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Abstract

Friction problems involving "dry" or "static" friction can be difficult to solve numerically
due to the existence of discontinuities in the differential equations appearing in the right-
hand side. Conventional methods only give first-order accuracy at best; some methods
based on stiff solvers can obtain high order accuracy. The previous method of the author
[16] is extended to deal with friction problems involving multiple contact surfaces.

1. Introduction

Friction problems with "dry" or "static" friction are well-known for being difficult to
handle numerically. The problem is that the differential equations (ODEs) describing
the motion of the masses in such a system must be discontinuous in the sense that
there is a jump discontinuity in the right-hand side of the ODEs as the relative velocity
of the surfaces in contact goes through zero. This, in turn, is because the direction of
the force (being fj,N, /x being the coefficient of friction, N being the normal contact
force) changes as the relative velocity passes through zero.

The problem of numerically solving discontinuous ODEs has only recently been
investigated. Indeed, the first paper describing a systematic notion of "weak solution",
corresponding to Carathe'odory's notion for ODEs, only appeared in 1960 [8]. The
first paper on the problem of numerically computing a solution is that of Taubert [18]
in 1976. Since then work has been done by Taubert [19], Elliott [6], Niepage [14],
Niepage and Wendt [15], Stewart [16] and Kastner-Maresch [12,13] amongst others.
For more information on the short history and development of this work, see the review
article by Dontchev and Lempio [5]. Until the paper of Stewart, the best convergence
results obtained were that the methods described would be at least first-order provided
there were some restrictions on the problem. This was due to two factors: one is the
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[2] Method for friction problems 289

problem of the numerical method "chattering" about the discontinuity, and the other
is that switching points need to be accurately located to obtain high accuracy. The
method of Stewart assumes and uses considerable information about the structure of
the discontinuities, but can give arbitrarily high-order convergence. Kastner-Maresch
uses a more conventional approach based on implicit difference formulae, but is also
able to obtain high-order convergence results. There is currently a gap in the theory
of [12], in that there are no results on maintaining high-order accuracy when the
trajectory has a "kink" at a switching point, and is not C1.

On the other hand, the structure assumed by the method of Stewart [16] does
not always exist; surprisingly it fails in what are otherwise very well-structured
discontinuous ODEs arising from several masses making frictional contact. (The case
of a single frictional contact is easily handled by the framework in [16].)

In this paper the representation of the discontinuous ODEs of Stewart [16] is
modified to a form appropriate for friction problems with multiple bodies in contact.
Convergence and related results are also proven which are analogous to those in [16].

This work extends [16] and is based on the author's doctoral thesis [17].
The paper is structured as follows. Section 2 contains previous results and sets

the framework for the remainder of the paper. Section 3 outlines how to extend
Algorithm 1 of [16]; this section includes the extended results on LCPs needed for the
main results. Section 4 gives a formal description of the main algorithm, and states
the main results and outlines for the proofs. Section 5 describes the implementation
and gives numerical results for a test friction problem.

Since the following material deals with set-valued functions, the notation &(X)
is used to denote the set of subsets of X, and a set valued map F from X to Y is an
ordinary function F: X r+ &>(Y).

2. Previous work

Here we summarise the results of Stewart [16] and relevant information about
discontinuous ODEs.

In Carathdodory's definition of a solution of a differential equation [3]

*' = / ( ' . * ) . (1)

the function *(•) must be absolutely continuous (AC) and satisfy (1) at almost all
values of t. Under weak continuity conditions of f(t, x) in x and integrability in t,
Carath6odory showed that solutions existed, at least locally. However, this is not so
for discontinuous ODEs as the following example illustrates:
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290 David E. Stewart [3]

where g ( ) is a nonconstant function of time and satisfies \g(t)\ < 1 for all t. In this
example, we cannot have x(t) > 0 for any t > 0 as this would imply the existence of
a time t' at which x(t') > 0 and x'{t') > 0, which is clearly impossible. Similarly we
cannot have x(t) < 0 for any / > 0. Thus we must have x(t) = 0. Substituting this
into the differential equation gives 0 = — sgnO + g(t), which cannot be true almost
everywhere (even with a redefinition of "sgn 0") for nonconstant g.

Instead we use the regularisation of Filippov [8] which replaces the differential
equation with a differential inclusion:

= F(t,x), (2)

where
f) p cof(t,(x + SB)\N)

and fx is the Lebesgue measure, B is a unit ball and coX is the closed convex hull of
X.

For structure, it was assumed in [16] that there are smooth functions ft and subsets
Ri c | " , i = l ,2 m, where

x' = fix) = /•(*) ifx € Ri (3)

and

These regions /?, should have nonempty interior and have piecewise smooth bound-
aries. At a point x e K" the active set is / (* ) = {/ | * € / ? , - } . The regions fl, are
assumed to be described by indicator functions ht: K" —>• K, where

Ri = {x\h,(x)< hj(x) for all j?i). (4)

This form of representation comes from optimal control theory.
For single-contact friction problems suitable indicator functions are easy to find:

hi(x) = —v, h2(x) = +v, where v is the relative velocity of the bodies in con-
tact. The functions fi(x) and f2(x) are then the right-hand sides for the differential
equations with an appropriate choice of direction of the friction force. Note that the
discontinuities that appear in the original ODEs for the friction do not appear in /] or

h-
Given this structure, we look for piecewise-active solutions of the discontinuous

ODE; that is, the active set / (x(t)) is a piecewise-constant function of t. In the pieces
where / (x(t)) is constant, an ODE can be set up which maintains the given active set
and solves the discontinuous ODE. This ODE is determined by taking the intersection
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[4] Method for friction problems 291

of &f{t,x) and the tangent plane of the surface of discontinuity. This ODE is
smooth provided the intersection is nonempty and the intersection of the affine plane
of & f(t, x) and the tangent plane is transversal [11]. This can be tested by checking
that an appropriate matrix is nonsingular. Where the active set changes we need to
solve a combinatorial problem of determining what new active sets are possible. This
is done in [16] by solving a linear complementarity problem (LCP). Each solution
of this LCP uniquely determines the active set provided a nondegeneracy condition
holds.

Unfortunately, neither LCPs nor discontinuous ODEs have unique solutions in
general. (LCPs in general might not have any solutions; however, the LCPs that arise
from discontinuous ODEs are guaranteed to have solutions.) One point that can be
made is that if the LCP does not have a unique solution, then the discontinuous ODE
from which it came does not have a unique solution either. This means that in the
case of friction problems, where it is known a priori that solutions are unique from a
one-sided Lipschitz condition, it follows that the LCPs that arise from these systems
have unique solutions and so there is no need to somehow "guess" the correct solution.
There are other situations, such as the direct solution of the Pontryagin conditions,
that lead to discontinuous ODEs that do not have unique solutions to the initial value
problem.

2.1. Conditions and results A discontinuous ODE of the form discussed by Stewart
[16] is defined by / : W ->• W and A,-: K" -> K, i = 1, 2, . . . , m. It is assumed that
both sets of functions are smooth. The following assumptions are made.

CONDITION A: For each x e W, the set {V/i,(x) | / e /(*)} is geometrically
independent. That is, the affine plane generated by the set is not generated by any
strict subset.

This is a generic condition on the regions /?,-.

CONDITION B: For each x € R", the matrix M(x) + aeeT, defined by mu(x) =
Vhi(x)Jfj(x), i, j e I(x) and e = [1, 1 , . . . , 1]T, is nonsingular for some a > 0.

The final condition is in terms of linear complementarity problems (LCPs).

DEFINITION 1. The LCP denoted LCP(M,q) with M e Kmxm and q e Km is the
problem of finding z, w € Km such that

Mz + q = w > 0, z > 0, z7w = 0.

Note that the vector inequalities are understood to hold for each component of the
vectors.
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CONDITION C: For each x eR", LCP(M(x) + aeeJ, -e) for sufficiently large a > 0
only has solutions which are strictly complementary; that is, for each i G /(*) either
z, > 0 or ID, > 0.

This allows the unique determination of the new active set from a given solution of
LCP(M(x) + aeeT, -e) given by {/ | z, > 0} = Inew = {i | w,•= 0}.

The two main results of [16] follow. Algorithm 1 is given in the Appendix and is
"Algorithm 1" of [16].

THEOREM 1. Assuming conditions A andB, if we have a sequence of approximations
xh on [to, tf] generated by Algorithm 1, then a limit point exists and furthermore, all
limit points are solutions of the discontinuous ODE in the sense ofFilippov.

In the following result a>(h) is the order of accuracy of the (smooth) ODE solver
used for the regularised right-hand side. The quantity e(h) is the tolerance for ap-
proximating I(x); Ie(x) = {i | hiix) < min, hj(x) + e }. The set I((x) is also called
the e-active set. The quantity r)(h) is the tolerance for locating zeros of switching
functions along the (numerical) trajectory.

THEOREM 2. Suppose that x() is a piecewise active solution of the discontinuous
ODE in the sense of Filippov. Then assuming conditions A, B and C, for h > 0
sufficiently small, suitable choices of active sets in Algorithm 1 generates numerical
approximations xh{-), where

provided co(h) = o(e(h)) and r)(h) = O(co(h)).

3. A decomposition extension

The algorithm described in Stewart [16] is inadequate to handle apparently simple
discontinuous ODEs, for example

x[ = - sgnxi ,

x'2 = -sgnx2. (5)

The purpose of this section is to develop an approach for such problems that en-
compasses the theory developed in Stewart [16]. Such a generalisation would be
particularly appropriate for problems involving friction problems with multiple fric-
tion surfaces.
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[6] Method for friction problems 293

Notice that in (5) there are four regions on which the right-hand side is smooth:

= { (*1, X2) 1 X

= { (X\, X2) 1 X,

i > 0 ,

[ < 0 ,

x 2 :

x 2 ;

>0}
>0}

R2 = {
R4 = {

(xux2) \x{ > 0, x2 <
<0,x2<

= 0}
= 0}.

Using the formulation of the previous section to solve this problem leads to the
problem of solving

Ma(x)z — e

for z, where m,7(x) = V/!,(x) • /,(*). Thus Mix) - Vh(x) • F(x), where Vh(x) is a
4 x 2 matrix and F(x) is a 2 x 4 matrix. The rank of M(;t) is therefore not more than
2, and as Mo(;t) = M(x) + aeeT is a rank-1 modification, the rank of Ma(x) is not
more than 3. Since Ma(x) is a 4 x 4 matrix, it is singular and the method of Stewart
[16] will fail.

The main problem in (5), strangely enough, seems to lie with the fact that the
"— sgn*!*' and "— sgnx2" functions are entirely independent of each other. To be
more precise, one can write

where f\x,t) = [-sgnx,, 0]T, f2(x,t) = [0, -sgn*2]T- At xx = x2 = 0, we
should only need to compute 2 quantities, one for each of the two discontinuous
function f1 and f2. That is,

0

It seems then that there are more unknowns than are necessary for problems of this
sort, which leads to the difficulties with singular matrices.

Using a decomposition type of approach, we will develop a more general form for
representing discontinuous ODEs that effectively reduces the number of unknowns to
be solved for. By reworking the theory in terms of this new representation, a larger
class of problems becomes solvable by essentially the same methods as are developed
in Stewart [16]. That is, active sets are determined through solutions of LCPs, and
that the differential inclusion is replaced by a suitable ODE by selecting the element
of the right-hand side to maintain the given active set. For this new representation we
will, of course, have to check that the resulting systems of equations can be expected
to have solutions and that the LCPs to be solved do indeed have solutions. This we
will do later in this section.
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3.1. The new representation In the above example (5), instead of dealing with the
regions /?i, . . . , /?4, we can work in terms of

R\ = {(x1,x2) U , > 0 } , Rl = {(Xl,x2) I*, < 0 } ,

#i = { (JCi, x2) \x2 > 0}, R\ = {(xux2) \x2 < 0}.

Then

ifx€R2
2.

Then for x e R\ n R\ we have the smooth ODE

but for x € R\ D /?2 we have

Clearly, for this example, we can write

where / J (^) = / / (*) forx € /?/. (6)

For (5) we can put

ux2) = [0, -1]T, f^xr,x2) = [0, +1]T.

More generally we consider discontinuous ODEs of the form (6), where the / / are
smooth functions. We further assume that there are indicator functions h[: R" —>• K
for k = 1 , . . . , rrij such that

RJ
k = {x\ h{(x) < hj(x) for all/ = 1 , . . . , mh I # k} (7)

by analogy with Section 2. For (5) we can use the indicator functions

h\(xux2) = +Xi hl
2(xux2) = -xi

h\(.xx, x2) = +x2 h\(xx, x2) = -x2.
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[8] Method for friction problems 295

As above, the discontinuous ODE (6) is understood in the Filippov sense (2).
Applying the arguments of [16, Lemma 1.3] to (6) and (7) gives

£ > { / / ( * ) |*e/ '(*)}, (8)
j=i

where
IJ(x) = {k\ h{(.x) = minh\ (*)},

provided the set {Vhj(x) \ j = 1,..., m; i e /•'(*)} is geometrically independent.
(See Section 2.1.) In this case the "active set" is not actually a set, but rather a finite
ordered sequence of sets

/(*) = (/ '(*),/2(x) /"(*))

with Ij(x) c { 1 , . . . , ntj). In the remainder of this section we seek solutions of (8).

3.2. Piecewise constant "active sets" Following the same programme as laid down
in [16], we consider the class of solutions of (8) with a piece wise-constant "active
set". That is, we assume that there is a finite sequence of switching points

t0 < h < • • • < tN = tf,

where I(x(t)) = /r_j for t e (fr_i, rr), r = 1, 2 , . . . , N.
Let (t1, t") be an interval on which the "active set" is constant for x{). That is,

we seek solutions *(•) on (t',t"), where I(x(t)) = I for all t e (t',t"). That is,
/ = ( / ' , I2,..., lm) = ( / ' (* ( ' ) ) , I2{x(t)),..., Im(x(t))) = 7(JC(O) is the current
active set. Then by Filippov's implicit function theorem [7], if x'(t) exists it must be
equal to

£ P ? (9)
<7=1 peli

for some measurable zq satisfying the side-conditions z*(r) > 0 and ^2p€l, 2q(t) = 1.
On the other hand, if i, k e V = Ij(.x(t)) then hj(x(t)) = h[(x(t)) for all / 6 (*', /").
Differentiating this relationship gives

Vhj(x(t))x'(t) = VhJ
t(x(t))-x'(t) = nj{t),

where the fij (t) are yet to be determined. Combining this with (9) gives the system
of linear equations

for j = 1 , . . . , m, i = 1 , . . . , m,,
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296 David E. Stewart 19]

We now wish to fix t € (t\ t") and x and focus on the algebraic aspects of this
problem. In what follows we will show the dependence on x only when it is needed to
make explicit which point on the trajectory is being considered. Put m\q = V/i/ • /*.
Then we can form the matrices Miq = [m^ | i e V, p e Iq] and

M =

•MU M 1 2

M21 M22

Mim'
M2m

We also form the vectors z" = [z« | p e Iq] and z = [(z')T, ( z 2 ) T , . . . . (zm)T]T. Then
(10) can be rewritten in more convenient form

Mz =

where e'' = [ 1 , . . . , 1]T with dimension card I' and /Xj € K. The problem remains to
determine the fij 's. It turns out that using the matrix Ma = M + aeeT enables this to
be done in a way similar to [16].

Let a e l b e chosen so that Ma = M + aeeT > 0; that is, Ma is a matrix with
strictly positive entries. Noting that z > 0 and that (eq)Jzq = 1 for q = 1 , . . . , m, it
follows that eTz = £™ (eq)Jzq = m. Thus

Maz =

ma)em

Put jJLj = \x,j + ma. We add jl = [/x,,..., fim]T to the vector of unknowns, and add
the normalisation conditions (eq)Jzq = 1 to the set of equations.

Then we obtain

Mmm

O

-em

Ai

.Am.

"0"

0
1

1
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If we let E be the matrix
0~

O e>

then this can be written in a much more compact form

(11)

As long as the matrix " is invertible, one can compute the z vectors in a

stable way and use (9) as the definition of a standard ODE, which can be solved by
accurate standard methods. This leads to the following generalisations of condition B
andB2.

DEFINITION 2. If / , / € f l L i ^ ( f 1 ' • • • > m*))> w e s ay t h a t J Q I if Jk Q Ik for
k = 1 , . . . , m. We also say that / is null-free if Jk ^ 0 for any k = 1,... ,m. The
cardinality of / is c a r d / = YZ=ic!adJk- j
JJ, p € Jq] and £ ( / ) is the matrix

matrix M(J,x) = [mj*(x) | / e

where c*(7) is the column vector of l'sof size card/*. Finally, Ma{J,x) = M(J,x)+
aeeJ, where e is the vector of l's of size card / .

CONDITION B': Condition B' is satisfied at x if for all / c / (x), where / is null-free,
the matrix

[ £(/)T

is nonsingular.

LEMMA 1. The set of matrices M € Rnxnfor which Na = " w invertible is

independent of a.

PROOF. Suppose that Na is nonsingular. We now show that Na+p must also be
nonsingular by the Sherman-Morrison formula [10, page 3]. In particular, note that

T-E Ma - MM
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where e is a column vector of Is of dimension /. By the Sherman-Morrison formula,

provided the denominator is not zero. But

where e' is a column vector of Is of dimension m. Thus

and the denominator in the Sherman-Morrison formula is always 1.
Thus if Na is nonsingular, so is Na+p for any /J € K. The same argument also

shows the reverse implication: if Na+fi is nonsingular, so is Na. Thus the invertibility
of Na is independent of a.

REMARK 1. It may be asked what the point of having an or is if it has no effect on
the invertibility of the matrices Na. There are two main reasons: it is a clearer
generalisation to the results of the previous section, and more importantly, the corres-
ponding Linear Complementarity Problem requires Ma > 0. (See Section 3.3 below.)
However, a numerical implementation would probably ignore the role of a except for
the LCP computations.

3.3. At a switching point While it is not difficult to find conditions that a "new active
set" would have to satisfy, what is be harder to see is whether or not the conditions
are satisfiable. These conditions will be shown to be equivalent to finding a solution
to an LCP, and solutions to such an LCP will be shown to exist, analogously to [16].

We now consider a switching point t'. We suppose that I(x(t')) = /0 and that
/(*(/)) = I for all f € it', t"). Note that /„ = (/„',..., /o

m) and / = ( / ' , . . . , Im). In
what follows we will develop a method of computing / using Linear Complementarity
Problems by analogy with Stewart [16]. The existence results are constructive and
based on the complementary pivoting algorithm of Cottle and Dantzig [4]. The main
result of Cottle and Dantzig [4] is that if M is a co-positive plus matrix (that is, x > 0
and xTMx = 0 implies (Af + MJ)x = 0), then for any given q the complementary
pivoting algorithm either terminates at a solution to LCP(M, q) or at an unbounded
feasible ray.
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[12] Method for friction problems 299

It is easy to see that / rz /0. Now if J, k, I e IQ and /, k e V, but / £ I', then

h{(x(t1)) = hJ
k(x(t')) = h{(x(t')) but

/ = h{{x(t)) < hj(x(t)) for all t e (r\ t").

As in [16] we assume that D+x(t') = lim^o x(l'+h)
h *

{t) exists, so that

fij = Vhj(x(t')) • D+x(t') = VhJ
k(x(t')) • D+x(t') < Vhj(x(t')) • D+x(t').

However

<7=1 pell

It should be noted that the zq
p satisfy the usual nonnegativity conditions zq

p > 0, and
normalisation conditions JZ 6/, z

q = 1. Combining these two facts about D+x{t')
gives

(12)

where the sum is taken over all pairs (p, q) with p e /*'. These sums can be extended
to all of 11 by setting zq

p = 0 whenever p e /o*\/*.
To form the LCP, put wj = Epe/^C^/^^ ' ) ) • f^(x(t')))zq - ^ and the vectors

wj = [wj | i € /Q'], UJ = [(iy')T, . . . , (iom)T]T. The complementarity condition holds
as if p € I" then iy« = 0, and if p e I$\Iq, then z« = 0. Then

= 0.

As above, put m\q
p = Vh\(x(t')) • fq(x(t')) and define the matrices Miq = [m'i

q
p \i €

/^, p G /0* ] and M = [ MJ« | j , q = 1 , . . . , m ]. Then (12) becomes

w = Mz —
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We would like to incorporate the (x,'s into the LCP as variables, but this is not yet
possible as we cannot yet guarantee that they are nonnegative. Hence we replace M
by Ma — M + aee1 to obtain

w = Maz —

where p,j = fjij + ma, as above. Let E be the matrix as given above and introduce
the column vector \i = [ p,j \ j = 1 , . . . , m] and a vector of complementary variables
P = [ft | j - 1, . . . , m] which are defined by /?, = (eJ)TzJ - 1. This forms the
following LCP: Find {z,fi,w, fl) such that

Two questions naturally arise at this point: First, do solutions exist for this problem?
Secondly, if (z, p,, w, fi) solves (13), does z satisfy all the conditions required above?
Certainly the z* > 0 conditions are satisfied, but it is not immediately clear that
^2 e / , zq

p = 1. We now answer both these questions affirmatively.

LEMMA 2. If Ma > 0 then solutions to (13) exist, and furthermore, every solution has
P = 0, and therefore (eJ)Tzj = I for all j .

PROOF. We first prove that (13) has solutions. Since Na is co-positive plus, either
Cottle and Dantzig's complementary pivoting algorithm will find a solution, or the
algorithm will terminate at a feasible complementary ray. Let this feasible ray consist
of (z, /Z) = (z°, A0) + #(z> v) for all 9 > 0 with (z, v) ^ 0. Taking 6 -+ +oo gives

for all /. Then in particular, \>j((ej)Jzj) < 0 for all j = \,... ,m. Hence, as V > 0
and v > 0, either Vj = 0 or V — 0. On the other hand, we also have

We now show that V = 0. This has already been shown in the case v, > 0. If y, = 0
and V 7̂  0 then (zj)J J™=\ M'a

J^ ^ °> md ^ M'J > ° f o r e v e r y '> 7> ^ s implies that
z' = 0 for every i. Thus z; = 0.
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As V = 0 for every j , we find z = 0. But if we take 8 —> +oo along this
complementary ray, we also find that

Therefore w — — Ev > 0. As £ is a full rank matrix of zeros and ones and
v > 0, it follows that v = 0. Thus the direction of the complementary ray is along
(z, v,z0) = (0, 0, z0). This is the complementary ray associated with the initial
tableau of the complementary pivoting algorithm, which means that the basis of the
terminating tableau is the same as that of the initial tableau. But this is impossible
by Cottle and Dantzig [4]. Hence the complementary pivoting algorithm cannot
terminate at a complementary ray and must terminate at a solution.

We now proceed to show that at a solution (z, jx, w, P), P = 0 and (ei)JzJ = 1.
First, by complementarity, wJz + f}Tjl = 0. In particular, either Pj = 0 or p.j = 0.

Suppose ft # 0. Then /2; = 0 and wj = J™=1 Mjjz'. If z ^ 0 then wj > 0 which
implies that z' = 0 by complementarity, and that /Jy = (eJ)Tz; — 1 = — 1 which is
infeasible. If z = 0, then again /J; = (e;)TzJ — 1 = — 1 which is infeasible. Hence
fr = 0. As Pj = (ej)JzJ - 1, it follows that (ej)Jzj = 1 at a solution of (13).

Again assuming that the solutions to such a complementarity problem are strictly
complementary, the "new active set" is completely determined by whatever solution
is chosen through

I' = {i \z\ > O } # 0 . (14)

Thus the method can then be restarted with this "active set" / = ( / ' , . . . , Im). In order
to guarantee strict complementarity we use the following analogue of condition C.

CONDITION C": Condition C" is satisfied at x if cannot be expressed as a linear

combination of card / (x) + m — 1 columns of ° 'T , where a

is some number in R chosen so that Ma(I(x), x) has only positive entries.

CONDITION C2'\ Condition C2' is satisfied by (6)-(8) if condition C is satisfied at
every x € K".

4. Algorithm and convergence

We now give a modification of Algorithm 1 for solving discontinuous ODEs in
this new representation. We will then give generalisations of Theorems 4.2 and 4.3 of
Stewart [16].
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We also need the following generalisation of /*(*): Ie(x) = (I*(x),..., I™(x)),
where

/*(*) = {' I *?(*) < minA*(jc) + <? }.

Finally we need the switching function

x(r(I,x,t)= min (minzf, min/if (x) — min/if (x), t* — t),

where zf is defined by (/, x) through (11).
Algorithm 2 for computing solutions to (6)-(8) is a modification of Algorithm 1,

and is presented in the Appendix.

THEOREM 3. If we have a sequence of approximations xh on [t0, t/] generated by
Algorithm 2 as h J, 0, then a limit point must exist, and furthermore, all limit points
are solutions of(6)-{8) in the sense ofFilippov.

PROOF. AS for [16, Theorem 4.2].

THEOREM 4. Suppose x(-) is a solution of the discontinuous ODE (6)-(8) and con-
ditions B' and C" are satisfied for all x(t). If x{) is a piecewise-constant active set
solution, then Algorithm 2 can be made to give, by suitable choices of t* and I in
Step 5, numerical approximations xh(-) such that

on [t0, tf] provided co(h) = o(e(h)) and r)(h) =

Note that conditions B' and C" are satisfied for all x(t) if conditions B2' and C2' hold.

PROOF. The proof is essentially the same as for [16, Theorem 4.3] with "C" replaced
by "E" ," / (x(tk))\Ik" replaced by "I"(x(tk))\Ik

p", "hj(•) - A/O" replaced by "*;(•) -
hf (•)", "Ma(I, x)" replaced by "Na(I, x)", and finally "LCP(Ma, -e)" replaced by

"LCP(Na,

5. Implementation and computational results

The implementation of Algorithm 2 is based on that of Algorithm 1 used in [16];
in particular, the author's own reimplementation of Gear's DiFSUB [9] is used as the
smooth ODE solver; Al-Khayyal's "branch-and-bound" method [1] is used to find
all solutions to the LCPs; and Brent's one-dimensional root finder [2] is used to locate
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zero-crossings of the switching function. For comparison purposes, Taubert's Euler
method [18], and a 4th-order Runge-Kutta scheme [19] were implemented for this
decomposition approach.

The test problem used here is a problem with a system of three masses connected
by springs with a forcing term and friction as shown below. The actual differential

-w- *, -w- -> -w- F(t) = 10 COS(JW)

FIGURE 1. Arrangement of springs and masses.

equations to be solved are

= ( -xx) + (x2 - *,) -x[- 0.3 sgn(jcj),

= (xi - x2)

x3 = (x2 - x3)

with initial conditions

(x3 — x2) — x2 — 0.3!

-x'3- 0.3 sgn(x3) + I0cos(nt), (15)

x2(0) = +1, = +1,

This system was solved over the interval [t0, tf] = [0, 10]. In this range there are 22
switching points. Graphs of the "exact" solution over this range are shown in Figure
2.

Table 1 has results for the case where the Euler and Runge-Kutta methods had a
step size of h = 10~3. Algorithm 2 had the truncation error per unit step set to 10~3,
but with an initial step size of 10~4.

REMARK 2. Note that Taubert I is Taubert's Euler method [18], Taubert II is a 4th-
order Runge-Kutta method which belongs to the class of methods described in [19].
Also, to compute f(x) requires the computation of f/(x) and h\{x) for j = 1 , . . . , 3
and at least one / e Is(x). Thus the number of f( evaluations reported is essentially
three times the number of / evaluations. Note also that the maximum error was taken
over values at time intervals of 0.05 using the standard Euclidean norm. Finally, the
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2 4 6

FIGURE 2. Trajectories.

10

"total" number of evaluations is #f/ evaluations plus #hj evaluations plus 6 x #V/i/
evaluations.

We now give a table of the number of function evaluations and errors for the
case where h = 10"5 for Taubert's methods, the truncation error per unit step for
Algorithm 2 is set to 10"5 and the initial step size is set to 10"6.

As is amply evident from these results, traditional methods, including Runge-
Kutta methods, do not lead to great accuracy when applied to friction problems.
Algorithm 2 on the other hand is now able to satisfactorily deal with problems with
multiple friction surfaces. As noted in [16], there is considerably more overhead

Method
Taubert I
Taubert II

Algorithm 2

# Evaluations

f!
30327

121 308
3 758

*/
60654

242618
4812

Vh\
0
0

1336

"Total"
90981

363 924
11242

Max. Error
9.5 x 10"3

6.4 x 10-"
5.4 x 10-"

TABLE 1. Results for error « 10"3.
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+4 i

2 4 6 8

FIGURE 3. Velocity profiles.

10

per function evaluation in using Algorithm 2. However, this seems to be more than
compensated for in situations where high accuracy is desired.

Method
Taubert I
Taubert II

Algorithm 2

# Evaluations

SI
3 000393

12001572
5 267

hi
6000786

24003144
6924

Vhi
0
0

1864

"Total"
9001179

36004716
23 375

Max. Error
9.51 x 10-5

4.98 x 10~6

4.68 x 10"5

TABLE 2. Results for error « 10"5.
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ALGORITHM 1. Algorithm 1 to compute solutions of 2-4.

Given:

Variables:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

h > 0 step size for ODE solver
€ > 0 for Ie(x); T) > 0 for locating zeros
x0 € R", initial value; t0 e K, initial time
r, step number; rr, time at r'th step
/', switching time
Vv for ^ evaluated at xr

I, Io, active sets
r*, restart time for non-unique solutions
yr, sr, temporary values of x and t
** Initialisation **
r <r- 0; r0 <- r0; f* <- +oo
/0 <- /e(x0)
Perform step 5 to determine /
Initialise ODE solver with x0, t0 and step size h
** Tentative step **
yr+i <- result of single step of ODE solver with

right-hand side given by 9, 10
sr+l <^rr + h; \jfr+x <- $(1, yr+x,sr+x)
If Vv+i < 0 and i^r+i < r/rr then go to step 4.
** Accept step **

y r + l ; sr+i; r
Go to step 2
** Switching point step **
Locate an interval [a, b] C (rr, sr+{) with |6 — a\ < rj

such that rjr (/, Jt(r), r) = 0 for some T e [a, b]
t' «- rr+i <- b; This is the switching point
xr+i <-x(Tr+l) =x{t')
Perform step 5 to determine the new /
Initialise ODE solver with xr+i, t' and step size h
Go to step 2
** Determine active set **
Find all solutions of the LCP 13 for given /0.
For each solution zip\w(p), p = 1,2,... construct

(/<") = {/| (z">),>0}.
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If the solution of 13 is unique then / <— /(1)

else choose p and / <— /(p).
If LCP(Ma(/), — e) does not have a unique solution, then

choose t* > rr+!.
Return.

This is modified to form Algorithm 2:

ALGORITHM 2. Modification of Algorithm 1 to compute solutions to 6-8.

Step 5: ** Determine active set ** is modified to be
Find all solutions of the LCP 13 for given /0.

[z(p)i rwip)~\
construct

If the solution of 13 is unique then / <— /(1)

else choose p and / <- /(p).

If LCP(A ô (/), ) does not have a unique solution, then

choose t* > rr+1.
Return.
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