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We examine the sensitivity of Saffman–Taylor fingers to controlled variations
in channel depth by investigating the effects of centred, rectangular occlusions
in Hele-Shaw channels. For large occlusions, the geometry is known to support
symmetric, asymmetric and oscillatory propagation states when air displaces a more
viscous fluid from within the channel. A previously developed depth-averaged model
is found to be in quantitative agreement with laboratory experiments once the aspect
ratio (width/height) of the tube’s cross-section reaches a value of 40. We find that
the multiplicity of solutions at finite occlusion heights arises through interactions of
the single stable and multiple unstable solutions already present in the absence of
the occlusion: the classic Saffman–Taylor viscous fingering problem. The sequence
of interactions that occurs with increasing occlusion height is the same for all aspect
ratios investigated, but the occlusion height required for each interaction decreases
with increasing aspect ratio. Thus, the system becomes more sensitive as the aspect
ratio increases in the sense that multiple solutions are provoked for smaller relative
depth changes. We estimate that the required depth changes become of the same
order as the typical roughnesses of the experimental system (1 µm) for aspect ratios
beyond 155, which we conjecture underlies the extreme sensitivity of experiments
conducted in such Hele-Shaw channels.

Key words: bubble dynamics, nonlinear dynamical systems, Saffman–Taylor instability

1. Introduction
Two-phase displacement flow in a confined geometry is a fundamental problem

in fluid mechanics with applications in biomechanics, geophysics and industry. If
a viscous fluid (oil) is displaced by an inviscid one (air) and the geometry is
sufficiently small that gravitational and inertial effects can be neglected then the
dominant dynamic parameter is the capillary number Ca = µU∗f /σ , which quantifies
the ratio of viscous to surface tension forces. Here, µ is the viscosity of the oil,
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σ the surface tension of the interface and U∗f the velocity of the advancing interface.
The remaining parameters that influence the behaviour are entirely geometric.

Following the classic work of Saffman & Taylor (1958), the tube geometry that
has attracted the most attention is the Hele-Shaw channel: an axially uniform tube
with rectangular cross-section of large aspect ratio α =W∗/H∗� 1, where W∗ is the
width and H∗ the height of the cross-section. Saffman & Taylor (1958) introduced
a depth-averaged model of the system that possesses symmetric and asymmetric
(Taylor & Saffman 1959) families of solutions in the absence of surface tension. The
depth-averaged system involves a single modified capillary number 1/B = 12α2 Ca
combining geometric and dynamic effects. In experiments only a single symmetric
family of solutions is ever observed, and the fractional finger width λ= λ∗/W∗, where
λ∗ is the dimensional finger width, does indeed collapse onto a master curve when
plotted as a function of 1/B provided 1/B < 7000 (Tabeling, Zocchi & Libchaber
1987). The introduction of finite surface tension within the depth-averaged model
selects a single family of symmetric solutions with the correct qualitative behaviour
as shown by McLean & Saffman (1981), who modified the model accordingly, albeit
non-rationally in a strict asymptotic sense. A rationally derived, thin-film correction
due to Park & Homsy (1984) is required to give quantitative agreement between
this model and experiments (Reinelt & Saffman 1985) at small capillary numbers;
capillary numbers of O(10−3) are required to reduce the relative errors below 10 %.
Later, de Lózar, Juel & Hazel (2008) showed that the McLean & Saffman (1981)
depth-averaged model without the thin-film correction is in quantitative agreement
with three-dimensional Stokes simulations for α> 8 when Ca> 10−2; the lower bound
being a limitation of the Stokes simulations, rather than a failure of the depth-averaged
model. In fact, the rational inclusion of surface tension (at large values of 1/B)
requires a beyond-all-orders asymptotic analysis as reviewed by Tanveer (2000)
among others. It is also known that the McLean & Saffman (1981) model contains
alternative families of symmetric solutions (Romero 1982; Vanden-Broeck 1983), in
which the interface forms multiple tips (Gardiner, McCue & Moroney 2015), but
these are all unstable and have remained of academic interest only. It is also possible
to find solutions containing multiple distinct fingers in the presence of surface tension
(Magdaleno & Casademut 1999), but these are not the focus of our current study.

Motivated by the finger selection problem, many groups have investigated the
effects of geometric perturbations on two-phase flow in a Hele-Shaw channel. The
introduction of wires (Zocchi et al. 1987; Hong 1989), threads or grooves (Rabaud,
Couder & Gerard 1988) parallel to the direction of flow increases the curvature of the
finger tip, leading to alternative, narrower, symmetric fingers than in the unperturbed
system. Dendrite-like finger shapes have also been observed on introduction of
threads (Rabaud et al. 1988) or small bubbles in front of the finger tip (Couder
et al. 1986a; Couder, Gerard & Rabaud 1986b); the smooth sides of the finger
become unstable and develop oscillatory patterns that grow behind the tip as the
finger advances. Tabeling et al. (1987) found deviations from the symmetric finger
shape with tip splitting occurring for 1/B> 7000. A critical value of 1/B could not
be found, but the instability occurred at lower 1/B when the roughness was adjusted
from 0.3 % to 3 % of the channel height, suggesting that small, uncontrollable,
geometric non-uniformities were the cause of the instability. Early destabilisation due
to controlled perturbations of the interface was demonstrated by Chevalier, Lindner
& Clément (2007), who studied fingering in a granular suspension in viscous liquid,
where the perturbation amplitude was proportional to the grain size. Associated
theoretical studies have also explored finger stability (Bensimon 1986), and the effect
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of anisotropy on finger selection (Ben Amar & Brener 1996). In addition, a study
of viscous fingering in very large aspect ratio channels (158 6 α 6 490) revealed
unsteady finger propagation in which the finger tip exhibited significant lateral
movement (Moore et al. 2002). Finger width fluctuations were found to scale as
Ca−2/3, inversely proportionally to the film thickness deposited on the top and bottom
boundaries of the channel (Bretherton 1961; Park & Homsy 1984). The fluctuations
increased as the film thickness decreased and details of the wall roughness began
to influence the system. Thus, sensitivity to channel roughness could underlie the
meandering of the finger tip.

More recently, motivated by the physiological problem of airway reopening,
de Lózar et al. (2009), Pailha et al. (2012) and Hazel et al. (2013) investigated
two-phase flow through rectangular tubes with aspect ratio α6 13 that were partially
occluded by axially uniform rectangular blocks occupying 50 % and 33.3 % of the
tube height. Multiple stable modes of propagation were found in these geometries
including asymmetric and oscillatory modes as well as the expected symmetric
mode. These states are connected by a complex bifurcation structure that remains
incompletely understood, in part because only stable modes could be identified
experimentally. Thompson, Juel & Hazel (2014) modified the McLean & Saffman
(1981) depth-averaged model to include a prescribed depth profile and performed
numerical simulations for a channel aspect ratio α = 10 and relative obstacle width
αw=0.25, but with variable values of the relative occlusion height αh. The simulations
revealed that all experimentally observed states were predicted by the model. The
resulting bifurcation structure was qualitatively consistent with experimental findings,
but the nominal aspect ratio α = 10 was conjectured to be too small for the model
to yield quantitative agreement. Nonetheless, by continuously reducing the relative
height of the occlusion from αh = 0.2 to 0.01, Thompson et al. (2014) predicted
that multiple states should occur at much lower occlusion heights than used in the
previous experiments.

In this paper, we exploit the channel geometry introduced by de Lózar et al. (2009)
to probe the sensitivity of viscous fingering to a step change in channel depth as a
function of channel aspect ratio α. The system is simple, robust and enables transitions
between multiple states to be clearly identified when the geometric variations are on
a larger scale than the wall roughness. We begin by assessing experimentally the
predictive capability of Thompson et al.’s model, presented for completeness in § 2.
Thus, we conduct new sets of experiments in Hele-Shaw channels of α>20 containing
thin, centred, rectangular occlusions that range from 0.6 % to 12 % of the channel
height, which are described in § 3. In §§ 4.1 and 4.2, we demonstrate that the depth-
averaged model is in quantitative agreement with the experimental results for α> 40,
provided that Ca 6 0.012. Moreover, we find that the height of occlusion required to
observe bifurcations to asymmetric and oscillatory modes of propagation within the
experimental range of Ca decreases with increasing aspect ratio.

The quantitative agreement between experiments and the model allows us to
explore numerically, in §§ 4.3 and 4.4, the links between the multiple modes of
finger propagation that arise in the presence of a centred prescribed depth variation,
and the classical works in Hele-Shaw channels described above. In fact, we can
demonstrate for the first time that the asymmetric and multiple-tipped solutions
observed in smaller aspect ratio channels are the unstable asymmetric Saffman–Taylor
solutions and symmetric Romero–Vanden-Broeck solutions having been stabilised
by the presence of the occlusion. In § 4.5, we find that the decreasing occlusion
height required to stabilise the asymmetric solutions with increasing aspect ratio
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0 1

1
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FIGURE 1. Plot of the smoothed non-dimensionalised cross-section for a fractional
occlusion width αw = 0.25 and variable fractional occlusion height shown here with αh =
0.12, the maximum occlusion fractional height implemented in the numerical model.

becomes comparable with the typical roughness scale for α > 155. We conclude
with a summary of our results in § 5, in which we conjecture that the sensitivity
of Saffman–Taylor flow in large aspect ratio Hele-Shaw channels is an inevitable
consequence of the roughness-induced stabilisation of unstable solution branches
already present in the perfect system.

2. Depth-averaged model
We use the two-dimensional model for finger propagation in a Hele-Shaw channel

with spatially varying height profile, previously developed by Thompson et al. (2014).
The channel has dimensional width W∗ and maximum height H∗. We work in a
Cartesian coordinate system (x∗, y∗, z∗), aligned with the channel such that x∗ is
the axial coordinate and y∗ and z∗ span the cross-section. Hereinafter, asterisks are
used to distinguish dimensional quantities from the dimensionless equivalents. The
coordinates x∗ and y∗ are non-dimensionalised on the scale W∗/2 and the depth
profile b∗(y∗) on the scale H∗. Therefore, in dimensionless coordinates (x, y, z), the
fluid domain is X0 6 x 6 X1, −1 6 y 6 1 and 0 6 z 6 b(y) where X0 and X1 are the
truncation coordinates behind and ahead of the finger tip. The non-dimensional depth
profile does not vary with the axial coordinate x and the channel cross-section is
shown in figure 1. The profile is a smoothed step-like occlusion given by

b(y)= 1− αh

2
[tanh s(y+ αw)− tanh s(y− αw)], (2.1)

where αh and αw are the fractional height and the fractional width of the step,
respectively. The results have been shown to be independent of the sharpness
parameter s when s> 40 (Thompson et al. 2014). In all our calculations the fractional
width is αw= 0.25 and the sharpness parameter s= 40, while the aspect ratio is varied
within 20 6 α 6 160 and the fractional height 0 6 αh 6 0.12.

A pressure gradient −G∗ex is imposed far ahead of the finger tip. The pressure p∗
is non-dimensionalised on the scale G∗W∗/2 and the two components of the depth-
averaged horizontal velocity u∗ on the scale U∗0 =G∗H∗2/12µ, where µ is the dynamic
viscosity of the fluid considered a constant. By applying the lubrication approximation
(Reynolds 1886), the governing equation for the fluid pressure in the frame moving
with the constant velocity of the finger tip, U f = (Uf , 0) where Uf =U∗f /U

∗
0 , is

∇ · (b3
∇p)= 0 in Ω, (2.2)

the symbol Ω denotes the fluid domain. Following McLean & Saffman (1981),
Thompson et al. (2014) proposed the following dimensionless boundary conditions
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for the interface in the transverse plane R= (x, y), and for the channel boundaries:

n ·
∂R
∂t
+ n ·U f + b2n · ∇p= 0 on ∂Ωb, (2.3)

pin − p= 1
3αQ

(
1

b(y)
+ κ
α

)
on ∂Ωb, (2.4)

∂p
∂y
= 0 on y=±1,

∂p
∂x
= 0 on x= X0,

∂p
∂x
=−1 on x= X1, (2.5a−c)

where ∂Ωb denotes the finger boundary. Note that the boundary condition at x = X0
is applied only in the fluid domain, which itself must be determined as part of the
solution. Equation (2.3) is the result of introducing the velocity in the frame moving
with the tip of the finger, u = −U f − b2∇p, into the kinematic boundary condition
∂R/∂t · n = u · n, where n is the outer unit normal to the interface. We are mainly
interested in steady solutions, for which we can simply set ∂R/∂t= 0; this term is the
only time derivative in the problem and prescribes the unsteady evolution of the finger
which is important for stability analysis of steady states. Additionally, (2.3) assumes
that films deposited above and below the finger have zero thickness. The dynamic
boundary condition (2.4) is the non-dimensional form of the Young–Laplace equation
where pin is the constant finger pressure, κ is the non-dimensional curvature of the
interface in the (x, y) plane and Q=µU∗0/σ is the dimensionless flow rate based on
the average velocity in the unoccluded channel. The capillary number defined in § 1
is Ca=Uf Q in terms of the model variables.

We note that, as in McLean & Saffman (1981), the model is not rational in
the asymptotic sense because additional terms of order α−1 and α−2 should be
included. However, we shall demonstrate that the model is both qualitatively and
quantitatively correct (for sufficiently large α) suggesting that the neglected terms are
of small enough numerical value to be negligible in our region of interest. The Park
& Homsy (1984) correction corresponds to multiplying the curvature term by π/4
and is required for asymptotic consistency in the limit of large aspect ratio, small
Ca and no obstacle. The inclusion of this correction can be accommodated in our
formulation by rescaling α to α/(π/4) and Q to Q(π/4). The correction is valid only
for symmetric fingers, however, and very small capillary numbers, Ca∼O(10−3). We
have found that its inclusion gives worse quantitative agreement with the experimental
data presented in § 4.

The pressure jump in (2.4) is due only to the surface tension so that viscous
stresses at the interface are neglected. We note that if the channel height b(y) is
constant, the cross-sectional curvature term 1/b(y) in (2.4) can be absorbed into the
pressure, and does not affect the dynamics. However, for occluded channels, this term
is dynamically significant, and appears in (2.4) on the order of αhα

−1Q−1, whereas
the effect of the lateral curvature κ is on the order of α−2Q−1. This means that if
the aspect ratio α increases with αh fixed, the effect of the variable cross-sectional
curvature 1/b(y) becomes more significant and the two components of curvature
will become of a comparable size at smaller values of the relative occlusion height
αh. The other effect of the occlusion height on finger propagation occurs through
(2.2), which leads to O(αh) variations in the pressure within the fluid, which also
contributes to the pressure jump equation (2.4). The results presented in § 4.5 will
confirm this effect quantitatively.

The equations are discretised using a finite element method and the discrete
residuals are assembled and solved using the finite element library oomph-lib
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(Heil & Hazel 2006). The numerical methods are unchanged from those described
in detail and carefully validated in Thompson et al. (2014). Briefly, we use a
boundary-fitted moving mesh method in which the mesh is updated in response
to changes in the fluid interface position. These methods typically have better mass
conservation properties than immersed interface methods. We use an isoparametric
Galerkin method to solve the weak form of (2.2):∫

Ω

b3(y)∇p · ∇ψ dΩ =
∫
∂Ω

ψb3(y)n · ∇p ds, (2.6)

where ψ represents piecewise quadratic test functions that are also used to interpolate
the fluid pressure and unknown nodal positions. The boundary conditions (2.3) and
(2.5a–c) give conditions for n · ∇p on each boundary of the fluid domain and are
used on the right-hand side of (2.6).

The fluid domain is decomposed into triangular elements and updated in response
to changes in the interface position by treating the mesh as a pseudo-elastic body.
The required interface deformation is enforced by applying a normal stress to the
mesh equations at the free surface, determined by the weak form of the dynamic
boundary condition (2.4). The curvature term is not smooth for a piecewise quadratic
representation of the interface, so we project a weak derivative of the boundary
tangent vector onto a piecewise quadratic space in order to yield a continuous
curvature term.

Steady solutions are computed using Newton’s method combined with arc-length
continuation steps. The implicit second order BDF2 method is used for unsteady
calculations and the eigenproblem associated with a linear stability analysis formulated
by Thompson et al. (2014) is solved using a Block Krylov–Schur iterative algorithm.
As the system parameters change, elements within the bulk mesh can become distorted.
We perform a complete remesh when selected tolerances are exceeded by either a
‘Z2’ estimate of the error based on continuity of −b2∇p between bulk elements
or the curvature of the interface. The fluid domain was typically discretised with
approximately 1000 triangular elements and we confirmed that further refinement of
the mesh to 8000 elements did not change the results to graphical accuracy, e.g. see
figure 7.

3. Experimental methods
Experiments on finger propagation were performed in Hele-Shaw channels partially

obstructed with thin, centred rectangular occlusions positioned along the bottom
boundary. A schematic diagram of the experimental channel is shown in figure 2.
It was made of two glass plates of 60 cm × 10 cm × 2 cm separated by precision
machined brass sheets which fixed the height of the channel to H∗ = 1 mm with an
accuracy of 0.1 %. Each separator plate was connected to a translation stage so that
their positions could be adjusted with micrometric screws, resulting in a channel of
length L∗= 600 mm and variable width 96W∗6 60 mm. We performed experiments
for three aspect ratios α =W∗/H∗ = 20, 40 and 60. The rectangular occlusions were
made of thin adhesive films of width w∗ and thickness h∗, and positioned centrally
along the bottom plate. Different adhesive film thicknesses gave occlusions with
h∗ = 15± 1, 33± 1, 42± 1, 60± 1 and 120± 1 µm. These were chosen to yield a
series of fractional heights of the occlusion of αh= h∗/H∗= 0.015, 0.033, 0.042, 0.06
and 0.12, respectively. Owing to the technical challenge of implementing adhesive
films thinner than h∗ < 15 µm, an occlusion with αh = 0.006 (h∗ = 6 ± 2 µm) was
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Liquid reservoir

Thin film occlusion
Glass plate (2 cm thick)

Glass plate (2 cm thick)

SpacerSpacer

Clamping Clamping

Air finger

Oil

(a)

(b)
End view

Syringe pump

Side view

Tube length

Occlusion length

FIGURE 2. (a) End view and side view schematic diagrams of the channel with a centred
rectangular occlusion. The height of the channel was fixed to H∗ = 1 mm and its width,
W∗, was adjusted to yield channel aspect ratios α=W∗/H∗= 20, 40 and 60. Different thin
film occlusions were selected with fractional heights αh of 0.015 (1.5 %), 0.033 (3.3 %),
0.042 (4.2 %), 0.06 (6.0 %) and 0.12 (12.0 %). The fractional width of the occlusion was
fixed to αw = w∗/W∗ = 0.25. (b) Sketch of a finger propagating inside the Hele-Shaw
channel where a thin occlusion is centred along the bottom boundary.

manufactured by spraying uniformly a strip of acrylic paint over the glass. We
measured its height at 5 uniformly distributed locations by recording the difference
in height between the glass and the acrylic film using a micrometer with precision
±2 µm. This occlusion was used in the channel with α = 60 (see § 4.2). The
fractional width of the occlusion was kept constant at αw = w∗/W∗ = 0.25 for all
experiments. Hence, for the chosen aspect ratios α= 20, 40 and 60, the width of the
occlusion was w∗ = 5± 0.1 mm, 10± 0.1 mm and 15± 0.1 mm, respectively.

The channel was set-up by first positioning the occlusion half-way across the bottom
glass-plate with an accuracy of 1 % and then adjusting the width of the channel by
moving the separators and iteratively measuring the distance between the edge of
occlusion and the nearest wall along the channel to ensure that the channel had a
uniform width and that its walls were parallel to the occlusion. Therefore, the error
in the axial uniformity of the channel width was better than 3 %. Fluid reservoirs were
sealed to both ends of the channel using a rubber gasket. One of the reservoirs was
left open to the atmosphere and the other was connected to a syringe pump (KDS210),
which allowed infusion or withdrawal of liquid from the channel.

The channel was filled with silicone oil (Basildon Chemicals Ltd.) with density
ρ = 961 kg m−3, viscosity µ = 5.5 × 10−3 Pa s and surface tension σ = 2.1 ×
10−2 N m−1, which completely wets the channel. The viscosity was measured at the
laboratory temperature of 21±1 ◦C using a suspended level shortened form viscometer
(Poulten & Selfe). A free surface displacement flow was induced by withdrawing
oil at a fixed flow rate at one end of the channel while leaving the other end open
to the atmosphere; the withdrawal of oil circumvents compression effects in the air.
This procedure resulted in the steady propagation of a long air finger after the decay
of initial transients. The small value of the ratio of gravitational to surface tension
forces or Bond number, Bo= (ρgH∗2)/4σ = 0.11, suggests that buoyancy effects are
negligible because Jensen et al. (1987) showed that for Bo < 1, there is no change
to the pressure jump across the fluid interface in the small-Ca asymptotic limit of
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(a)

(b)

(c)

(d )
20 mm

FIGURE 3. Analysis of a finger profile extracted from an experimental image for
α = 40, αh = 0.06 and Q∗ = 45 ml min−1. (a) Original experimental image. (b) The
finger offset δ = (y∗1 + y∗2)/2W∗ is measured from binary profiles, which are extracted
from the corresponding original images by subtracting the background, applying contrast
enhancement and filtering the outcomes into a black/white colour scale. (c) Binary
profile overlapped with the experimental image validating the image processing method.
(d) Close-up image of the finger tip shown in (c).

the Saffman–Taylor model. Indeed, in § 4.2 we show that the experimental results are
in excellent agreement with the model, in which gravity is neglected, as presented
in § 2.

A Dalsa Genie camera (1024× 1400 pixels) with a 50 mm f /1.4 lens was mounted
above the experiment at a height of 0.8 m, in order to yield a field of view along the
channel of 39.2 cm. Rectangular images of 1400× 150± 50 pixels were selected for
capture. The field of view was positioned so that it reached the end of the channel
where the finger was usually found in a steady state, except near the critical capillary
numbers where the transient could extend beyond the channel length. The experiment
was back lit with a custom made LED closed light box of inner dimensions 50 cm×
11 cm × 2.7 cm which was constructed from translucent Perspex sheets (opal 070),
and filled with uniformly spaced 12 V LEDs in order to emit white light of uniform
intensity. The camera and syringe pump were interfaced to a computer, and controlled
with a Labview program which initiated withdrawal by the syringe pump of a given
volume of oil at constant flow rate Q∗ and sequentially controlled the capture by the
camera of a sequence of images of finger propagation at frame rates of 16 f 6 25 fps.
After the end of the experiment, the channel was refilled by infusing oil back into
it so that the set-up was ready for a second experiment, where the flow rate was
incremented by a fixed value. This experimental protocol enabled the recording of
finger propagation for a prefixed range of flow rates or Ca numbers.

An image processing algorithm was developed to extract the outline of the
propagating fingers. This algorithm first subtracts the background from the original
images, and then the grey scale colours are filtered so that for a given threshold
they are replaced by a white colour below it and black otherwise. An original image,
the corresponding binary profile and their superposition shown in figure 3 indicate
that the outline of the fingers was obtained to within 3 pixels (0.84 mm). A time
sequence of finger outlines recorded at a constant flow rate was used to measure
the finger-tip speed, U∗f , averaged over the visualisation window, from which the
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capillary number Ca was calculated. The position of the finger tip was identified in
each profile to yield the distance L∗ travelled during N frames, U∗f = L∗f /N, where
16 f 6 25 fps, depending on the imposed flow rate, Q∗. Typically, the frame rate was
chosen in order to obtain a sequence of approximately N = 400 images.

A local measure of the finger asymmetry was chosen to quantify the mode of finger
propagation, and measured from the extracted finger outlines:

δ = y∗1 + y∗2
2W∗

, (3.1)

where y∗1 and y∗2 are the distances from the centre of the channel to the adjacent points
on the finger interface, respectively, see figure 3(b). By definition, δ= 0 for symmetric
fingers, while −0.5< δ < 0.5 with δ 6= 0 for asymmetric fingers. The finger offset δ
was measured at a fixed distance behind the finger tip, typically 50 mm for any finger
state. For symmetric and asymmetric states the finger width remains constant beyond
this distance (see figure 8). In the case of oscillatory states, as shown in figure 3(b),
the selected distance coincides with the point where the interface first meets the edge
of the occlusion. The finger offset does not differentiate between asymmetric and
oscillatory fingers. We used an additional criterion to identify oscillatory fingers based
on the standard deviation of the finger width measured in the region behind the tip,
which had to exceed 5 %.

4. Results
4.1. Generic behaviour of the system

Figure 4 shows the simplified evolution of the bifurcation structure with occlusion
height, assuming that occlusion width remains fixed. The same general structure
is found to occur at all tube aspect ratios. In the absence of an occlusion there
is a single, stable, symmetric solution, which becomes the classic Saffman–Taylor
half-width finger (λ= 1/2) as the capillary number increases. As the occlusion height
increases a supercritical symmetry-breaking bifurcation is observed, as first reported
by de Lózar et al. (2009). The bifurcation moves towards lower capillary numbers
and eventually becomes subcritical as the occlusion height increases further. For
yet higher occlusions, the asymmetric solution smoothly evolves into a localised
asymmetric solution upon decrease of Ca, which can persist even at Ca = 0, the
capillary static limit (Hazel et al. 2013).

The subcritical symmetry-breaking bifurcation is also associated with oscillatory
solutions, identified by Pailha et al. (2012), who proposed a surface tension-based
mechanism to explain their genesis. A fast local decrease in the cross-sectional
curvature occurs when the interface of a finger passes over the edge of the occlusion
to the less occluded region. Consequently, the fluid pressure just outside the interface
increases locally which drives the fluid out of that region, amplifying any growing
perturbation. Thus, numerical predictions of oscillatory states can also be made with
steady state simulations, by identifying the advancing fingers whose flat interface
behind the tip coincides with the edge of the occlusion (see Appendix). This method
was validated by Thompson et al. (2014) using linear stability analysis. Hence, in
the present work, we did not compute the time-dependent oscillatory modes, but
instead used this accurate estimator for the occurrence of oscillatory modes, which is
computationally much more efficient than performing time-dependent runs.

In summary, the qualitative stages in evolution of the system with increasing
occlusion height are: steady symmetric propagation; supercritical symmetry breaking;
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Ca

0.5

–0.5

FIGURE 4. Schematic bifurcation diagram for increasing αh within the experimental range
of Ca. For low values of αh, we observe a supercritical symmetry-breaking bifurcation
at a critical capillary number Cac1; as the value of αh increases, the symmetry breaking
becomes subcritical and is associated with a critical capillary number Cac2, and a limit
point at CaLP; larger values of αh lead to a subcritical symmetry breaking with Hopf
bifurcations on the asymmetric branch at CaH1 and CaH2; the largest values of αh promote
an asymmetric solution without oscillations, which is disconnected from the symmetric
branch, and continues to a localised state as Ca is decreased (see Pailha et al. (2012) for
a similar bifurcation structure in a small aspect ratio occluded tube).

subcritical symmetry breaking; subcritical symmetry breaking with oscillations;
appearance of localised asymmetric solutions; disappearance of oscillations. This
evolution, or a subset of it, is shown in all experimental data for small capillary
numbers, see figures 5–7. At higher capillary numbers, the evolution of the system
remains an open problem that cannot be analysed within the current model framework
because of the need to include three-dimensional effects.

4.2. Comparison between experimental and numerical modes of finger propagation
Experimental results are shown in figures 5–7, for the aspect ratios α = 20, 40, 60,
respectively. In each case, the finger offset defined in (3.1) is shown as a function
of both the capillary number Ca and the Saffman–Taylor parameter 1/B = 12α2Ca
for different thin-film occlusions of fractional heights in the range 0.006 6 αh 6 0.12.
The fractional width of the occlusions was always αw= 0.25. The ranges of occlusion
heights (αh) and injection flow rates (non-dimensionalised as Ca or 1/B) were
chosen so that all the modes of finger propagation – symmetric, asymmetric and
oscillatory fingers – were observed for each value of the aspect ratio. Localised
fingers, which arise for higher occlusions or very low Ca, were not investigated
in detail. Investigations of the dynamics of localised states can be found in Hazel
et al. (2013) and Thompson et al. (2014). In each figure, the different modes of
propagation encountered as αh is increased are illustrated with inset experimental
images. Although the finger offset δ captures symmetry-breaking bifurcations about
the vertical mid-plane of the channel, it does not distinguish between steady and
oscillatory modes. Oscillatory modes are found both numerically and experimentally
for all values of Ca investigated at αh = 0.12, αh = 0.06 and αh = 0.042 when
α= 20, 40 and 60, respectively. The corresponding numerical solutions, computed by
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FIGURE 5. Finger offset δ as a function of the capillary number Ca in a channel of
aspect ratio α= 20. Experimental measurements (open and closed symbols) and numerical
calculations (solid lines for asymmetric or symmetric states and circled-solid lines for
oscillatory states) are shown for a fractional occlusion width of αw = 0.25, and different
fractional occlusion heights: (+) no occlusion αh = 0; (E) αh = 0.015 (1.5 %); (@) αh =
0.042 (4.2 %); (A) αh = 0.06 (6.0 %); (s) symmetric states and (C) oscillatory states
αh = 0.12 (12.0 %). Inset images of experimental finger shapes illustrate the modes of
propagation observed, from bottom to top: symmetric, asymmetric, oscillatory.

continuing the solution branch from the highest value of Ca, are also presented in
the figures and are in excellent quantitative agreement with the experimental data for
α > 40, see figures 6, 7.

In the experiment, small but unavoidable imperfections mean that fingers are
weakly asymmetric even for low Ca. Hence, they undergo a continuous transition to
the selected asymmetric finger and the apparent bifurcation will appear at lower Ca
in the experimental data when compared to the numerical simulations. Note that the
computations are performed on a non-symmetric triangular mesh which also leads to
slight imperfections in the bifurcations, but the numerical imperfections are smaller
than the experimental ones. For α = 40, the critical Ca at αh = 0.015 differs by less
than 5 % (figure 6), confirming that the imperfections in the experimental system are
generally very small. The only exception is for the very smallest occlusion height
(αh = 0.006, figure 7) corresponding to a 6 ± 2 µm thin film, whose thickness is
comparable to the roughness of the top and bottom boundaries (∼1 µm). At this
scale, the film thickness was technically challenging to control accurately, as discussed
in § 3. This resulted in an imperfect transition to asymmetric fingers for capillary
numbers smaller by approximately a factor of 4 compared to the numerical prediction
of a perfect supercritical pitchfork bifurcation (αh = 0.006, figure 7), although the
offset values far beyond the bifurcation point are in excellent agreement. These results
point to an uncontrolled bias incurred during the fabrication of the occlusion, such
as a small systematic depth variation across the width of the occlusion.
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FIGURE 6. Finger offset δ as a function of the capillary number Ca in a channel of
aspect ratio α= 40. Experimental measurements (open and closed symbols) and numerical
calculations (solid lines for asymmetric or symmetric states and circled-solid lines for
oscillatory states) are shown for a fractional occlusion width of αw = 0.25 and different
fractional occlusion heights: supercritical symmetry breaking (E) αh = 0.015 (1.5 %), (@)
αh = 0.033 (3.3 %); limit supercritical–subcritical bifurcations (I) αh = 0.042 (4.2 %);
subcritical symmetry breaking (q) symmetric states, (A) oscillatory states, (+) starting
with a high flow rate that then is reduced, (∗) starting with the inlet of the channel
partially blocked αh = 0.06 (6.0 %); localised states (C) αh = 0.12 (12.0 %). Inset images
of experimental finger shapes illustrate the modes of propagation observed, from bottom
to top: symmetric, asymmetric, oscillatory, asymmetric, localised.

For all three values of α= 20, 40 and 60, experimental and numerical finger offset
values are in good agreement away from symmetry-breaking bifurcation points, which
indicates that the model predicts the finger shapes observed experimentally. The most
significant deviation between experimental and numerical values of δ is for α = 20,
where the average discrepancy is of 8 %. However, for α = 20, the critical capillary
number Cac at which the symmetric finger loses stability to an asymmetric one is
overestimated in the numerical calculations by 45 % for αh= 0.042, and 67 % for αh=
0.06, compared to the experiment. These findings contrast with the channels of aspect
ratio α=40 and α=60, where the values of Cac and δ are mostly in good quantitative
agreement with the theoretical model, with average errors of 5 % and 4 %, respectively.
The only exception is the thinnest occlusion (αh = 0.006) discussed above.

Comparing figures 5–7, it is apparent that the symmetry-breaking bifurcations
are displaced towards lower capillary numbers as α is increased. For example, for
αh = 0.015, the symmetric finger loses stability through a supercritical pitchfork
bifurcation at Cac ≈ 4.42 × 10−3 (1/B ≈ 84.86) for α = 40, while for α = 60 the
bifurcation is still supercritical but Cac ≈ 1.25 × 10−3 (1/B ≈ 54.0); a reduction in
critical capillary number of a factor of 3.54. In terms of the Saffman–Taylor parameter
the reduction factor is only 1.57 due to the dependence of this parameter on both
Ca and α. As will be discussed in § 4.5, we have reason to expect that in the large
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FIGURE 7. Finger offset δ as a function of the capillary number Ca in a channel
of aspect ratio α = 60. Experimental measurements (open and closed symbols) and
numerical calculations (solid lines or star-solid symbols for asymmetric or symmetric
states and circled-solid lines for oscillatory states) for a fractional occlusion width of
αw= 0.25, and different fractional occlusion heights: no occlusion (+) αh= 0; supercritical
symmetry breaking (@) αh = 0.006 (0.6 %), (E) αh = 0.015 (1.5 %); subcritical symmetry
breaking (q) symmetric states, (A) oscillatory states, (+) starting with a high flow rate
that then is reduced, (∗) inlet of the channel partially blocked αh = 0.042 (4.2 %). The
convergence of the numerical solutions is tested by recomputing the solutions when
αh = 0.006 on a finer (eight times as many elements) mesh (F). Inset images of
experimental finger shapes illustrate the modes of propagation observed, from bottom to
top: symmetric, asymmetric, oscillatory.

aspect ratio limit, the occlusion height αh at which the pitchfork bifurcation occurs
will scale as B; the observed variation of 1/B by a factor of 1.57 at Cac for fixed αh

is likely to arise from transverse curvature effects or changes in the flow field due
to variation in the shape, speed and width of the finger tip. In any case, the changes
in modes of finger propagation occur at lower occlusion heights for larger channel
aspect ratios. In order to obtain qualitatively similar oscillatory modes for α = 20
and α = 60 the occlusion height was reduced from αh = 0.12 to 0.042, respectively.
Similar reductions in occlusion heights were required to observe both supercritical
and subcritical pitchfork bifurcations. These observations regarding the sensitivity
of propagation modes for decreasing values of occlusion heights as the aspect ratio
is increased are investigated numerically in § 4.5 for both symmetry breaking and
oscillatory onsets.

In figure 8, both asymmetric and symmetric finger shapes from experiments and
simulations are compared for α = 40 and α = 60, respectively. The finger profiles
appear to superpose almost perfectly, but the numerical finger widths (λ) are <7 %
smaller than the experimental ones for symmetric states, and <6 % smaller for
asymmetric states. These small differences have previously been shown to be due
to the presence of thin films of liquid left on the boundaries of the channel after
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FIGURE 8. Experimental (solid line) and numerical (black dots) finger shape comparison
for αw= 0.25. (i) α= 40, αh= 0.033: (a) symmetric finger with Ca= 7.26× 10−4 (1/B=
13.95), (b) asymmetric finger with Ca = 0.0105 (1/B = 195.8). (ii) α = 60, αh = 0.015:
(c) symmetric finger with Ca = 5.07 × 10−4 (1/B = 21.92), (d) asymmetric finger with
Ca= 3.6× 10−3 (1/B= 155.5). The non-uniformity in finger width on the far left indicates
the transient evolution of the symmetric initial finger to a steady asymmetric one. The
dashed line at the top right of (a) and (c) corresponds to 20 mm.

the passage of the finger, which are not accounted for in the lubrication model
developed by Thompson et al. (2014). Park & Homsy (1984), Reinelt & Saffman
(1985) and, more recently, Peng et al. (2015) included thin-film effects by modifying
the kinematic and dynamic boundary conditions. Consequently, the interface velocity
decreases and the cross-sectional curvature increases by a small factor. Hence, the
implementation of both corrections results in wider fingers by the required factor
(∼7 %). The parameter δ is less sensitive to this discrepancy because the same error
occurs in both y1 and y2, which cancels out when computing δ. Overall, the excellent
agreement between experiments and numerical simulations indicates that the averaged
lubrication model developed by Thompson et al. (2014) quantitatively predicts all
features of finger propagation in channels of aspect ratio α > 40, with a prescribed
depth profile (αw = 0.25 and αh 6 0.12), for capillary numbers Ca 6 1.2× 10−2.

4.3. Alternative symmetric states: double-tipped and triple-tipped fingers
Finger propagation in channels of aspect ratio α > 60 was investigated using the
numerical simulations only, because of the experimental challenges associated with
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FIGURE 9. Numerically predicted double-tipped and triple-tipped finger shapes in terms
of the pressure colour scale using parameters α= 80, αw= 0.25 and αh= 0.003 (h= 0.3 %)
(a) Ca= 1.45× 10−3 (1/B= 111.5) (b) Ca= 3.6× 10−3 (1/B= 277.7).

the manufacture of the very thin occlusions required in channels of large aspect ratios.
For α = 80 and very thin occlusions, less than 0.5 % of the height of the channel
(αh 6 0.005), alternative families of double-tipped and triple-tipped symmetric states
were found for the lowest values of capillary number investigated (Ca∼ 1.0× 10−3),
see figure 9.

For αh = 0, these multiple-tipped fingers belong to the countable, infinite family
of solutions uncovered by Romero (1982) and Vanden-Broeck (1983) whose finger
shapes were recently computed by Gardiner et al. (2015). These solutions were
calculated using the same model developed by McLean & Saffman (1981) to obtain
the classical Saffman–Taylor solutions and then relaxing the boundary condition
at the finger interface to perturb the system. Once the solutions had been found,
the usual boundary conditions were restored. Comparisons between our computed
solutions (lines) with the averaged lubrication model by Thompson et al. (2014),
experimental measurements (open circles) and selected data points (filled red symbols)
corresponding to the different solutions predicted by McLean & Saffman (1981) and
Vanden-Broeck (1983) are shown in figure 10, where the finger width λ is shown
as a function of the parameter k = 4π2/((1/B)(1− λ)2) introduced by McLean &
Saffman (1981). The double-tipped and triple-tipped states correspond to the first
(s) and second (u) Romero–Vanden-Broeck solutions, respectively. The stability
of the different numerical solutions was determined by computing the eigenvalues
of the system. The multiple-tipped fingers (dashed lines) are unstable, while the
Saffman–Taylor fingers (solid line) are stable and hence observed experimentally
(open circles). Experimental finger widths are consistently wider than numerical
predictions by less than 7 % (reached for k= 1.05) due to the presence of thin films
of liquid left on the top and bottom boundaries behind the finger tip, as discussed
above. In figure 10 our calculations reveal that the solution branches corresponding
to double- and triple-tipped fingers are connected through a bifurcation point (p) at
k= 0.09 leading to a region of asymmetric states at lower values of k.

4.4. Evolution of the bifurcation diagram with occlusion height (α = 80)
Bifurcation diagrams for α= 80 are presented in figure 11, in which the finger width
and finger-tip speed are plotted as functions of the capillary number Ca for αh in the
range 0.0016αh 6 0.01. The figure shows the evolution of the system from the classic
Saffman–Taylor scenario, figure 11(a), to a bifurcation diagram qualitatively similar
to that presented in Thompson et al. (2014), figure 11(e). Initially, figure 11(a), the
Romero–Vanden-Broeck solutions (dashed lines) are disconnected from the symmetric
Saffman–Taylor solution (solid line) at αh = 0.001, but connect to an unstable
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FIGURE 10. Finger width λ against McLean–Saffman parameter k= 4π2/((1/B)(1− λ)2)
for a channel without occlusion (αh = 0). Smaller values of the parameter k correspond
to greater values of Ca. The single-tipped branch (solid line) corresponds to the classical
McLean & Saffman (1981) solution (p). Experimental finger widths (E) are consistently
wider by less than 7 %, due to the presence of thin liquid films left on the top and
bottom boundaries after the passage of the finger tip. The double-tipped branch (dashed
line) corresponds to the first Romero–Vanden-Broeck solution (s) and the triple-tipped
state (red dashed-dotted line) to the second Romero–Vanden-Broeck solution (u). These
multiple-tip solutions develop in a range of 1.5 < k < 9.0. For values of k < 1.5 the
Romero–Vanden-Broeck solutions are symmetric single tipped. A connection between the
double-tipped and triple-tipped branches occurs at k = 0.09 (p) leading to asymmetric
states (blue dashed-dotted line).

asymmetric solution branch that was first reported by Taylor & Saffman (1959) (see
also figure 10 for αh = 0). As αh increases, the stable and unstable sets of solution
branches interact. For αh= 0.003, figure 11(b), the asymmetric branch emanating from
the Romero–Vanden-Broeck solution has developed two limit points, while the stable
symmetric branch has developed a pair of supercritical pitchfork bifurcation points
(u and q) resulting in a small region of unstable symmetric fingers (dashed-dotted
lines). The unstable asymmetric branch and the stable symmetric branch do not
interact in figure 11(b), despite the position of the upper limit point from the
asymmetric branch appearing to coincide with the symmetric branch in this projection.

By αh = 0.004, figure 11(c), a complex interaction between the previously
independent stable and unstable solution structures has taken place, resulting in
an altered bifurcation diagram. The upper limit point previously formed on the
unstable asymmetric branch has interacted with the second pitchfork point (q) that
previously bounded the region of stable asymmetric fingers on the stable solution
branch emanating at low values of Ca. The lower part of the unstable asymmetric
branch has connected at this bifurcation point while its upper part has connected
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FIGURE 11. Numerical simulation for the finger width λ (dimensionless finger-tip speed
Uf on right) as a function of the capillary number Ca = µU∗f /σ showing a complex
interaction as the occlusion height αh is increased. The parameters are α= 80, αw = 0.25
and different small occlusion fractional heights: (a) αh= 0.001 (h= 0.1 %), (b) αh= 0.003
(h = 0.3 %), (c) αh = 0.004 (h = 0.4 %), (d) αh = 0.005 (h = 0.5 %) and (e) αh = 0.01
(h = 1.0 %). Solid lines corresponds to stable states, dashed lines to unstable states and
dash-dotted lines to a small region of unstable symmetric states, thin lines to symmetric
states and thick lines to asymmetric states. The structure evolves from the Saffman–Taylor
system in (a), including the unstable Romero–Vanden-Broeck solution branches (double-
and triple-tipped symmetric fingers), to the bifurcation structure found by Thompson et al.
(2014) in (e).

with the stable asymmetric branch and restabilised. Hence, symmetric fingers are
stable for very small values of Ca as they lose stability to a pair of asymmetric
fingers for decreasing values of Ca as αh increases (u). The unstable symmetric
branch connects to a stable symmetric branch at the second pitchfork bifurcation
point (q). In fact, starting on this symmetric stable branch at high values of Ca and
decreasing Ca, the branch’s loss of stability can be seen to arise through a subcritical
pitchfork bifurcation to a pair of asymmetric states that connect the single-tipped
symmetric finger to the wide multiple-tipped fingers linked to the first and second
Romero–Vanden-Broeck solutions. This new bifurcation scenario is confirmed for
αh = 0.005, figure 11(d).
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Romero–Vanden-Broeck bifurcations

Saddle-node points

Ca

FIGURE 12. Location in the Ca–αh parameter plane of the symmetry-breaking bifurcation
points shown in figure 11 for α=80. (p) Pitchfork bifurcation connecting the unstable first
and second Romero–Vanden-Broeck solutions to the unstable Taylor–Saffman asymmetric
solutions. (u), (q) Pair of pitchfork bifurcations which first appear on the stable
Saffman–Taylor solution branch at finite αh ' 0.0022. (F) Saddle-node bifurcation point
emerging from the coalescence of the Romero–Vanden-Broeck pitchfork (p) with the
second pitchfork bifurcation on the symmetric Saffman–Taylor branch (q).

Finally, increasing αh further to 0.01, figure 11(e), the unstable asymmetric region
between the second pitchfork bifurcation point on the symmetric Saffman–Taylor
branch (q) and the pitchfork bifurcation point previously highlighted in figure 10
(p), disappears and the solutions disconnect. Thus, we recover (qualitatively) the
bifurcation diagram for low occlusions presented by Thompson et al. (2014) at
α= 10, see their figure 8, with the addition of an isolated symmetric branch that was
not found in their investigation. The subsequent changes in bifurcation structure for
further increases in αh are presented in detail in Thompson et al. (2014).

The main features of the interaction between the Saffman–Taylor and Romero–
Vanden-Broeck solutions are shown in figure 12, where the symmetry-breaking
bifurcation points discussed above are plotted in the Ca–αh parameter plane. The
pair of pitchfork bifurcation points on the symmetric Saffman–Taylor branch (u and
q) emerges for a finite value of αh ' 0.0022, and separate as αh increases. The
second pitchfork bifurcation point (q) then merges with the Romero–Vanden-Broeck
pitchfork point (p). This interaction results in the separation of solution branches
(figure 11e), which leaves a saddle-node bifurcation point (F).

4.5. Reduction of the occlusion height required for symmetry breaking and Hopf
bifurcation onset with increasing channel aspect ratio

The results reported in § 4.2 indicate that lower occlusions are required to achieve a
similar solution structure as the channel aspect ratio increases. In order to quantify
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FIGURE 13. The inverse occlusion height (αh/αh40)
−1 required to scale a critical capillary

number Cac as a function of the normalised aspect ratio α/α40, where α40= 40 and αh40=
0.031. The data (f) is obtained by computing supercritical pitchfork bifurcations of finger
offset δ against capillary number Ca where the critical capillary number is set to Cac =
1.8× 10−3 (shown in the inset). The fit (– – – –) follows a parabolic behaviour revealing
significant effects on the finger propagation by decreasing the occlusion thickness while
the aspect ratio increases.

this observation, we focused on the first supercritical pitchfork bifurcation from a
stable symmetric finger to a pair of stable asymmetric fingers described in §§ 4.2 and
4.3. We determined the occlusion height αh required in order for the critical value of
Ca to remain constant (Cac = 1.8× 10−3) for increasing values of α. The parameter
values were selected in order to maximise the finger offset at α = 40 while retaining
a supercritical bifurcation, so that asymmetric solutions could be resolved numerically
over a wide range of α (up to α= 120). The inverse of the occlusion fractional height
relative to αh40 = 0.031 is shown as a function of channel aspect ratio relative to
α = 40 in figure 13. The data closely follows a parabolic curve, which indicates the
rapidly increasing sensitivity of finger propagation to decreasing depth perturbations
as the aspect ratio is increased. The small discrepancy of the data (f) with respect to
the parabolic fit is due to the difficulty in tracking the critical capillary number to the
required value as the occlusion height is varied. The parabolic relationship between
1/αh and α required to maintain the bifurcation at a fixed value of Ca shown in
figure 13 can be predicted from the hypothesis that symmetry breaking occurs due
to a balance between surface tension acting through lateral curvature, which favours a
centred finger, and variable viscous resistance, which enables the finger to propagate
more rapidly in the deeper parts of the channel.

In order to formalise this argument, we note that lateral curvature of the finger tip
and the typical pressure variations within the fluid are both O(1), and recall that the
Ca = Uf Q, where Uf is the O(1) steady propagation speed. This means that due to
(2.3), the variation in pressure induced by small occlusions are of the order αh in (2.4),
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while the lateral curvature term in (2.4) scales as order (α2 Ca)−1. Balancing these
effects in the limit of large aspect ratio implies that αh∼ 1/(α2Ca) for the symmetry-
breaking bifurcation. The effect of the transverse curvature term in (2.4) is of order
αh/(αCa), which is unimportant in this scaling compared to the other terms in (2.4)
when the aspect ratio α is large.

The inset of figure 13 shows the finger offset δ as a function of the capillary
number Ca for increasing values of α and decreasing values of αh. Particularly, when
the occlusion height is decreased from αh = 0.0031 to αh = 0.0018 while the aspect
ratio is increased from α = 100 to α = 120, finger states larger than Ca > 4 × 10−3

resymmetrise resulting in the existence of a localised region of stable asymmetric
states. In other words, in order to retain the bifurcation at the given capillary number,
as the aspect ratio increases, the bifurcation structure changes from that shown in
figure 11(e) (αh = 0.01, α = 80) to that in 11(b) (αh = 0.003, α = 80) where it
has been observed that the localised region is enclosed between two supercritical
bifurcation points.

We expect that the inverse occlusion height, (αh/αh40)
−1, on the parabolic fit shown

in figure 13 would grow to infinity (i.e. αh→ 0) as the aspect ratio tends to infinity
(α→∞). Therefore, an extrapolation of the parabolic behaviour allow us to predict
that a step change in channel height of αh= 0.001, which is equivalent to the typical
roughness of the experimental system (1 µm), would be sufficient to lead to symmetry
breaking of the centred finger in channels with aspect ratios α > 155. This is shown
to be consistent with the experimental results of Moore et al. (2002) who observed
meandering fingers of variable width in Hele-Shaw channels of α > 150.

We also consider the behaviour of the region of oscillatory solutions with increasing
aspect ratio. The inset of figure 14 presents the finger offset as a function of capillary
number where oscillatory states are predicted with the geometric criterion discussed
in the Appendix as the occlusion height is varied. Here we select the maximum
occlusion height αh at which an oscillatory regime (via Hopf bifurcation) is predicted
as our indicator of the regime. The geometric criterion is calibrated at α = 40 using
linear stability calculations: the critical eigenvalues are found at αh = 0.0718; and
the width of the prediction region used in the geometric criterion (see Appendix)
is adjusted so that the oscillatory modes disappear at αh = 0.072. Hence, the width
of the prediction region corresponds to 15.2 % of the width of the occlusion. The
geometrical criterion is additionally verified for α= 160 giving a maximum occlusion
height for the Hopf limit of αh = 0.0203, whereas the stability analysis provides
αh = 0.0198 resulting in a maximum deviation of 2.5 %. Figure 14 plots this Hopf
limit of inverse occlusion height relative to αh = 0.072 as a function of the channel
aspect ratio relative to α= 40 for aspect ratios up to α= 160. The value of capillary
number associated with the Hopf limit is always found for Ca < 0.012, which
indicates that the result presented in figure 14 satisfies the parameter regime in Ca
where the quantitative agreement between experiments and numerical computations
has been reported. In contrast with the parabolic behaviour for symmetry breaking,
the oscillatory onset follows a linear behaviour, possibly due the direct dependence
of the oscillatory mechanism on the change of the transverse curvature of the finger
interface (Thompson et al. 2014), which scales with the first power of the aspect ratio
as shown in (2.2). This second balance in (2.4) is between the lateral component of
curvature, which features at order (α2Ca)−1, and the transverse curvature component,
which is of order αh/(αCa), yielding a balance when αh ∼ α−1. At the tip of the
finger, the normal propagation speed is O(1), and so the effect of the occlusion on
the pressure term in (2.4) is O(αh). However, oscillations usually arise along the side
of the finger where the underlying pressure gradients are much smaller.
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FIGURE 14. The inverse occlusion height (αh/αh40)
−1 as a function of the normalised

aspect ratio α/α40 (s,f) where the value of occlusion height αh is the maximum where
the Hopf bifurcation is predicted. In contrast with the parabolic behaviour for symmetry
breaking, the reduction of the occlusion height in order to follow the oscillatory limit
agrees with a linear behaviour (– – – –). The inset presents the finger offset as a function of
capillary number (see figure 4) for aspect ratio α= 40. The occlusion height is increased
from αh = 0.033 to αh = 0.075, and the disappearance of the oscillatory fingers is first
found at αh = 0.072 (–∗–∗–∗–) by using a validated geometric criterion (Appendix). The
limit is validated by performing the stability analysis along the path shown as a red solid
line in the inset where a change of sign of the real part of the eigenvalues is found at
αh = 0.0718 (s).

5. Discussion
The sensitivity of Saffman–Taylor fingers in large aspect ratio Hele-Shaw channels

has been of interest since the original work of Saffman & Taylor (1958), who found
symmetric and later asymmetric (Taylor & Saffman 1959) continuous families of
solutions to their depth-averaged model, but no mechanism to select the experimentally
observed symmetric half-width finger occurring at high propagation speeds. The
selection mechanism was found to be a consequence of finite surface tension, which
enters as a singular perturbation (Park & Homsy 1984). Although the common
wisdom is that the singular perturbation problem explains the subsequent sensitivity
of the Hele-Shaw to geometric perturbations, this does not necessarily follow because
the singular limit is never reached in experiments. Once finite surface tension is
present, the selection problem is resolved. Thus, although Tabeling et al. (1987)
convincingly demonstrated experimentally that roughness affects the tip splitting of
viscous fingers, a theoretical explanation was never found. In the present work, we
demonstrate that the sensitivity is, in fact, due to the presence of additional unstable
solutions at finite surface tension.

Recently, a wide variety of finger propagation modes have been found in Hele-Shaw
channels of more modest aspect ratio, partially occluded by occlusions up to 50 %
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of the channel height (de Lózar et al. 2009; Pailha et al. 2012; Hazel et al. 2013).
Thompson et al. (2014) found that all finger propagation modes in partially occluded
Hele-Shaw channels were qualitatively reproduced in an adapted version of the depth-
averaged model used by McLean & Saffman (1981) to show that finite surface tension
selects the half-width finger in unoccluded Hele-Shaw channels. In addition, the depth-
averaged model is known to have multiple solutions even in the absence of occlusions
(Romero 1982; Vanden-Broeck 1983). Hence, the aim of the present work was to use
this well-understood system with controllable geometric variations to re-examine the
question of sensitivity of Saffman–Taylor fingers.

We find that the model is in quantitative agreement with experiments for α > 40
and provided that Ca 6 0.012. The model is based on the lubrication approximation,
which is expected to be valid for sufficiently high aspect ratio channels and small
occlusion heights, in the limit of small Ca where the effect of liquid films on the top
and bottom boundaries of the channel is negligible. Hence, this quantitative agreement
means that in large aspect ratio channels we are able to use the model to follow the
evolution of the solution structure for increasing obstacle heights with a high level of
confidence that this represents the situation in the experiments. We believe that this
evolution is the same for all aspect ratios which have been investigated, although we
cannot confirm this without resorting to three-dimensional Stokes calculations. Thus
we can demonstrate that the asymmetric and the double-tipped solutions observed in
smaller aspect ratio channels by de Lózar et al. (2009) and others are the unstable
asymmetric Saffman–Taylor solutions and the first symmetric Romero–Vanden-Broeck
solution having been stabilised by the presence of the occlusion. The occlusion
height required to stabilise the asymmetric Saffman–Taylor solutions decreases with
increasing aspect ratio, with the critical height for provoking pitchfork bifurcations
being proportional to α−2 and that for Hopf bifurcations being proportional to α−1.
These scalings are consistent with the mechanisms underlying bifurcations described
by Thompson et al. (2014). The pitchfork is principally associated with changes in
viscous resistance, whereas the Hopf bifurcation is associated with coincidence of
finger and occlusion edges.

If subject to the same driving pressure gradient, both fluid and interface will
propagate faster in the deeper parts of the channel. This effect is of order αh for
small occlusions, and in the absence of surface tension would lead to air fingers
preferentially propagating along the deeper sides of the channel. The tip splitting and
symmetry-breaking behaviour that would arise from this speed differential is resisted
by surface tension acting through the lateral curvature. A simple balance between
O(αh) speed differentials and the lateral curvature term leads us to predict that the
occlusion height αh for the onset of symmetry breaking should scale as 1/α2 at fixed
Ca, or as 1/B more generally. The effect of transverse curvature variation on the
system is negligible in this limit. This scaling relationship is generally followed by
our results, but there is some variation, possibly due to transverse curvature effects,
and subtle dependencies of the flow field on the width, shape and speed of the
finger tip. However, the scaling relationship does suggest that in the limit of large
aspect ratio α or large 1/B, bifurcations due to changes in viscous resistance can be
triggered by vanishingly small perturbations to the channel thickness, which again
relates to the experimentally observed sensitivity of finger propagation in channels of
large aspect ratio.

We further conjecture that the mechanism underlying the oscillatory fingers first
discovered by Pailha et al. (2012), which relies on step changes in channel depth, may
also be implicated in the growth of dendrite-like patterns seen in Hele-Shaw channels.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

13
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.131


Sensitivity of Saffman–Taylor fingers to channel-depth perturbations 365

FIGURE 15. Top view of an experimental oscillatory state (black line) compared to a time-
dependent calculation of an oscillatory state (red dots) for α= 40, αh= 0.06 and capillary
number Ca= 3.4× 10−3. The edges of the occlusion are presented as solid blue lines.

The mechanism relies on a balance between both components of the curvature, which
leads to the observed scaling of αh with α−1 for the onset of the Hopf bifurcations.
In contrast to the Saffman–Taylor fingering mechanism which can operate in the
absence of geometric perturbation and amplifies axial perturbations to the interface,
Pailha et al.’s oscillatory mechanism requires geometric perturbations and amplifies
lateral perturbations. In general, the advancing interface will be susceptible to both
lateral and axial perturbations, meaning that both mechanisms can operate. However,
depth perturbations in Hele-Shaw channels are typically uncontrolled, on the scale
of the roughness of the top and bottom boundaries. In order to connect the results
presented in this paper to previous observations of anomalous fingering (Tabeling et al.
1987; Rabaud et al. 1988; Moore et al. 2002), further work is currently underway
to investigate the effect of spatially distributed step changes in channel depth, with
either regular or random distributions.
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Appendix. Estimating the occurrence of oscillatory modes

Time-dependent simulations are required in order to predict the dynamics of
oscillatory states as discussed by Thompson et al. (2014). In figure 15, we show a
direct comparison between an experimental and a numerical oscillatory finger, which
exhibit good agreement in morphology despite some discrepancies in wavelength.
The lateral displacements that form the spatially periodic pattern typically occur with
speeds larger than the finger-tip speed. Hence, the inclusion of thin-film corrections
of normal displacements Can as suggested by Reinelt (1987) may be required in order
to achieve quantitative agreement between experiment and computations. However,
the onset of oscillatory modes can still be predicted using steady calculations. The
asymmetric states whose interface behind the finger tip is located in a narrow region
around the centre line of the edge of the occlusion are characterised as oscillatory
states as illustrated in figure 16. The exact choice of the width of the prediction
region is arbitrary, as a consequence, a quantitative prediction of the Hopf bifurcation
as discussed by Pailha et al. (2012) is in principle unknown. Nonetheless, the
geometrical criterion, convenient due to its numerical expediency (§ 4.5), is validated
using the stability analysis implemented by Thompson et al. (2014). Therefore, using
(2.1), we find that oscillatory states are predicted when |tanh s(ycrit − αw)| < 0.91
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FIGURE 16. Oscillatory states are predicted by computing asymmetric finger shapes (+)
when their interface behind the finger tip is located inside a prediction gap (red solid
line) around the centre line of the edge of the occlusion (blue solid line). In this example
for α = 40 and αh = 0.060: (a) oscillations are predicted at Ca= 0.01 (b) no oscillations
predicted at Ca= 0.02.
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FIGURE 17. Experimental oscillatory states compared to numerical calculations of
asymmetric states for α = 40, αh = 0.065 and capillary numbers (a) Ca = 0.0103, (b)
Ca = 0.0252 and (c) Ca = 0.0425. A large deviation of the numerical values of finger
width and finger offset is observed for capillary numbers larger than Ca > 0.012. The
dashed line on top right corresponds to 20 mm.

where s = 40 and αw = 0.25. Hence, 0.2119 < ycrit < 0.2882 and the width of the
prediction region is 15.2 % of the width of the occlusion.

An experimental investigation for larger capillary numbers using α= 40, αh= 0.065
where oscillatory states occurs is shown in figure 17. Here, the Hopf bifurcation
is found at Ca ≈ 0.04. Asymmetric states computed with the same parameters are
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compared to the experiment showing a deviation from the values of finger width
λ and finger offset δ of 18 % and 14 %, respectively, as the capillary number is
increased up to Ca = 0.0425, which then prevents a quantitative prediction of the
Hopf bifurcation possibly due to the absence of thin-film correction in the theoretical
model. However, our results shown in figures 6 and 7 for αh = 0.6 and αh = 0.42,
respectively, confirm the quantitative agreement of the region where oscillatory states
occur for values of Ca < 0.012 by using the geometric criterion as the occlusion
height αh is varied.
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