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This paper proposes the novel use of a weighted Interval Kalman Filter (wIKF) in a robust
navigational approach for integration with the guidance and control systems of an uninhabi-
ted surface vehicle named Springer. The waypoint tracking capability of this technique is com-
pared with that of one that uses a conventional Kalman Filter (KF) navigational design, when
the model of the sensing equipment used by the filter is incorrect. In this case, the KF fails to
predict correctly the vehicle’s heading, which consequently impacts negatively on the perform-
ance of its integrated navigation, guidance and control (NGC). However, the use of a wIKF
technique that is immune to this kind of erroneous modelling endows the integrated NGC
system with better accuracy and efficiency in completing a mission.
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1. INTRODUCTION. Automatic marine control systems for ships of all sizes have
been and are being designed and developed to meet the needs of both the military and
civil marine industries. Although modern ship automatic systems are endowed with a
high degree of expensive control sophistication, they also possess manual override fa-
cilities in case of emergencies and unforeseen events. However, when functioning in a
truly autonomous mode, the luxury of such facilities does not exist on board
Uninhabited Surface Vehicles (USVs) (also known as Unmanned Surface Vehicles).
The application of USVs is forever propagating in naval, commercial and scientific
sectors such as surveying (Majohr et al., 2000), environmental data gathering
(Caccia et al., 2008), mine counter-measures (Yan et al., 2010), and search and
rescue operations (Annamalai, 2012), to name but a few. Thus to fulfil their missions
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successfully they are totally reliant upon the integrity of their low cost Navigation,
Guidance and Control (NGC) systems.
At PlymouthUniversity theSpringerUSVhas been built and continues to be evolved.

Springer is designed primarily for undertaking pollutant tracking and environmental
and hydrographical surveys in rivers, reservoirs, inland waterways and coastal waters,
particularly where shallow waters prevail. In order for the vehicle to have such a
multi-role capability, the USV requires robust, reliable and accurate NGC systems.
Over the years studies have been undertaken onunmanned vehicle navigation using var-

iants of theKalman filter (KF) that havebeen linkedwithGlobalPositioningSystem (GPS)
signals, Inertial Measurement Unit (IMU) data, as well as magnetic compass sensor read-
ings. For example, Zhang et al. (2005) described the use of an unscented KF to combine a
low-cost IMU, GPS and digital compass using a sophisticated dynamical model of the
vehicle. Others have successfully implemented KF-based USV navigation without IMUs
altogether. In previousworkwith the Springer, data fromdigital compasseswere combined
using various data-fusion architectures based on KFs (Xu, 2007). The use of redundant
data (by using three separate compasses simultaneously) allows for the construction of
fault-tolerant navigation systems. Another example is the USV Charlie that is equipped
solely with a GPS and a magnetic compass which uses an extended KF (Caccia et al.,
2007). Meanwhile, the Interval Kalman Filter (IKF) (Section 3.2) has been proposed for
use in aircraft navigation by He and Vik (1999), and in vehicle navigation by Tiano et al.
(2001; 2005), although as a whole has received relatively little attention in the open
literature.
In order to meet the testing mission demands being imposed by the various sectors,

autopilots have been designed based on, for example, fuzzy logic (Park et al., 2005),
gain scheduling (Alves et al., 2006), H-infinity (Elkaim and Kelbley, 2006), sliding
mode (Ashrafiuon et al., 2008) and neural network (Qiaomei et al., 2011) techniques,
all of which have met with varying degrees of success.
In this paper, integrated NGC systems for waypoint tracking are presented.

Navigation is based on Kalman filtering using a dynamic compass model and simu-
lated noisy measurements. Guidance is based on Line-Of-Sight (LOS), whereas steer-
ing control is implemented via a Model Predictive Control (MPC) algorithm that uses
a dynamic steering model of the vessel (Section 2.1). The intention of this paper is to
demonstrate the novel approach of using aweighted IKF (wIKF) (Section 3.2) in com-
bination with the MPC autopilot for surface vehicle navigation. In the present study,
firstly a traditional KF is used in conjunction with an MPC autopilot. The system is
blighted by the use of an incorrect compass model, affecting the KF heading estimate
and thereby the performance of the integrated system as a whole. Maintaining the in-
correct model, a wIKF approach is implemented, and it is shown that if adequate
weights can be found, then this technique can provide an accurate estimate of the
heading of the vessel, thereby constituting a more robust navigation system than
when using the more traditional KF methodology.
Following on from this introduction, the paper is structured as follows. Section 2

gives a brief description of the Springer USV and the modelling of its yaw dynamics.
Section 3 describes the navigational system, the dynamic model of the compass that
provides the heading, and the KF and wIKF models used subsequently. Section 4 is
devoted to describing the guidance system, whereas Section 5 covers the MPC and
details the particulars of the autopilot implemented for Springer. In Section 6 the
integration of the NGC system is described and the tracking mission simulated is
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detailed. The results obtained from using a conventional KF in the design of the
navigation system and those obtained using the wIKF technique are compared and
discussed. Finally, the conclusions drawn are highlighted in Section 7.

2. THE SPRINGER USV. Since full details of the Springer’s hardware have
already been published in Sutton et al. (2011), to make this paper self-contained
only an outline will be presented here. The Springer USV was designed as a medium
water plane twin hull vessel which is versatile in terms of mission profile and
payload. Measuring 4·2 m long and 2·3 m wide, it has a displacement of 0·6 tonnes.
Its propulsion system consists of two propellers powered by a set of 24 V 74 lbs
(334N) Minn Kota Riptide transom mounted saltwater trolling motors. As described
in Section 2.1, steering of the vessel is based on differential propeller revolution rates.
In Springer, the full integrated sensor suite combines a GPS, three different types of

compasses, speed log and depth sensor. All of these sensors are interfaced to a PC via a
NI-PCI 8430/8 (RS232) serial connector. Since the GPS, depth and speed sensors are
not used in this study, their characteristics will not be detailed any further. However,
TCM2, HMR3000 and KVH-C100 are the three different types of electronic
compass installed in the Springer. All of the compasses can output NMEA 0183 stan-
dard sentences with special sentence head and checksum. As all of these compasses are
very sensitive, they were mounted as far as possible from any source of magnetic field
and from ferrous metal objects. In addition, each compass was individually housed in a
small waterproof case to provide further isolation and insulation. Dynamic models
have been obtained for each of the compasses by Xu (2007). In this paper only the
TCM2 compass model will be utilised and is detailed in Section 2.2.

2.1 Modelling the USV Yaw Dynamics. Hydrodynamic modelling is usually very
expensive, time consuming and requires the use of specialist equipment in the form of a
tank testing facility. However, the approach does produce detailed models based upon
hydrodynamic derivatives. In addition, costs can also rise further if vehicle configura-
tions change and thus, the tank testing and modelling procedure have to be repeated.
Since the hiring and running costs for such a facility were deemed to be prohibitive, it
was considered more appropriate to model the vehicle dynamics using System
Identification (SI) techniques. To this end, several trials were carried out at
Roadford Reservoir, Devon, UK, where the vehicle was driven for some calculated
manoeuvres and during which relevant data was logged. The characteristics of the rel-
evant variables and model obtained are explained in what follows.
The vehicle has a differential steering mechanism and thus requires two inputs to

adjust its course. This can be simply modelled as a two input, single output system
in the form depicted in Figure 1, where n1 and n2 are the two propeller speeds in

Figure 1. Block diagram representation of a two-input USV.
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revolutions per minute (rpm). Clearly, straight-line manoeuvres require both the thrus-
ters running at the same speed, the differential thrust being zero in this case. In order to
linearize the model at an operating point, it is assumed that the vehicle is running at a
constant speed. To clarify this further, let nc and nd represent the common mode and
differential mode thruster velocities defined as:

nc ¼ n1 þ n2
2

nd ¼ n1 � n2
2

9>=
>; ð1Þ

To maintain the velocity of the vessel, nc must remain constant at all times. During
trials, a forward speed of three knots was maintained, which corresponds to a constant
value of nc= 900 rpm.
The differential mode input, however, oscillates about zero depending on the direc-

tion of the manoeuvre. For data acquisition, several inputs were superimposed with a
pseudo-random binary sequence to excite the system’s dynamics and were applied to
the thrusters. The corresponding heading response was collated, and SI was then
applied to the acquired data from which a dynamic model for the steering of the
vehicle was obtained in the following form (Naeem et al., 2008):

xðk þ 1Þ ¼ A xðkÞ þ B uðkÞ ð2Þ
yðkÞ ¼ C xðkÞ ð3Þ

where

A ¼ 1:002 0
0 0:9945

� �
;B ¼ 6:354

�4:699

� �
× 10�6;C ¼ 34:13 15:11½ � ð4Þ

with a sampling time of 1 s, where u(k) represents the differential thrust input in rpm
and y(k) the heading angle in radians. Cross-correlation and autocorrelation tests were
carried out to validate the model (Naeem et al., 2008).

2.2 Compass Dynamics. A dynamic model for the TCM2 compass has already
been derived through SI techniques (Xu, 2007) and is given by the following hybrid
stochastic-deterministic state-space model

xðk þ 1Þ ¼ A xðkÞ þ B uðkÞ þ ωðkÞ ð5Þ
yðkÞ ¼ C xðkÞ þ υðkÞ ð6Þ

where

A ¼ 0:2796 0:6971

1 0

� �
;B ¼ 0:4364

0

� �
;C ¼ K 1 0½ �

covðωÞ ¼ diagf1; 1g;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðυÞ

p
¼ 2○

ð7Þ

with a sampling period of 0·025 s. The input to the model is the actual heading of the
vessel, in degrees, and the output is the compass measurement, also in degrees,
whereby it can be assumed that the constant K is such that the steady state gain of
the model is unity (resulting in K = 0·05339). Correlation tests were carried out to vali-
date the model.
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3. THE NAVIGATION SYSTEM. The navigation system of the vehicle is con-
cerned with estimating the actual heading angle of the vessel at each sampling
time. The approach used here is based on Kalman filtering: firstly, the standard
KF is described in this section, and secondly, a novel approach based on the
wIKF is presented.

3.1 Kalman Filter. For linear systems governed by stochastic-deterministic state-
space equations such as Equations (5) and (6), it is well established that the KF pro-
vides statistically optimal estimates of the state vector from measured data. The KF
equations implemented in this study can be found in Motwani et al. (2013b).
Despite its widespread use, the optimal nature of the KF relies upon an accurate de-

scription of the dynamic model and system and measurement noise covariances. An
example of the effects of erroneous modelling on the heading estimate for the
Springer was shown in Motwani et al. (2013b), in which accurate KF estimates were
only obtained if the model description was accurate as well. This causes a significant
inconvenience, as this is seldom the case in practice, especially for processes susceptible
to being affected by numerous external factors.
In order to reproduce such a non-idealistic scenario, assume that all the coefficients

of Equation (7) have been underestimated by 0·5%, and that the actual compass dy-
namics are given instead by:

A ¼ 1:005 ×
0:2796 0:6971

1 0

� �
;B ¼ 1:005 ×

0:4364

0

� �
;C ¼ K 1 0½ �;

K ¼ 1:0050 × 0:05339

covðωÞ ¼ diagf1; 1g;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðυÞ

p
¼ 2

○

ð8Þ

This change of behaviour could be the result, for instance, of an unaccounted for weak
external magnetic field that is biasing the compass readings, or it could be that the
model obtained in Equation (7) may have resulted from fitting data gathered under
non-ideal conditions.
In either case, it should be noted that even though the model assumed by the KF

(given by Equation (7)) does not reflect the true compass dynamics, the compass mea-
surements simulated in this study are generated according to the actual compass dy-
namics given by Equation (8).

3.2 Weighted Interval Kalman Filter. The application of interval Kalman filter-
ing to the navigation of USVs was discussed in detail in Motwani et al. (2013b),
which also described the principles of the IKF. However, for completeness, a brief
summary of the concepts behind the IKF are given here.
When system dynamics are not known precisely, but known to lie within finite

bounds, a version of the KF known as the IKF may be adopted, capable of providing
rigorous bounds to the optimal state estimate. The algorithm was first proposed by
Chen et al. (1997), and can be summarised as follows.
Let A, B and C contain elements which are uncertain within some definite bounds.

The system can then be described by:

xðk þ 1Þ ¼ AIxðkÞ þ BIuðkÞ þ ωðkÞ ð9Þ
yðkÞ ¼ CIxðkÞ þ υðkÞ ð10Þ
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where MI ¼ M± ΔM ¼ ½M� ΔMj j; Mþ ΔMj j� for M ∈ fA;B;Cg, and ω(k) and
υ(k) are white noise sequences with zero-mean Gaussian distributions with known
covariances cov(ω) =Q, cov(υ)=R, and E[ω(l) υT(k)] = 0 ∀l,k, E[x(0) ω T(k)] = 0,
E[x(0) υ T(k)] = 0 ∀k.
The IKF algorithm is given by the recursive Equations (11) to (15), which mimic

those of the ordinary KF but are described in terms of intervals. Given an initial esti-
mate x̂I ð0Þ and its uncertainty, characterised by PIð0Þ ≡ var½x̂I ð0Þ�, together with the
input to the system and the output measurement at each time-step, the resulting
state estimate is an interval vector x̂I ðkÞ at each time-step k, providing an upper and
lower boundary to the estimate, as illustrated in Figure 2.

Prediction:

x̂I�ðk þ 1Þ ¼ AIx̂IþðkÞ þ BIuðkÞ ð11Þ

PI�ðk þ 1Þ ¼ AIPIþðkÞAIT þQ ð12Þ
Kalman Gain:

KIðkÞ ¼ PI�ðkÞCIT CIPI�ðkÞCIT þRðkÞ
on �1

ð13Þ

Correction:

x̂IþðkÞ ¼ x̂I�ðkÞ þKIðkÞ½zðkÞ � CIx̂I�ðkÞ� ð14Þ
PIþðkÞ ¼ ½I�KIðkÞCI�PI�ðkÞ ð15Þ

in which z(k) is the measurement at time k, that is to say, a particular realisation of y(k).
In order to increase the robustness of the KF, an IKF that uses an interval model is

employed. This interval model is such that it contains a range of point-valued models
which are centred around the nominal model given by Equation (7). Specifically,
assume that the coefficients in Equation (7) are known to be accurate to within 1%
of the nominal values. Then the following interval model can be adopted:

xðk þ 1Þ ¼ AIxðkÞ þ BIuðkÞ þ ωðkÞ ð16Þ
yðkÞ ¼ CIxðkÞ þ υðkÞ ð17Þ

Figure 2. IKF estimate depicting its upper and lower boundaries.
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with

AI ¼ ½0:9 × 0:2796; 1:1 × 0:2796� ½0:9 × 0:6971; 1:1 × 0:6971�
½0:9; 1:1� 0

� �
;

BI ¼ ½0:9 × 0:4364; 1:1 × 0:4364�
0

� �
;CI ¼ K ½0:9; 1:1� 0½ �;

K ¼ 0:05339; covðωÞ ¼ diagf1; 1g;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðυÞ

p
¼ 2○

ð18Þ

Note that this interval model includes the true compass dynamics given by Equation
(8). Also, as noted previously, the measurements generated via simulation are point-
valued measurements from the actual compass dynamics (Equation (8)) rather than
generated from Equation (17).
Implementation of the IKF algorithm requires the use of interval arithmetic,

which tends to yield overly conservative bounds. As discussed in Motwani et al.
(2013b), the calculated bounds tend to diverge due to the so-called “dependency
effect” of interval arithmetic. In order to minimise this effect, the IKF expressions
involving interval variables may be reformulated in several ways to take advantage
of different factorisations, and the intersection of the resulting values computed
using each one of these will provide the smallest interval that contains the true
result. This constitutes a simple and effective procedure to sharpen interval
computations, and is the method adopted here in obtaining the IKF interval
estimates.
Once the IKF bounds are obtained, nonetheless, in practice a single point-valued

estimate is desired. Chui and Chen (2008) proposed obtaining a weighted average of
the boundaries, and this method is adopted here. The weighted average, or wIKF es-
timate, is given by

ĥwIKF ðkÞ ¼ ĥinfwIKF ðkÞ þ wðkÞ½ĥsupwIKF ðkÞ � ĥinfwIKF ðkÞ� ð19Þ
where ĥ denotes heading estimate, and the superscripts sup and inf refer to the upper
and lower bounds of the IKF estimate.
In this study, as well as the wIKF, an ideal KF is simulated in parallel. It is ideal in

the sense that it adopts the true model of the compass (Equations (5) to (7)). The wIKF
weight is then calculated at each time step as that which is necessary for the weighted
average of the IKF bounds to coincide with the ideal KF estimate. In other words,

wðkÞ ¼ ĥidealðkÞ � ĥinfwIKF ðkÞ
ĥsupwIKF ðkÞ � ĥinfwIKF ðkÞ

ð20Þ

Although an ideal KF is simulated in order to compute this weight, it is possible to
obtain a good approximation of the same without the need of an ideal KF, as will
be noted in the ensuing discussion.

4. THE GUIDANCE SYSTEM. Different guidance strategies used in marine
environments to guide the vehicles are further illustrated in Annamalai (2012). The
most popular guidance strategy is waypoint LOS strategy and this is utilised here. It
is briefly illustrated as follows.
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Based on the current estimated position of the USV and the coordinates of the next
waypoint to be reached, the desired or reference heading angle based on LOS is calcu-
lated as follows:

rðkÞ ¼ arctan
ydðkÞ � yðkÞ
xdðkÞ � xðkÞ

� �
ð21Þ

where (x, y) is the current location of the vessel and (xd, yd) the target coordinates. In
practice, because the inverse of the tangent is restricted to (−90°, 90°), the four quad-
rant inverse tangent, arctan2[yd(k)-y(k), xd(k)-x(k)], which takes into account the signs
of both arguments, is used instead. Also, as the reference (or desired) heading angle
changes, care is taken to ensure that the vehicle is directed to turn toward it in the di-
rection that requires the lesser total change in its own heading, since two possibilities
always exist.
The guidance system keeps track of the mission status, which includes a log of the

waypoints reached or missed and the current target waypoint, as well as the total dis-
tance travelled, deviation from the ideal trajectory, and controller energy consumed.
These are updated every sampling instant based on the current position of the USV.
All of these concepts are described next.
To decide whether a waypoint has been reached or not, the guidance system consid-

ers a Circle Of Acceptance (COA) around each waypoint (Figure 3). ACOA is needed
since the marine environment is continuously moving with some degree of random-
ness, making it unfeasible in practice to target a single point precisely. Healey and
Lienard (1993) suggested that the radius of the COA should be at least twice the
length of the vehicle. However, their concern was to do with underwater vehicles.
Since surface vessels benefit from GPS localisation, a radius equal to the length of
the vessel is deemed sufficient in the present investigation. For Springer the length is
approximately 4 m, thus this is the radius assigned to the COA.
At each sampling instant, the guidance system calculates the distance left to the next

waypoint according to

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xdðkÞ � xðkÞ�2 þ ½ydðkÞ � yðkÞ�2

q
� ρ0 ð22Þ

Figure 3. Deviation at time k.
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ρ0 being the radius of the COA.When this condition is met, it is regarded that the way-
point is reached, and the guidance system directs the vessel to the next waypoint.
However, the vessel might pass by the vicinity of a waypoint without entering the

COA. This condition is determined by checking the derivative dρ=dt, which when it
switches from negative to positive, indicates that the vessel has missed the waypoint.
In this case, the guidance system also directs the vessel toward the next waypoint.
The vessel normally follows a path different from the ideal one. Several performance

indices are used to assess the trajectories followed, which the guidance system com-
putes at each time step and keeps track of. The deviation from the ideal trajectory
can be measured as

rdðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PB

2 þ P 0B
2 � 2 PB � P 0B cosðαÞ

q
ð23Þ

where PB is the distance, at time k, to the next waypoint from the position of the
vehicle were it on the ideal path, and P 0B the distance to the next waypoint from its
actual position at time k, α being the angle between the two vectors, as shown in
Figure 3.
Finally, the average controller energy CEu is defined as

CEu ¼

PN
k¼ 1

½ucðkÞ=60�2

N
ð24Þ

where N is the total number of time steps and uc the controller effort at time k in rpm.

5. THE CONTROL SYSTEM. The concepts and techniques of MPC have been
developed over the past three decades (Annamalai, 2012), and various authors such
as Maciejowski (2002), Rawlings and Mayne (2009), Wang (2009) and Allgower
et al. (2010) suggest that MPC is widely used in the process and petrochemical indus-
tries. In addition, the marine control system design fraternity has also embraced this
approach since it offers the advantage of being capable of enforcing various types of
constraints on the plant process as exemplified by Naeem et al. (2005), Perez (2005),
Oh and Sun (2005), Liu et al., (2011) and Li and Sun (2012).
In general, the plant output is predicted by using a model of the plant to be con-

trolled. Any model that describes the relationship between the input and the output
of the plant can be used. Further if the plant is subject to disturbances, a disturbance
or noise model can be added to the plant model. In order to define how well the pre-
dicted process output tracks the reference trajectory, a criterion function is used.
Typically the criterion or cost function is of the following form,

J ¼
XHp

i¼1

eðk þ iÞTQ eðk þ iÞþ
XHc

i¼1

Δuðk þ iÞTRΔuðk þ iÞ ð25Þ

subject to,

Δul � Δuðk þ iÞ � Δuu ð26Þ
where eðkÞ ¼ ŷ ðkÞ � rðkÞ is the prediction error, or difference between the predicted
process output ŷ and the reference trajectory r. The superscripts l and u represent
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the lower and the upper bounds respectively. Q is the weight on the prediction error,
and R the weight on the change in the input Δu. Hp is the prediction horizon or
output horizon, and Hc the control horizon. More details can be found in Naeem
et al. (2005). For completeness, the general structure of an MPC is shown in
Figure 4(a).
The optimal controller output sequence uopt over the prediction horizon is obtained

by minimisation of J with respect to u. As a result the future tracking error is
minimised.
The MPC algorithm consists of the following three steps.

. Step 1. Use a model explicitly to predict the process output along a future time
horizon (Prediction Horizon).

. Step 2. Calculate a control sequence along a future time horizon (Control
Horizon, Hc), to optimise a performance index.

. Step 3. Employ a receding horizon strategy so that at each instant the horizon is
moved towards the future, which involves the application of the first control signal
of the sequence calculated at each step. The strategy is illustrated in Figure 4(b).

In Figure 4(b), the predicted output and the corresponding optimum input over a
horizon Hp are shown, where u(k) is the optimum input, ŷðkÞ(k) is the predicted
output, and y(k) the process output.
The controller is not fixed and is designed at every sampling instant based on actual

sensor measurements so disturbances can easily be dealt with as compared to fixed
gain controllers.
For the integrated NGC system in Springer, an MPC was chosen as autopilot since

previous studies (Annamalai and Motwani, 2013) have shown that it provides better
performance than more standard approaches such as linear quadratic Gaussian-
based controllers. The plant model used by the MPC algorithm is the model of the
vehicle described in Section 2.1 (Equations (2) to (4)), the input u(k) being the differ-
ential mode thruster velocity nd (k), and the output y(k) corresponding to the heading
of the vehicle, which in the integrated NGC system is provided by the KF/wIKF esti-
mate rather than assumed to be directly available, as this would not be the case in
practice.

Figure 4. MPC (a) General structure; (b) General strategy.
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The MPC controller also incorporates the actuator limitations of the vessel as
optimisation constraints. These are given by

ndj j � 300 rpm and Δndj j � 20 rpm ð27Þ
that is, a limitation both on the maximum absolute value and on the change of the rpm
of the motors from one sampling instant to the next.
The parameters of the MPC algorithm used areHp= 10 and Hc= 2, as these values

were found to be optimal, and the weights Q= 1 and R= 0·1 were chosen for the cost
function. Further rationale for the choice of these parameters can be found in
Annamalai (2014).

6. RESULTS AND DISCUSSION. The block diagram shown in Figure 5 illus-
trates the integration of the three subsystems.
The mission plan consists of the set of predefined waypoints through which it is

desired for the vessel to traverse. The particular mission plan used herein consists of
seven waypoints forming a closed circuit (Figures 7(a) and 9(a)). Based on the
mission plan and current location of the vehicle (assumed to be known), the guidance
system (described in detail in Section 4) keeps track of previous and next-waypoints,
distance travelled and remaining, etc. It also generates the desired (or reference)
heading angle as the angle of the straight line connecting the vessel’s current estimated
position and the next waypoint. (Angles are with respect to a reference direction, in this
case Due East, given by the x-axis in Figures 7(a) and 9(a)). In turn, based on the
desired heading angle and the current estimated heading of the vehicle, the autopilot,
or controller, generates the most adequate control signal, or differential thrust of the
motors (recall that steering is controlled via the differential mode thruster velocity, nd).
The autopilot here is concerned only with heading control, since, as was previously
stated, the common mode thruster velocity nc is maintained constant throughout.
The position of the vessel at each time step is calculated from the previous position

using dead reckoning, given that the forward speed of the vessel (relative to the water
surface) is constant and known. Added to this, a constant disturbance consisting of an
added velocity of 10% of the forward speed of the vehicle, acting in a northerly direc-
tion, was added to consider the effect of surface currents (Figure 6). If x(k) and y(k)

Figure 5. NGC system block diagram.
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represent the position of the vessel at time k, then the position at the next sample time is
calculated as follows:

xðk þ 1Þ ¼ xðkÞ þ v Ts cosðθÞ ð28Þ
yðk þ 1Þ ¼ yðkÞ þ v Ts sin ðθÞ þ 0:10 v Ts ð29Þ

where v is the constant forward speed of the vessel (3 knots), Ts the sampling interval of
1 s, θ the actual heading angle of the vessel at time k, and 0:10 v Ts the effect of the
surface current disturbance which is added to the y component of the vehicle’s
position.
The actual heading of the vessel is generated according to Equations (2) to (4), with

the added random input ω(k) in the state equation (Equation (2)), rendered as a
random Gaussian white noise sequence with zero mean and covariance diag
{1,1}×10−14, and which models the random effects of surface waves. It is shown in
Figure 5 as a disturbance that affects the heading of the vessel.
The waypoint-tracking mission was simulated using two different approaches that

differ in the navigation system used. In both cases, LOS and MPC, as described in
the previous sections, were used for guidance and control of the vehicle, as these
methods constitute realistic strategies that have been proven to be effective in this
area (Annamalai and Motwani 2013, Naeem et al., 2006), and are thus maintained
for this study.
For the navigation system, firstly, a KF based on the incorrect nominal model of the

TCM2 compass dynamics (Equation (7)) was used to estimate the heading of the USV.
Figure 7(a) shows the trajectory followed by the vehicle, while Figure 7(b) shows the
controller output. Note that the generated control signal is within the prescribed actu-
ator limits.
Figure 8 shows the reference heading generated by the guidance system, as well as

the true heading of the vehicle and the KF estimate of the same. It can be observed
from the figure that the estimated heading does not converge to the mean value of
the actual heading, since the incorrect compass model used in the KF is biased.
This inaccuracy in the estimated heading in turn affects the guidance and control
systems, as can be observed from the somewhat winding trajectory followed by the
vehicle in this case (Figure 7(a)). In particular, the KF tends to overestimate the

Figure 6. Velocity triangle.
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heading of the vehicle, increasingly so during the latter part of the course (Figure 8).
The effect of this is that the vehicle tends to miss waypoints, bypassing them to its
left, because its actual heading falls short of what it should be (the KF estimate) to
target the waypoint exactly. This is apparent in Figure 7(a) in which the vehicle
misses the last four waypoints.
In the second instance, a wIKF was used to estimate the heading of the USV, as de-

scribed in Section 3.2. Figures 9(a) and 9(b) show the trajectory followed by the
vehicle, and the MPC control output, respectively. Figure 10 shows the reference
heading and compares the actual heading of the vehicle with the estimated one. It
can be observed that the estimated heading matches the true heading much more
closely than in the previous case, and this translates into a much smoother and
more efficiently generated trajectory, as evidenced in Figure 9(a).
From the two simulations described, global performance parameters were obtained

and are summarised in Table 1. The number of waypoints reached reflects only those

Figure 7. Simulations corresponding to the NGC system with KF based on incorrect TCM2
model; (a) trajectory, (b) MPC output.
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for which the vehicle entered the COA. In the case of navigation using the KF, four out
of the seven waypoints were not reached (namely waypoints 4, 5, 6, and 7), although
the vehicle was directed to the next target when it was detected to have passed one
without entering the COA. In the case of the system using the wIKF navigation esti-
mate, all waypoints were reached. The wIKF NGC system also achieved better per-
formance in terms of distance travelled (13% reduction), deviation from the ideal
trajectory (34% less), energy used (18% lower) and time taken (18% less).
The preceding results highlight the importance of accurate navigation for the USV

mission as awhole. The improved heading estimate accuracy can be evidenced by com-
paring Figures 8 and 10. A comparison of the navigational accuracy is explicitly shown
in Figure 11, which shows the errors (difference between true and estimated heading)
of the two navigation systems. In fact, by definition of the weights used, generated ac-
cording to Equation (19), the wIKF estimates are equal to the KF estimates that would
have been obtained had the true model of the compass been used.
Although in order to calculate the ideal weightings for the wIKF, estimates from an

ideal KF were used, in practice the true dynamics of the system will not generally be
known precisely. However, studies have shown that it is possible to infer these ideal
weights without knowledge of the true system dynamics, and hence, without relying
on the estimates of an ideal KF. Motwani et al. (2013a) devised a method based on
using data generated in a simulation study such as this one to train a neural
network to predict the optimum weights. The idea is basically the following: one can
construct a simulation mission and adopt some model to simulate the readings of
the compass, which will thus represent the “true” compass dynamics for that simu-
lation. The chosen compass dynamics must be some model contained in the interval
model of the compass (which is what is only known in reality). One can then simulate
an IKF, an ideal KF (that is, based on the model chosen to simulate the compass), and
some nominal KF (whose model differs from that of the one used to simulate the
compass, although still contained in the interval model). Based on these simulations,
the neural network is then trained to correlate the innovations sequence of the

Figure 8. Comparison of reference heading, actual vehicle heading, and estimated heading, using
KF based on incorrect TCM2 model. (a) Way point tracking using wIKF. (b) Controller output nd.
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nominal KF (which is an indicator of its performance) with the desired wIKF weight
(calculated by Equation (20)). The trained neural network is then capable of estimating
this desired weight for new missions based on the innovations of any nominal KF con-
tained in the interval model, regardless of what the actual dynamics of the compass are
(as long as they are contained in the interval model). Hence, the method itself does not
rely on knowledge of the true system dynamics, but only upon being able to describe it
via an interval model such as the one given by Equation (18). Thus, the arguments pre-
sented in this paper are justified even though, for the sake of conciseness and clarity,
the weights of the wIKF were generated by Equation (20).

Figure 9. Simulations corresponding to the NGC system with wIKF heading estimate; (a)
trajectory, (b) MPC output.
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It should be emphasised that in practice, computing the wIKF estimates requires
running both a KF and an IKF in parallel, as well as a neural network for predicting
the optimal weight. The IKF uses exactly the same formulation as that of a regular KF,
but operates on interval values instead. In practice, this means that an interval arith-
metic needs to be implemented on a computer. There are many programming lan-
guages that incorporate interval data types nowadays; in particular, the simulations
shown in this paper were computed using the open-source extension of MATLAB
for interval arithmetic, INTerval LABoratory (INTLAB), developed by Rump
(1999). Using INTLAB, the computational overhead of dense matrix multiplication
for interval valued elements translates into an estimated timing factor of between
five and ten compared to pure floating-point matrix multiplication. Regarding the
computation of the weight, it should be noted that the training of the neural
network is done on a training data set, offline. The actual use of the trained
network for predicting the weight typically requires two matrix multiplications at
each time-step (in the case of a layered perceptron model with a single hidden
layer), that is, O(N3) floating point operations for each one, N being the order of
the matrix.

Figure 10: Comparison of reference heading, actual vehicle heading, and estimated heading from
wIKF.

Table 1. Comparison of performance parameters.

Parameters

NGC with

KF wIKF

No. of way-points reached 3/7 7/7
Total distance travelled 1540 m 1338 m
Average deviation 32 m 21 m
Average energy 6·6 (rps)2 5·4 (rps)2

Time taken 17 min 14 min
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7. CONCLUDING REMARKS. To summarise, the waypoint tracking capability
of an innovative integrated NGC system for an USV is explored in this paper. The
Springer used as the test platform is described briefly and system identification is used
to capture the yaw dynamics of the USV and to model a TCM2 electronic compass
used on board the vehicle. These models are respectively used by the predictive autopilot
and KF-based navigation systems. Navigation based on a KF using a biased compass
model and another based on a wIKF are simulated to complete the waypoint tracking
mission. In both cases, a waypoint LOS guidance system is utilised to generate the ref-
erence trajectory, and an MPC autopilot as the control system to keep the vehicle on
course. The performances of the two integrated systems are compared.
The key aspect of this paper is to show how the novel wIKF can be used effectively in

conjunction with the aforementioned guidance and control systems, and that it pro-
vides a navigation system that is robust to (a finite amount of) uncertainty in the
model it relies upon. This in turn has a marked effect, improving the accuracy and ef-
ficiency of the integrated NGC system as a whole for the completion of the mission,
leading to better overall results in terms of total distance travelled, deviation, energy
and time consumed, and not least, the actual number of waypoints successfully
tracked by the vehicle. This technique constitutes a novel approach to address the in-
creasing demand for autonomous capabilities in cost-effective USV platforms such as
Springer that relies on software-based techniques to enhance the effectiveness and
reliability of its relatively low-budget sensors and restricted modelling facilities.

REFERENCES

Allgower, F., Glielmo, L., Guardiola, C. and Kolmanovsky, I. (2010). Automotive model predictive control.
Springer-Verlag, Berlin.

Alves, J., Oliveira, P., Oliveira, R., Pascoal, A., Rufino,M., Sebastiao, L. and Silvestre, C. (2006). Vehicle and
mission control of the Delfim autonomous surface craft. Proceedings of 14thMediterranean Conference on
Control Automation, Ancona, Italy.

Annamalai, A.S.K. (2014). An adaptive autopilot design for an uninhabited surface vehicle. PhD thesis,
Plymouth University, Plymouth, UK.

Annamalai, A.S.K. (2012). A review of model predictive control and closed loop system identification for
design of an autopilot for uninhabited surface vehicles. Springer Technical Report: MIDAS.SMSE.2012.
TR.005, 2012.

Figure 11. Comparison of wIKF and traditional KF estimation errors.

766 A. ANNAMALAI AND OTHERS VOL. 68

https://doi.org/10.1017/S0373463315000065 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000065


Annamalai, A.S.K. andMotwani, A. (2013). A comparison between LQG andMPC autopilots for inclusion
in a navigation, guidance and control system. Springer Technical Report, MIDAS SMSE.2013.TR.006.
Plymouth University, Plymouth, UK.

Ashrafiuon, H., Muske, K.R., McNinch, L.C. and Soltran, RA. (2008). Sliding-mode tracking control of
surface vessels. IEEE Transactions on Industrial Electronics, 55(11), 4004–4012.

Caccia, M., Bibuli, M., Bono, R. and Bruzzone, G. (2008). Basic navigation, guidance and control of an
Unmanned Surface Vehicle. Journal of Autonomous Robots, 25(4), 349–365.

Caccia, M., Bibuli, M., Bono, R., Bruzzone, G.A., Bruzzone, G.I. and Spirandelli, E. (2007). Unmanned
surface vehicle for coastal and protected waters applications: The Charlie project. Marine Technology
Society Journal, 41(2), 62–71.

Chen, G., Wang, J. and Shieh, L.S. (1997). Interval Kalman Filtering. IEEE Transactions on Aerospace and
Electronic Systems 33(1), 250–258.

Chui, C.K. and Chen, G. (2008). Kalman Filtering with Real-Time Applications, 4th ed. Springer, New York.
Elkaim, G.H. and Kelbley, R. (2006). Measurement based H infinity controller synthesis for an autonomous
surface vehicle. Proceedings of 19th International Technical Meeting of the Satellite Division of the Institute
of Navigation. Fort Worth, USA.

He, X.F. and Vik, B. (1999). Use of Extended Interval Kalman Filter on Integrated GPS/INS System.
Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of
Navigation, Nashville, TN.

Healey, A.J. and Lienard, D. (1993) Multivariable sliding model control for autonomous diving and steering
of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 18(3), 327–33.

Li, Z. and Sun, J. (2012). Disturbance compensating model predictive control with application to ship
heading control. IEEE Trans on Control Systems Technology, 20(1), 257–265.

Liu, J., Allen, R. and Yi, H. (2011). Ship motion stabilizing control using a combination of model predictive
control and an adaptive input disturbance predictor. Proc IMechE Part I: Journal of Systems and Control
Engineering, 225(5), 591–602.

Maciejowski, J.M. (2002). Predictive control with constraints. Prentice Hall Inc., London.
Majohr, J., Buch, T. and Korte, C. (2000). Navigation and automatic control of the measuring dolphin
(MessinTM). Proc of 5th IFAC Conference on Manoeuvering and Control of Marine Craft, Aalborg,
Denmark.

Motwani, A., Sharma, S.K., Sutton, R. and Culverhouse, P. (2013a). Application of artificial neural net-
works to weighted interval Kalman filtering. Proc IMechE Part I: Journal of Systems and Control
Engineering, 228(5), pp 267–277.

Motwani, A., Sharma, S.K., Sutton, R. and Culverhouse, P. (2013b). Interval Kalman filtering in navigation
system design for an uninhabited surface vehicle. Journal of Navigation, 66(5), 639–652.

Naeem, W., Sutton, R. and Chudley, J. (2006). Modelling and control of an unmanned surface vehicle for
environmental monitoring. UKACC International Control Conference, Glasgow, Scotland.

Naeem, W., Sutton, R., Chudley, J., Dalgleish, FR. and Tetlow, S. (2005). An online genetic algorithm based
model predictive control autopilot design with experimental verification. International Journal of Control,
78(14/20), 1076–1090.

Naeem, W., Xu, T., Sutton, R. and Tiano, A. (2008). The Design of a Navigation, Guidance, and Control
System for an Unmanned Surface Vehicle for Environmental Monitoring. Proceedings of the Institution of
Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 222(2), 67–80.

Oh, S.R. and Sun, J. (2005). Path following of under actuated marine surface vessels using line-of-sight based
model predictive control. Ocean Engineering, 37(2–3), 289–295.

Park, S., Kim, J., Lee, W. and Jang, C. (2005). A study on the fuzzy controller for an unmanned surface vessel
designed for sea probes. Proceedings of International Conference on Control, Automation and Systems.
Kintex, Korea.

Perez, T. (2005). Ship motion: Course keeping and roll stabilisation using rudder and fins. Springer-Verlag,
London.

Qiaomei, S., Guang, R., Jin, Y. and Xiaowei, Q. (2011). Autopilot design for unmanned surface vehicle
tracking control. Proc of 3rd International Conference on Measuring Technology and Mechatronics
Automation, Shanghai, China.

Rawlings, J.B., and Mayne, D.Q. (2009). Model predictive control: Theory and design. Nob Hill Publishing,
Madison.

Rump, S. (1999). INTLAB - INTerval LABoratory. Kluwer Academic Publishers.

767A ROBUST NAVIGATION TECHNIQUE FOR GUIDANCE OF A USVNO. 4

https://doi.org/10.1017/S0373463315000065 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000065


Sutton, R., Sharma, S. and Xu, T. (2011). Adaptive navigation systems for an unmanned surface vehicle.
Proc IMarEST - Part A: Journal of Marine Engineering and Technology, 10(3), 3–20.

Tiano, A., Zirilli, A., Cuneo, M. and Pagnan, S. (2005). Multisensor Data Fusion Applied to Marine
Integrated Navigation Systems. Proceedings of the IMechE Part M: Journal of Engineering for the
Maritime Environment, 219(3), 121–130.

Tiano, A., Zirilli, A. and Pizzocchero, F. (2001). Application of interval and fuzzy techniques to integrated
navigation systems. Joint 9th IFSAWorld Congress and 20th NAFIPS International Conference: proceed-
ings, Vancouver, British Columbia, Canada.

Wang, L. (2009). Model predictive control system design and implementation using MATLAB. Springer-
Verlag, Berlin.

Xu, T. (2007). An intelligent navigation system for an unmanned surface vehicle. PhD thesis, Plymouth
University, UK.

Yan, RJ., Pang, S., Sun, HB. and Pang, YJ. (2010). Development and missions of unmanned surface vehicle.
Journal of Marine Science and Application, 9(4), 451–457.

Zhang, P., Gu, J., Milios, E.E. and Huynh, P. (2005). Navigation with IMU/GPS/Digital Compass with
Unscented Kalman Filter. Proceedings of the IEEE International Conference on Mechatronics and
Automation, Ontario, Canada.

768 A. ANNAMALAI AND OTHERS VOL. 68

https://doi.org/10.1017/S0373463315000065 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000065

	A Robust Navigation Technique for Integration in the Guidance and Control of an Uninhabited Surface Vehicle
	INTRODUCTION
	THE SPRINGER USV
	Modelling the USV Yaw Dynamics
	Compass Dynamics

	THE NAVIGATION SYSTEM
	Kalman Filter
	Weighted Interval Kalman Filter

	THE GUIDANCE SYSTEM
	THE CONTROL SYSTEM
	RESULTS AND DISCUSSION
	CONCLUDING REMARKS
	REFERENCES


