trivial), then ker(r,) is always infinite. Otherwise, ker(r,) is
always finite. In the special case where K = F(A4[p*]), one has dim(d,/d)) = 1 and
K, contains the cyclotomic Z,-extension of F,. The Tate period ¢, is a universal
norm for that Z,-extension if and only if Nr,,q,(¢q4) is of form (p“, where { is a root
of unity. It is doubtful that this can happen, but not known.
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