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Abstract . The mapping method of Wisdom (1982) has been generalized to encompass all n-body 
problems with a dominant central mass (Wisdom and Holman, 1991). The new mapping method 
is presented as well as a number of initial applications. These include billion year integrations 
of the outer planets, a number of 100 million year integrations of the whole solar system, and a 
systematic survey of test particle stability in the outer solar system. 

1· Introduction 

A new mapping method for the numerical integration of planetary orbits is pre-

sented in Wisdom and Holman (1991). This mapping method is typically about an 

order of magnitude faster than other methods of integration which have been used 

in studies of the long-term evolution of planetary orbits. Here, the basic idea of the 

new η-body mappings is first presented. This is followed by a presentation of new 

billion year integrations of the outer planets carried out with the new mapping. 

The new integrations are compared to the 845 million year integration of the outer 

planets performed with a conventional integration technique on the Digital Orrery. 

Preliminary results of a number of 100 million year integrations of the whole solar 

system are then presented, followed by a quick summary of a systematic survey of 

test particle stability in the outer solar system. 

2. Mapping M e t h o d 

A complete presentation of the new mapping method can be found in Wisdom 

and Holman (1991). The new mapping method is a generalization of the mapping 

method of Wisdom (1982). In the original mapping method the Hamiltonian was 

analytically separated into parts with different associated timescales 

H — ÜKepler + Hur bital sonant + HS (i) 

The "Kepler" terms describe the basic Keplerian motion of the planets with respect 

to the Sun. The "Secular" terms include those terms which do not depend on the 

mean longitude. The "Resonant" terms contain resonant combinations of the mean 

longitudes. The "Orbital" terms represent all other terms that depend on the mean 

longitudes. The mapping method is motivated by the averaging principle. It is well 

known that the long-term evolution of planetary systems is often well described 

by the averaged system, obtained analytically by removing the "Orbital" terms, 

those terms which are fast, but not resonant. The idea of the mapping method is 

that if terms with periods of order of the orbital period can be removed without 

significantly affecting the long-term evolution then, equally well, other terms with 

those frequencies can be innocuously added. So new high-frequency terms are added 

so the resonant terms become multiplied by periodic delta functions. Symbolically, 

the Hamiltonian for the original mapping method is then 

Η Map — H Replet + Η Secular 4" # Re son αη^^Ι* (Ωί), (2) 
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where Ô2ir(i) represents a periodic sequence of delta functions with period 2ir and Ω 

is the mapping frequency. The introduction of delta functions allows the equations 

of motion to be solved locally. The "Kepler" terms and the "Secular" terms can be 

analytically integrated between the delta functions provided that "Secular" fourth 

order terms in the eccentricities and inclination are ignored. The "Resonant" terms 

can be integrated across the delta functions. Thus, analytical expressions can be 

derived for the local evolution of the system through one mapping period. The evo-

lution of the system is obtained by iterating this mapping. Refer to Wisdom (1982, 

1983) for more details. The mapping is very fast and has, now, been successfully 

used in a large number of studies of resonant planetary and satellite evolution. 

Despite the success and widespread use of these resonance mappings, they have 

significant limitations. First, they are not valid at high eccentricity and inclination, 

because the derivation of the mappings rely on an analytic representation of the 

disturbing function which must be truncated at some order in the eccentricities 

and inclinations. Also, they are valid only near the particular commensurabilites or 

group of commensurabilites included in the "Resonant" terms. Thus, the systematic 

study of the motion near a large number of commensurabilities requires a new 

derivation of the mapping near each set of commensurabilities, a very tedious job 

indeed. The new mapping method does not have these limitations. The cost is that 

the new mapping method is not as fast as the resonant mapping method, but it is 

still significantly faster than traditional methods of numerical integration. 

There are two key ideas in the new η-body mapping method. First, the new 

mapping method is based on a simpler separation of the Hamiltonian for the n-

body problem: 

H = HiCepler + Η Interaction- (3) 

Here again, the "Kepler" terms are the terms which represent the basic Keplerian 

motion of the bodies relative to the dominant central mass. The "Interaction" 

terms are the other terms. There are several different forms for the new mapping 

method. The simplest form of the new mapping method is obtained by adding new 

high-frequency terms to the η-body Hamiltonian so that it becomes 

H Map = Η Kepler + Hlnteraction^^2ir(^) (4) 

The Kepler Hamiltonian is integrable between the delta functions and the interac-

tion terms are integrable across the delta functions. This time no high-frequency 

terms are first removed, but by the same reasoning as before, the new high-frequency 

terms do not affect the long-term evolution. 

This idea alone does not make an efficient mapping. The reason is that the 

Kepler problem is naturally solved only in terms of Keplerian orbital elements or 

some canonical equivalent such as the Delaunay variables. Expressing the interac-

tion in terms of the Keplerian orbital elements would lead again to all the troubles 

associated with the expansion of the disturbing function. The interaction terms 

are simple only in one of the Cartesian coordinate systems. A possible solution 

is to evaluate the Kepler evolution in terms of the canonical Delaunay variables, 

make a canonical transformation to canonical heliocentric or Jacobi coordinates 
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and evaluate the interaction, then make another canonical transformation back 

to Delaunay variables. The intermediate transformations are cumbersome and the 

resulting mapping method is far from optimal. The second key idea in the new 

mapping method is to evaluate the Kepler evolution using Gauss' / and g func-

tions directly in Cartesian coordinates. The solution of the initial value problem 

in terms of Gauss' functions is another classic problem (for a review, see Danby, 

1988). The Kepler evolution in Cartesian coordinates is trivially made canonical. 

Intermediate canonical transformations are thus avoided. 

The basic idea of the new η-body mappings is remarkably simple. The mapping 

consists of alternating steps of Kepler evolution of the individual orbits interspersed 

with interaction kicks. The mapping is efficient if Cartesian coordinates are used in 

both phases of the calculation. 

Accomplishing the separation of the Hamiltonian for the π-body problem into 

the Keplerian parts and the interactions parts is a classic problem, and can be 

accomplished in either Jacobi coordinates or "canonical heliocentric" coordinates. 

Wisdom and Holman (1991) used Jacobi coordinates, erroneously dismissing the 

canonical heliocentric coordinates. The relative merits of the mappings in these 

different coordinate systems have yet to be carefully examined. Jacobi coordinates 

have been used in the applications presented here. 

Several improvements can be made in the simple mapping method just de-

scribed. For example, the mapping method can be made accurate to arbitrarily 

high order in the mapping stepsize. This and other refinements are discussed in 

Wisdom and Holman (1991). In the applications presented here, the second order 

version of the η-body mapping is used. Second order is achieved by evolving the 

system with the Kepler Hamiltonian for a half mapping step, followed by an alter-

nating succession of full interaction kicks and whole Keplerian steps, but ending 

with a half Kepler step. 

Though the new mapping method has been found as a generalization of the 

Wisdom (1982) mapping method, it is clear that it is also an example of a symplectic 

integration scheme. In fact, the mapping method of Wisdom (1982) can also be 

viewed as a symplectic integrator for the averaged resonance problem. It was not 

called this because the term "symplectic integration" is a later invention. 

3 . Billion Year Evolution of the Outer Planets 

A large number of tests of the new η-body mapping method have been carried out. 

The tests include evolutions of the circular and elliptic restricted three-body prob-

lems. Surfaces of section for the circular restricted problem have been compared 

with surfaces of section computed with traditional integration schemes. Lyapunov 

exponents in the planar elliptic problem have been compared with Lyapunov expo-

nents reported in Wisdom (1983), computed with a traditional integration scheme. 

In all cases the agreement was excellent and confirmed the usefulness of the new 

mapping method, even at high eccentricity. The most stringent test has been the 

calculation of the evolution of the outer planets for a billion years. The stepsize 

or mapping period in the new integration is about 1 year. By any measure, the 

longest and most accurate existing integration of a planetary system to date is the 
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845 million year evolution of the outer planets computed on the Digital Orrery 

reported by Sussman and Wisdom (1989). The nearest competitor is the ± 5 0 mil-

lion year integration of project LONGSTOP (Roy, 1990), which has approximately 

three orders of magnitude greater rate of growth of energy error. The evolution of 

the outer planets computed with the mapping agrees astonishingly well with the 

Digital Orrery evolution. The 137 million year period in the evolution of h = e sin m 

is recovered. The longer period variations in the inclination of Pluto are reproduced 

in detail. That the new mapping can accurately reproduce such long period varia-

tions is very impressive. The most astounding feature of these evolutions is however 

the relative computation time: the calculation took about three months of time on 

the Digital Orrery, a computer built specifically for the task running at about a 

third the speed of a Cray 1, whereas the new mapping evolution was computed in 

less than two weeks on an ordinary Hewlett-Packard RISC workstation. 

The Lyapunov exponent for the motion of Pluto found in the new calculation is 

consistent with the one found in the Digital Orrery calculation. This considerably 

strengthens the earlier result that the motion of the planet Pluto is chaotic. The new 

calculation was performed with a different integration method, with a drastically 

different stepsize which was not specially chosen, and on a different computer with 

a different word size. 

4 . 100 Million Year Evolution of the Solar System 

Following the calculation of Sussman and Wisdom (1989) that provided evidence 

of the chaotic motion of Pluto, Laskar (1989, hereafter La89) integrated the whole 

solar system (excluding Pluto) for ±100 million years and found numerical evidence 

that the evolution is chaotic. The timescale for exponential divergence is only 5 mil-

lion years. Laskar integrated a set of averaged equations with a very large number of 

terms (over 100,000) determined through extensive computer algebra. Laskar1 s sys-

tem is perturbative and necessarily truncated in eccentricity, inclination, and mass. 

It is obviously quite important to confirm Laskar's results in direct integrations. 

Direct integrations are however very time consuming, the longest direct inte-

gration of the whole solar system, performed earlier this year by Quinn, Tremaine, 

and Duncan (1991, hereafter QTD91) is only three million years. With the goal 

of testing Laskar's results, the mapping method has been used to integrate the 

evolution of the whole solar system for nearly 100 million years (see Sussman and 

Wisdom, 1992, hereafter SW92, for full details). This calculation was carried out 

on the successor to the Digital Orrery, the Supercomputer Toolkit, another special 

purpose parallel computer designed by Gerald J. Sussman (MIT), with William 

McAllistor (Hewlett Packard) and colleagues. The Toolkit is about 20 times faster 

than the Digital Orrery, and roughly has the scalar speed of the Cray X / M P . Eight 

simultaneous but independent calculations of the solar system evolution for 100 

million years, using the new η-body mapping method, took about 1000 hours on 

the Toolkit. In order to have a point of comparison, the physics and initial condi-

tions were chosen to be the same as those in the three million year integration of 

QTD91, which included relativistic and Earth-Moon quadrupole corrections, and 

took initial conditions from DE102. Even though the stepsize in this new mapping 
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T A B L E I 

Maximum differences in the eccentricities. 

I La89 - QTD91 | | QTÜ91 - SW92 | 
Mercury 0.0041 0.000018 

0.0020 0.000065 

0.0024 0.000059 

0.0041 0.000132 

Venus 

Earth 

Mars 

J il pi ter 

Saturn 

Uranus 

1er 0.0038 0.000047 

0.0081 0.000162 

0.0051 0.000008 
Neptune 

Pluto 
une 0.0026 0.000002 

D - 0.000001 

integration is an order of magnitude larger than that of QTD91 the agreement 

is quite good. The maximum difference in the argument of perihelion of Mercury 

between QTD91 and SW92 over this three million year interval is of order 0.0001 

radians; for comparison, the precession of the argument of perihelion due to gen-

eral relativity is about 2π radians over three million years. As another comparison, 

Table 1 lists the maximum differences between the eccentricities of the planets in 

the three integrations. 

The table illustrates that the mapping agrees quite well with a conventional di-

rect integration. The comparison between La89 and QTD91 is from Laskar, Quinn, 

and Tremaine (1991). Obviously, QTD91 and SW92 are mutually more consistent 

than either is to La89, though it is not clear whether this discrepancy is due pri-

marily to model differences or to the effects of truncation in La89. The evolution 

of Pluto over the full 100 million years has characteristics quite similar to those 

found in the outer planets integrations such as the 34 million year oscillation of the 

argument of perihelion of Pluto. 

Several different estimates of "Lyapunov exponents" have been computed. The 

divergence of individual planets gives an exponent for that planet. The exponent 

for Pluto is again consistent with the Digital Orrery calculation and the new billion 

year mapping calculations, and gives an inverse Lyapunov exponent in the range 

of 15-20 million years. This confirms that the evolution of Pluto is chaotic, and 

furthermore that the chaotic character of the evolution of Pluto is not a sensitive 

function of the model. For the whole solar system, the conventional Lyapunov ex-

ponent of the full phase space does not give a clear indication of chaos. Rather, 

it seems to be dominated by a quasiperiodic component in the divergence, and 

only at the end of the calculation does exponential divergence begin to dominate. 

Exponential divergence is clearer in the individual planet divergences. In order to 

reduce the quasiperiodic component in the divergence, a new "secular Lyapunov 

exponent" is introduced. The secular Lyapunov exponent is calculated by first con-

verting the positions and momenta into Keplerian elements, then the standard 

shape and orientation variables h = e sin τσ} k = e coster, ρ = sint/2sinŒ, and 
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q = sin £/2 cos Ω are formed. The full set of these variables are then used to define 

the "secular phase space," thus ignoring the mean longitude and semimajor axis 

dimensions. The new secular phase space divergence appears to be more diagnostic 

of the dynamics. The secular divergence appears to have two distinct exponential 

timescales. There is an initial exponential divergence with a timescale of about 20 

million years, and another which appears later with a timescale of about 5 million 

years. The two exponential timescales suggests that there may be more than one 

dynamical mechanism responsible for the chaotic evolution of the solar system. 

Laskar (1990) has found two resonance angles which appear to be alternately 

librating and circulating. In our calculation they also alternately circulate and li-

brate, though of course the detailed behavior is different since the evolution is 

chaotic. 

The fact that essentially the same results are found in two such strikingly differ-

ent calculations as those of La89 and SW92, strongly suggests that the solar system 

is indeed chaotic. 

5. Test Particle Surveys 

Several thousand 20 million year integrations of test particles in the outer solar sys-

tem have been carried out. Initial conditions studied include circular orbits between 

the planets as well as circular or nearly circular orbits at the triangular Lagrange 

points of the major planets. The basic results of this 20 million year study are (1) 

by and large most orbits between the planets are unstable and (2) there exist ex-

tensive stable regions at all the Lagrange points of the major planets, though the 

stable region is not in all cases simple. Details of these results will be published 

elsewhere (Holman and Wisdom) 

β. Conclusions 

The new mapping method for the η-body problem of Wisdom and Holman (1991) is 

a powerful new tool for studying the long term evolution of planetary and satellite 

systems. 

New billion year evolutions of the outer planets confirm the result of Sussman 

and Wisdom (1989) that the motion of the planet Pluto is chaotic with a divergence 

timescale of 15-20 million years. 

Hundred million year integrations of the whole solar system confirm Laskar's 

(1989) result that the evolution of the solar system is chaotic with a divergence 

timescale of about 5 million years. Alternate circulation and libration of two reso-

nance angles provide additional evidence that the evolution is chaotic, and suggests 

that the chaos may be a consequence of competing secular resonances among the 

inner planets. 
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Discussion 

P.Goldreich - I have the same question for you as for the previous speaker. What 

do your integrations imply about qualitative changes of the planetary orbits over 

the age of the solar system? 

J. Wisdom - The integration to date do not give any indication of a gross instability 

of the solar system. Of course, since the system is apparently chaotic, we cannot 

rule out the possibility of gross instability. Recall some chaotic asteroid trajectories 

have been seen to evolve chaotically for 100 Lyapunov times at low eccentricity 

and then suddenly jump to large eccentricity. It will be very interesting to see a 

number of integrations of the whole solar system for the age of the solar system 

and longer. 

S.F.Dermott - At the recent "Asteroids, Comets, Meteors" meeting in Flagstaff 

(June, 1991), E.Shoemaker argued that the Hirayama asteroid families may be 

young as he expects planetary perturbations to disperse the orbital elements. Have 

you found any evidence for this in your test-particle calculations? Would you expect 

any dispersion to occur? 

J. Wisdom - I have not studied that problem. 

CI. Froeschle - (1) What about the close approaches which are so important for 

cometary transfer through the solar system? (2) Do you see any limitation to your 

mapping integrator? . 

J. Wisdom - (1) As I have programmed the new map, it can only handle the case 

when the Keplerian motions are elliptical. Thus, in very close approaches, in which 

the osculating elements momentarily become hyperbolic, the program, as it stands, 

will fail. Presumably, this could be fixed by using universal variables for the solution 

of the Kepler motion. Not so close approaches, even temporary satellite capture, 

are handled satisfactorily even by the present program. (2 )1 am not aware of any 

significant limitations of the method. It has worked far better than I ever expected. 

G.Tancredi - Milani and Nobili (1990), in the frame of the Longstop project, criti-

cized your conclusion about the chaotic behaviour of Pluto, pointing out that: (1) 
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the saturation distance of 45 AU is an indication that the mean motion libration is 

preserved; (2) The mass of Neptune in your integration did not correspond to the 

latest determination and they claimed that this discrepancy could lead to a differ-

ent behaviour of some resonant argument that could induce the observed chaos. Do 

you have any comments on these points? 

J. Wisdom - (1) Their comment on the saturation distance of 45 AU was not a criti-

cism, just an explanation of an observed fact. We computed the divergence of Pluto 

also by the linearized variational method which does not saturate and agrees with 

the two particle method before it saturates. (2) We have carried out time integra-

tions which show that neighboring Pluto's diverge exponentially with a time scale 

of 20 Myr. In the last calculations, the masses and initial conditions are different 

from the first two. In particular, it had a large Pluto mass. The first calculations 

gave Pluto zero mass. The agreement of these calculations shows that the result 

is not a very sensitive function of masses and initial positions, as they conjecture. 

W.Landgraf - I like to pass a general remark and suggestion w.r.t. the long term 

motion of the planets and the question of their stability or any chaotic motion. 

In all investigations published until now, the authors have integrated only the mo-

tion of the objects, x(<), using some initial values Xo (< ) = x(<o)- Then, they com-

ment that, after very long time, because of the uncertainty of the initial values, 

<rXo1 the integration will have only statistic value, or even could happens a chaotic 

motion. 

My suggestion is to integrate the full matrix of deviations Ç(i) = D$£*J, for all 

planets. This can be performed with full accuracy (not necessarily by numeric vari-

ation), and it is not necessary to integrate, besides of this, the motion also (because 

x(<) == (/(<)· x 0 ) . Instead of G(t) referred to the rectangular coordinates, can also be 

integrated GE — τ τ - where E(f) are the elements at t and Eo at to. The behaviour 

of G Ε is much more informative than the integration of the motion itself, and do 

depend only minutely from the precise values of the initial values, or from their 

precision. 

QE(Î) shows immediately, when happens a transformation of the motion into a 

chaotic one (large values of GE) °r an unstable one (differences of G Ε from J change 

quickly with time), as normally G Ε is close to the unit matrix J. The integration of 

GE is only a little more effort than that of E(<), but gives much more informations. 

J. Wisdom - Integration of the full variational system is too computationally de-

manding. The integration of the planetary system alone, over the timescales of 

current interest, is barely possible. 
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