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The local converse theorem for quasi-split
O2𝑛 and SO2𝑛

∗

Jaeho Haan, Yeansu Kim and Sanghoon Kwon

Abstract. Let 𝐹 be a non-archimedean local field of characteristic not equal to 2. In this paper, we
prove the local converse theorem for quasi-split O2𝑛 (𝐹 ) and SO2𝑛 (𝐹 ) , via the description of the
local theta correspondence between O2𝑛 (𝐹 ) and Sp2𝑛 (𝐹 ) . More precisely, as a main step, we explic-
itly describe the precise behavior of the 𝛾-factors under the correspondence. Furthermore, we apply
our results to prove the weak rigidity theorems for irreducible generic cuspidal automorphic repre-
sentations of O2𝑛 (A) and SO2𝑛 (A) , respectively, where A is a ring of adele of a global number field
𝐿.

1 Introduction

Let 𝐹 be a non-archimedean local field of odd residual characteristic, that is, a finite
extension of either Q𝑝 for an odd prime 𝑝 or F𝑞 ((𝑡)) for an odd prime power 𝑞. Let
𝑉 be a 2𝑛-dimensional symmetric space over 𝐹 , let O(𝑉) be its orthogonal group (the
isometry group of𝑉 ) and SO(𝑉) be the special orthogonal group of𝑉 , the identity com-
ponent ofO(𝑉).We fix an element 𝜖 inO(𝑉)/SO(𝑉). (See Subsection 2.2 for the precise
definition.) We write G𝑛 := O(𝑉) and H𝑛 := SO(𝑉), and assume that both groups
are quasi-split. Let U be the maximal unipotent subgroup of a fixed Borel subgroup
of SO(𝑉) and let Ũ = U ⋊ ⟨𝜖⟩. Let 𝜇 (resp. 𝜇) be a generic character of Ũ(𝐹) (resp.
U(𝐹)). In this paper, we prove the following local converse theorem for quasi-split even
orthogonal groups under the following hypothesis on char(𝐹) = 𝑝 ≠ 2 case.

Working Hypothesis on char 𝑝 case The 𝛾-factors for Sp2𝑛 × GL𝑙 are properly defined
in char(𝐹) = 𝑝 ≠ 2 cases. Furthermore, they satisfy natural properties of 𝛾-factors.
(For the precision of the natural properties, see Property 2.5 (i)-(vii) except (vi).)

Theorem 1.1 (Local Converse Theorem for O2𝑛) Assume the above working hypothesis on
char(𝐹) = 𝑝 ≠ 2 case. Let 𝜋1 and 𝜋2 be irreducible 𝜇-generic representations of G𝑛 (𝐹) with
the same central characters such that

𝛾(𝑠, 𝜋1 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋2 × 𝜌, 𝜓)
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2 J. Haan, Y. Kim and S. Kwon

holds for any irreducible supercuspidal representation 𝜌 of GL𝑖 (𝐹) with 1 ≤ 𝑖 ≤ 𝑛. Then we
have

𝜋1 ≃ 𝜋2.

Here, the 𝛾-factors are defined as the local gamma factors of G𝑛 × GL𝑖 (See Definition 2.4.)

From this, we deduce immediately the following theorem.

Theorem 1.2 (Local Converse Theorem for SO2𝑛) Assume the above working hypothesis on
char(𝐹) = 𝑝 ≠ 2 case. Let 𝜋1 and 𝜋2 be irreducible 𝜇-generic representations of H𝑛 (𝐹) with
the same central characters such that

𝛾(𝑠, 𝜋1 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋2 × 𝜌, 𝜓)

holds for any irreducible supercuspidal representation 𝜌 of GL𝑖 (𝐹) with 1 ≤ 𝑖 ≤ 𝑛. Then we
have

𝜋1 ≃ 𝜋2 or 𝜋1 ≃ 𝜋𝜖2 .
Here, the 𝛾-factors are the local gamma factors of H𝑛 × GL𝑖 defined by Langlands-Shahidi
method or Rankin–Selberg method and 𝜋𝜖2 is the conjugation of 𝜋2 by 𝜖 .

There are various versions of the local converse theorem that apply to different
groups. To our knowledge, it seems that Henniart was the first to address this type of
problem. In his work [30], he proved a weak version of the Local Converse Theorem
(LCT) for GL𝑛. More precisely, he showed that 𝜋1 and 𝜋2 are equivalent if 𝛾(𝑠, 𝜋1 ×
𝜎, 𝜓) = 𝛾(𝑠, 𝜋2 × 𝜎, 𝜓) for any generic irreducible admissible representation 𝜎 of
GL𝑛−1 (𝐹) when char(𝐹) = 0. This was extended by Jiang and Soudry [35] to the case of
odd special orthogonal groups SO2𝑛+1 using the global weak functorial lift from SO2𝑛+1
to GL2𝑛, the local descent from GL2𝑛 to S̃p2𝑛, and the Howe lifts from SO2𝑛+1 to S̃p2𝑛.
They also applied a local-to-global argument to extend Henniart’s result to the case of
SO2𝑛+1. After Jiang [32] proposed the LCT for all classical groups, Chai [13], Jacquet and
Liu [31] and P. Yan, Q. Zhang [50] independently improved uponHenniart’s result to the
best.

Quite recently, Zhang [52, 53] proved the supercuspidal cases of the conjectures for
Sp2𝑛 and U2𝑛+1 using a theory of partial Bessel functions developed by Cogdell, Shahidi
and Tsai in [16]. Following in the same vein as Zhang’s work, Jo [36] extended the results
of Jiang-Soudry [35] and Zhang [52] to generic cases for SO2𝑛+1 and Sp2𝑛 for non-
archimedean local fields of characteristic different from 2. For other classical groups,
Morimoto [45] proved the theorem for even unitary groups using the local descent
method. Recently, Hazeltine and Liu [27] announced that they have also proven it for
split SO2𝑛 using a similarmethod. Hazeltine extended it for quasi-split SO2𝑛 over a local
field of characteristic zero and a finite field using the local descent method in [26] (see
[27, Introduction] for more details). It is worth noting that most of the literature cited
above deals with the local field of characteristic zero case, except for [36].

Themain purpose of the paper is to prove the LCT for quasi-split SO2𝑛with arbitrary
type (𝑑, 𝑐) (see subsection 2.1.1 for the definition of type (𝑑, 𝑐)) and quasi-split O2𝑛
when a local field𝐹 is of any characteristic not equal to 2. This can be done by thoroughly
studying the local theta correspondence betweenO2𝑛 and Sp2𝑛. Specifically,we establish
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a precise relationship between the 𝛾-factors of O2𝑛 and those of Sp2𝑛, which enables us
to settle the LCT for quasi-split O2𝑛. Using the restriction method from O2𝑛 to SO2𝑛,
we then deduce the LCT for the quasi-split SO2𝑛 case. Let us remark that in the case
when 𝐹 is of characteristic zero, this is a slight generalization of Hazeltine and Liu [27],
which proves the LCT for split SO2𝑛 of type (1,−1/8).

Remark 1.3 (i) When 𝐹 is a local field of characteristic 0, Theorem 1.1 follows rela-
tively easily oncewe use Arthur’s results [2] on the local Langlands correspondence
for quasi-split O2𝑛, as explained in [5], together with the LCT forGL2𝑛 [30] and the
uniqueness of genericmembers in 𝐿-packets [3]. Note that ourmethod is indepen-
dent of Arthur’s results. We believe that the proofs independent of Arthur’s results
have intrinsic value.

(ii) The first author has alsowritten a separate paper [25] on the LCT for themetaplec-
tic groups. We present this work separately for two reasons: to avoid making the
notation too complicated, and because the metaplectic case can be achieved using
existing results in the literature, while the even orthogonal case requires more
non-trivial substantial work. We also note that [51] established a refined version
of a local converse theorem for the group SO4 over a 𝑝-adic field 𝐹 . Specifically,
they showed that a generic supercuspidal representation 𝜋 of SO4 (𝐹) is uniquely
determined by its GL1, GL2-twisted local gamma factors, together with a twisted
exterior square local gamma factor of 𝜋.

As an application of our main results, the second purpose of the paper is to prove the
rigidity theorem for O2𝑛 over a global number field.

Theorem 1.4 (Weak rigidity theorem forO2𝑛) Let 𝐿 be a global number field andA its adele
ring. Let 𝜒̃ be a non-trivial generic character of Ũ(𝐹)\Ũ(A) and 𝜋̃ = ⊗𝑣 𝜋̃𝑣 and 𝜋̃′ = ⊗𝑣 𝜋̃𝑣 ′
be irreducible cuspidal 𝜒̃-generic automorphic representations of O2𝑛 (A). If 𝜋̃𝑣 ≃ 𝜋̃𝑣

′ or
𝜋̃𝑣 ≃ 𝜋̃𝑣 ′ ⊗ det for almost all 𝑣, then 𝜋̃𝑣 ≃ 𝜋̃𝑣 ′ or 𝜋̃𝑣 ≃ 𝜋̃𝑣 ′ ⊗ det for all places of 𝐿.

The weak rigidity theorem can be obtained using Arthur’s multiplicity formula for
O2𝑛, as explained in [5]. Again, we stress that our proof of Theorem 1.4 is independent
of Arthur’s results.

This paper is organized as follows. In Section 2, we prepare the basic setup to state
our theorem precisely. We explain the local theta correspondence and review some of
its relevant results in Section 3. In Section 4, we examine the relationship of 𝛾-factors
for O2𝑛 and Sp2𝑚 through the local theta correspondence for (O2𝑛, Sp2𝑚). We provide a
proof of our main theorem in Section 5. For some technical issues that arise in the local
theta correspondence theory, we divide the proof into two steps: we first prove the tem-
pered case, and then we generalize it to the generic case. In Section 6, we demonstrate
the weak rigidity theorem for quasi-split O2𝑛 and SO2𝑛 as an application of the theo-
rems established in the previous sections. The proofs of foundational results that are
essential for establishing Proposition 3.3 and Theorem 4.3 are contained in Appendix A
and Appendix B.

2025/04/02 13:52

https://doi.org/10.4153/S0008414X25000276 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000276


4 J. Haan, Y. Kim and S. Kwon

1.1 Notations

• 𝐹 : a non-archimedean local field of characteristic different from 2
• char(𝐹) : the characteristic of 𝐹
• 𝑞 : the order of the residue field of 𝐹 such that 𝑞 = 𝑝𝑒 for some odd prime 𝑝
• 𝜓 : a non-trivial additive character of 𝐹
• 𝜛 : a uniformizer of 𝐹
• | · |𝐹 : a normalized absolute value in 𝐹 such that |𝜛 |𝐹 = 𝑞−1

• Irr(𝐺) : the set of isomorphism classes of irreducible smooth representations of
𝐺 := G(𝐹), where G(𝐹) is the 𝐹-points of a reductive group G defined over 𝐹

• Irrtemp (𝐺) : the set of isomorphism classes of irreducible smooth tempered rep-
resentations of 𝐺 := G(𝐹), where G(𝐹) is the 𝐹-points of a reductive group G
defined over 𝐹

• 𝜋∨ : the contragredient representation of 𝜋 ∈ Irr(G(𝐹))
• 𝑉 = 𝑉𝑛 : a 2𝑛-dimensional orthogonal space, i.e., a 2𝑛-dimensional vector space
over 𝐹 equipped with a non-degenerate symmetric bilinear form ( , )𝑉𝑛

• G𝑛 := O(𝑉𝑛) : the orthogonal group of𝑉𝑛
• H𝑛 := SO(𝑉𝑛) : the special orthogonal group of𝑉𝑛
• 𝑊𝑚 : a 2𝑚-dimensional symplectic space over 𝐹 , i.e., a 2𝑚-dimensional vector
space over 𝐹 equipped with a non-degenerate symplectic bilinear form ⟨ , ⟩𝑊𝑚

• J𝑚 := Sp(𝑊𝑚) : the symplectic group of𝑊𝑚
• SO𝑛 := SO(𝑉𝑛) for some𝑉𝑛
• Sp2𝑚 := Sp(𝑊𝑚) for some𝑊𝑚
• I : the trivial representation
• 𝑁𝐸/𝐹 : a norm map from 𝐸 to 𝐹 , where 𝐸 is a quadratic extension of 𝐹
• Ind𝐺𝐵 : the unnormalized induction for an algebraic group 𝐺 := G(𝐹) and its
closed subgroup 𝐵

• ind𝐺𝐵 : the unnormalized compactly supported induction for an algebraic group
𝐺 := G(𝐹) and its closed subgroup 𝐵

• A(𝐺) : the space of automorphic forms on𝐺 for an algebraic group𝐺
• A𝑐𝑢𝑠𝑝 (𝐺) : the space of cusp forms on𝐺 for an algebraic group𝐺
• 𝜇2 : an algebraic group of order 2
• 1 : the identity element in G(𝐹) for a given algebraic group G

2 Preliminaries

In this section, we prepare the basic setup to state our main theorem.While many of the
theorems andpropositionswequote in this paper only address the casewhere char(𝐹) =
0,most of the proofs apply equally to the positive characteristic cases. Therefore, instead
of repeating the same proof in the references for the case char(𝐹) = 0, we adopt the
position that they also cover the case char(𝐹) = 𝑝 when it is applicable. However, when
the proof of a proposition or a theorem for char(𝐹) = 0 is not clearly stated in the
references, we provide a proof that covers both cases.
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2.1 Orthogonal and symplectic groups

2.1.1 Orthogonal groups
Let𝑉𝑛 (or𝑉 if there is no confusion on the dimension) be a 2𝑛-dimensional vector space
over 𝐹 equipped with a non-degenerate symmetric bilinear form (·, ·)𝑉 and let G𝑛 :=
O(𝑉) and H𝑛 := SO(𝑉) be the associated orthogonal and special orthogonal group,
respectively. When 𝑛 = 0, we define G0 and H0 as the trivial group.

Define the discriminant of𝑉 by

disc(𝑉) = disc(𝑉, (·, ·)𝑉 ) = 2−𝑛 (−1)
𝑛(𝑛−1)

2 det((𝑒𝑖 , 𝑒 𝑗 )𝑉 )𝑖, 𝑗 ) mod 𝐹×2 ∈ 𝐹×/𝐹×2.

where {𝑒1, · · · , 𝑒2𝑛} is a basis of𝑉 . Let 𝜒𝑉 = (·, disc(𝑉))𝔥 be the quadratic character of
𝐹× associated with 𝐹 (

√︁
disc(𝑉))/𝐹 , where (·, ·)𝔥 is the quadratic Hilbert symbol.

Denote by 𝑉an the anisotropic kernel of 𝑉 . It is easy to check that H𝑛 and G𝑛 are
quasi-split if and only if dim(𝑉an) ≤ 2.

In this case, let {𝑒1, · · · , 𝑒𝑛−1} and {𝑒∗1, · · · , 𝑒∗𝑛−1} be subsets of𝑉 satisfying

(𝑒𝑖 , 𝑒 𝑗 )𝑉 = (𝑒∗𝑖 , 𝑒∗𝑗 )𝑉 = 0, (𝑒𝑖 , 𝑒∗𝑗 )𝑉 = 𝛿𝑖 𝑗 .

For 1 ≤ 𝑘 ≤ 𝑛 − 1, let

𝑋𝑘 = Span{𝑒1, · · · , 𝑒𝑘} and 𝑋∗
𝑘 = Span{𝑒∗1, · · · , 𝑒∗𝑘},

and𝑉𝑛,𝑘 be the orthogonal complement of 𝑋𝑘 ⊕ 𝑋∗
𝑘
in𝑉 so that𝑉 = 𝑋𝑘 ⊕ 𝑉𝑛,𝑘 ⊕ 𝑋∗

𝑘
.

Next, we consider the flag of isotropic subspaces

𝑋𝑘1 ⊂ 𝑋𝑘1+𝑘2 ⊂ · · · ⊂ 𝑋𝑘1+···+𝑘𝑟 ⊂ 𝑉.

The stabilizer of such a flag is a parabolic subgroup P of H𝑛 whose Levi factor M is

M ≃ GL𝑘1 × · · · × GL𝑘𝑟 × H𝑛−𝑘1−···−𝑘𝑟 ,

where each GL𝑘𝑖 is the group of invertible linear maps on Span {𝑒𝑘𝑖+1, · · · , 𝑒𝑘𝑖+1 }. It is
known that there exist 𝑐, 𝑑 ∈ 𝐹× such that

𝑉𝑛,𝑛−1 � 𝐹 [𝑋]/(𝑋2 − 𝑑) (2.1)

becomes a 2-dimensional vector space equipped with the pairing

(𝛼, 𝛽) ↦→ ⟨𝛼, 𝛽⟩𝑉𝑛,𝑛−1 B 𝑐 · tr(𝛼 · 𝜖 (𝛽)),

where 𝜖 is the involution on 𝐹 [𝑋]/(𝑋2 − 𝑑) induced by 𝑎 + 𝑏𝑋 ↦→ 𝑎− 𝑏𝑋 . The images
of 1, 𝑋 ∈ 𝐹 [𝑋] through the isomorphism (2.1) are denoted by 𝑒, 𝑒′, respectively. In this
setting, i.e.,𝑉𝑛 = 𝑋𝑛−1 ⊕ 𝑉𝑛,𝑛−1 ⊕ 𝑋∗

𝑛−1 with the isomorphism (2.1), we say that𝑉𝑛 has
a type (𝑑, 𝑐). Note that when𝑉𝑛 have the types (𝑑, 𝑐) and (𝑑′, 𝑐′) for 𝑐, 𝑐′, 𝑑, 𝑑′ ∈ 𝐹× ,
then

𝑑 = 𝑑′ (mod 𝐹×2), 𝑐 = 𝑐′ (mod 𝑁𝐸/𝐹 (𝐸×)),

where 𝐸 = 𝐹 (
√
𝑑).

Throughout the paper, when𝑉𝑛 appears, we always assume thatG𝑛 andH𝑛 are quasi-
split, 𝑉𝑛 has a type (𝑑, 𝑐) and 𝑐′ is any element in 𝑐𝑁𝐸/𝐹 (𝐸×)/𝐹×2 for fixed 𝑐, 𝑑 ∈
𝐹× .
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2.1.2 Symplectic groups
Let 𝐻 be the hyperbolic plane over 𝐹 , i.e. the split symplectic space of dimension 2, and
for 𝑟 ≥ 0, let𝑊𝑟 = 𝐻⊕𝑟 and ⟨ , ⟩𝑊𝑚

the non-degenerate symplectic form of𝑊𝑚. The
collection {𝑊𝑟 | 𝑟 ≥ 0} is called a Witt tower of spaces. For each 𝑚 ∈ N, let J𝑚 :=
Sp(𝑊𝑚) be the associated symplectic group. When 𝑚 = 0, we define J0 as the trivial
group. Let { 𝑓1, · · · , 𝑓𝑚, 𝑓 ∗1 , · · · , 𝑓 ∗𝑚} be a specific basis of𝑊𝑚 satisfying

⟨ 𝑓𝑖 , 𝑓 𝑗⟩𝑊𝑛
= ⟨ 𝑓 ∗𝑖 , 𝑓 ∗𝑗 ⟩𝑊𝑛

= 0, ⟨ 𝑓𝑖 , 𝑓 ∗𝑗 ⟩𝑊𝑛
= 𝛿𝑖 𝑗 .

For 1 ≤ 𝑘 ≤ 𝑚, let

𝑌𝑘 = Span{ 𝑓1, · · · , 𝑓𝑘} and𝑌 ∗
𝑘 = Span{ 𝑓 ∗1 , · · · , 𝑓 ∗𝑘 },

so that𝑊𝑚 = 𝑌𝑚 ⊕ 𝑌 ∗
𝑚. We also set

𝑊𝑚,𝑘 = Span{ 𝑓𝑘+1, · · · , 𝑓𝑚, 𝑓 ∗𝑚, · · · , 𝑓 ∗𝑘+1},

so that𝑊𝑚 = 𝑌𝑘 ⊕𝑊𝑚,𝑘 ⊕ 𝑌 ∗
𝑘
.

Next, we consider the flag of isotropic subspaces

𝑌𝑘1 ⊂ 𝑌𝑘1+𝑘2 ⊂ · · · ⊂ 𝑌𝑘1+···+𝑘𝑟 ⊂ 𝑊𝑚.

The stabilizer of such a flag is a parabolic subgroup P of J𝑚 whose Levi factor M is

M ≃ GL𝑘1 × · · · × GL𝑘𝑟 × J𝑚−𝑘1−···−𝑘𝑟 ,

where each GL𝑘𝑖 is the group of invertible linear maps on Span { 𝑓𝑘𝑖+1, · · · , 𝑓𝑘𝑖+1 }.

2.2 Representations of SO(𝑉) and O(𝑉)

Let𝑉 be a 2𝑛-dimensional orthogonal space over𝐹 . For 𝑛 ≥ 1, suppose thatG𝑛 := O(𝑉)
and H𝑛 := SO(𝑉) are quasi-split. Decompose 𝑉 as 𝑉 = 𝑋𝑛−1 ⊕ 𝑉𝑛,𝑛−1 ⊕ 𝑋∗

𝑛−1 and
fix 𝜖 ∈ O(𝑉𝑛,𝑛−1)\SO(𝑉𝑛,𝑛−1) such that 𝜖 (𝑒) = 𝑒, 𝜖 (𝑒′) = −𝑒′. Through the natural
embedding O(𝑉𝑛,𝑛−1) ↩→ O(𝑉), we may regard 𝜖 as an element in O(𝑉) which acts
trivially on 𝑋𝑛−1 ⊕ 𝑋∗

𝑛−1. For 𝜋 ∈ Irr(H𝑛 (𝐹)), denote by 𝜋𝜖 the conjugation of 𝜋 by 𝜖 .
The next proposition follows from the Clifford theory (e.g., see [7, Lemma 4.1]).

Proposition 2.1 ([4, Proposition 2.1]) The following holds true.

(i) For 𝜋 ∈ Irr(H𝑛 (𝐹)), the following are equivalent:
• 𝜋𝜖 � 𝜋;
• there exists 𝜋̃ ∈ Irr(G𝑛 (𝐹)) such that 𝜋̃ |H𝑛 (𝐹) � 𝜋;
• the induction IndG𝑛 (𝐹 )

H𝑛 (𝐹 ) (𝜋) is reducible;
• IndG𝑛 (𝐹 )

H𝑛 (𝐹 ) (𝜋) � 𝜋̃ ⊕ (𝜋̃ ⊗ det) for any 𝜋̃ ∈ Irr(G𝑛 (𝐹)) with 𝜋̃ |H𝑛 (𝐹) � 𝜋.
(ii) For 𝜋̃ ∈ Irr(G𝑛 (𝐹)), the following are equivalent:

• 𝜋̃ ⊗ det � 𝜋̃;
• there exists 𝜋 ∈ Irr(H𝑛 (𝐹)) such that IndG𝑛 (𝐹 )

H𝑛 (𝐹 ) (𝜋) � 𝜋̃;
• the restriction 𝜋̃ |H𝑛 (𝐹) is reducible;
• 𝜋̃ |H𝑛 (𝐹) � 𝜋 ⊕ 𝜋𝜖 for any 𝜋 ∈ Irr(H𝑛 (𝐹)) with IndG𝑛 (𝐹 )

H𝑛 (𝐹 ) (𝜋) � 𝜋̃.
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For 𝜋 ∈ Irr(H𝑛 (𝐹)), we denote the equivalence class of 𝜋 by

[𝜋] = {𝜋, 𝜋𝜖 } ∈ Irr(H𝑛 (𝐹))/∼𝜖 .

2.3 Generic characters and generic representations

2.3.1 Generic characters
Throughout the paper, let 𝜓 be a fixed non-trivial additive character of 𝐹 . Let U (resp.
U′) be the unipotent radical of a Borel subgroup B = TU (resp. B′ = T′U′) of H𝑛 (resp.
J𝑚), where T (resp. T′) is the 𝐹-rational torus stabilizing the lines 𝐹𝑒𝑖 (resp. 𝐹 𝑓𝑖 ) for
each 𝑖 = 1, · · · , 𝑛 − 1 (resp. 𝑖 = 1, · · · , 𝑚).

A character 𝜒̃ of U(𝐹) and a character 𝜒 of U′ (𝐹) are called to be generic if the
stabilizer of 𝜒̃ in T(𝐹) and the stabilizer of 𝜒 in T′ (𝐹) are both equal to the center of
H𝑛 (𝐹) and J𝑚 (𝐹), respectively. By utilizing the structure of 𝑉 , we can define several
special (and essentially all) generic characters of U(𝐹) and U′ (𝐹).

Suppose that 𝑉 has type (𝑑, 𝑐) for some 𝑐, 𝑑 ∈ 𝐹× . Write 𝐸 = 𝐹 (
√
𝑑). For an

arbitrary 𝑐′ ∈ 𝑐𝑁𝐸/𝐹 (𝐸×)/𝐹×2, we define a generic character 𝜇𝑐′ of U(𝐹) by

𝜇𝑐′ (𝑢) = 𝜓((𝑢𝑒2, 𝑒
∗
1)𝑉 + · · · + (𝑢𝑒𝑛−1, 𝑒

∗
𝑛−2)𝑉 + (𝑢𝑒, 𝑒∗𝑛−1)𝑉 ), 𝑢 ∈ U(𝐹)

in which we regard𝑉 has a type (𝑑, 𝑐′).
By [18, Sect. 12], the map 𝑐′ ↦→ 𝜇𝑐′ gives a bijection (not depending on 𝜓)

𝑐𝑁𝐸/𝐹 (𝐸×)/𝐹×2 → {T(𝐹)-orbits of generic characters of U(𝐹)}.

Note that 𝜖 normalizes U and fixes 𝜇𝑐′ . Put Ũ = U ⋊ ⟨𝜖⟩. Since 𝜖 fixes 𝜇𝑐′ , we can
extend 𝜇𝑐′ to Ũ(𝐹). There are exactly two extensions 𝜇+

𝑐′ , 𝜇
−
𝑐′ : Ũ(𝐹) → C× which are

determined by

𝜇±𝑐′ (𝜖) = ±1.

On the other hand, for 𝑑′ ∈ 𝐹×/𝐹×2, define a generic character 𝜇′
𝑑′ of U′ (𝐹) by

𝜇′𝑑′ (𝑢
′) = 𝜓(⟨𝑢′ 𝑓2, 𝑓 ∗1 ⟩𝑊𝑚

+ · · · + ⟨𝑢′ 𝑓𝑚, 𝑓 ∗𝑚−1⟩𝑊𝑚
+ 𝑑⟨𝑢′ 𝑓 ∗𝑚, 𝑓 ∗𝑚⟩𝑊𝑚

), 𝑢′ ∈ U′ (𝐹).

Again by [18, Sect. 12], the map 𝑑′ ↦→ 𝜇′
𝑑′ gives a bijection (depending on 𝜓)

𝐹×/𝐹×2 → {T′ (𝐹)-orbits of generic characters of U′ (𝐹)}. (2.2)

2.3.2 Generic representations
For 𝜋 ∈ Irr(H𝑛 (𝐹)) (resp. 𝜋̃ ∈ Irr(G𝑛 (𝐹))), if HomU(𝐹 ) (𝜋, 𝜇𝑐′ ) ≠ 0 (resp.
HomŨ(𝐹 ) (𝜋̃, 𝜇±𝑐′ ) ≠ 0), then we say that 𝜋 (resp. 𝜋̃) is 𝜇𝑐′-generic (resp. 𝜇±𝑐′-generic.)
Note that if 𝜋̃ is 𝜇±

𝑐′-generic, then 𝜋̃ ⊗ det is 𝜇∓
𝑐′-generic. Similarly, for 𝜏 ∈ Irr(J𝑚 (𝐹)),

if HomU′ (𝐹 ) (𝜏, 𝜇′𝑑′ ) ≠ 0, then we say that 𝜏 is 𝜇′
𝑑′-generic.

Note that in this subsectionwe follow the setting and notations in [5, Section 7.3] and
parts of ideas in the proof of the results in this subsection are inspired from [5].

The following lemma illustrates the transformation of genericity through the induc-
tion functor IndG𝑛 (𝐹 )

H𝑛 (𝐹 ) .

Lemma 2.2 ([5, Lemma 2.3]) Let 𝜋 ∈ Irr(H𝑛 (𝐹)).
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(i) Assume that 𝜋 can be extended to G𝑛 (𝐹). Then there are exactly two such extensions.
Moreover, the following are equivalent:
(A) 𝜋 is 𝜇𝑐′-generic;
(B) exactly one of two extensions is 𝜇+

𝑐′-generic but not 𝜇
−
𝑐′-generic, and the other is

𝜇−
𝑐′-generic but not 𝜇

+
𝑐′-generic.

(ii) Assume that 𝜋 can not be extended to G𝑛 (𝐹). Then 𝜋̃ = IndG𝑛 (𝐹 )
H𝑛 (𝐹 ) (𝜋) is irreducible.

Moreover, the following are equivalent:
(A) 𝜋 is 𝜇𝑐′-generic;
(B) 𝜋̃ is both 𝜇+

𝑐′-generic and 𝜇
−
𝑐′-generic.

There exists a global analogue of the notion of generic representations. Consider
a global field 𝐿 and its adèle ring A. One can define the algebraic groups G𝑛,H𝑛,U
over 𝐿 in a similar manner as in the local case. For an automorphic (i.e., left U(𝐿)-
invariant) generic character 𝜒 of U(A) and an automorphic form 𝜑 of H𝑛 (A), denote
the 𝜒-Fourier coefficient of 𝜑 as

𝑊
𝜒
𝜑 (𝑔) B

∫
U(𝐿)\U(A)

𝜑(𝑢𝑔) · 𝜒(𝑢)𝑑𝑢.

For an automorphic representation 𝜋 of H𝑛 (A), 𝜋 is called globally 𝜒-generic if
𝑊
𝜒
𝜑 (1) ≠ 0 for some 𝜑 ∈ 𝜋.
For each place 𝑣, let K𝑣 be a maximal compact subgroup of G𝑛 (𝐿𝑣) such that K𝑣 is

special if 𝑣 is non-archimedean. For each place 𝑣 of 𝐿, take 𝜖𝑣 ∈ K𝑣 such that 𝜖2
𝑣 = 1,

det(𝜖𝑣) = −1, 𝜖𝑣 stabilizes 𝜒𝑣 and that 𝜖̃ B (𝜖𝑣)𝑣 ∈ G𝑛 (A) is in G𝑛 (𝐹).
For t = (𝑡𝑣)𝑣 ∈ 𝜇2 (A), define t · 𝜖̃ ∈ G𝑛 (A) as{

(t · 𝜖̃)𝑣 = 𝜖𝑣 , if 𝑡𝑣 = −1,
(t · 𝜖̃)𝑣 = 1, if 𝑡𝑣 = 1.

Since 𝜇2 (A) · 𝜖̃ stabilizes U(A), put Ũ B U ⋊ 𝜇2 · 𝜖̃ . For an automorphic (i.e., left
Ũ(𝐿)-invariant) character 𝜒̃ of Ũ(A), we say that 𝜒̃ is generic if 𝜒̃ |U(A) is generic.

Fix a maximal compact subgroup K =
∏
𝑣 K𝑣 of G𝑛 (A) and let K1 B K ∩ U(A),

K2 = K ∩ (𝜇2 (A) · 𝜖̃). Define Haar measures 𝑑𝑢 (resp. 𝑑𝑡) on U(A) (resp. 𝜇2 (A)) such
that vol(K1, 𝑑𝑢) = vol(K2, 𝑑t) = 1.

Nowwe recall the precise definition of automorphic forms onG𝑛 (A) [5, Section 6.7]:

Definition 2.1 We say that a function

𝜑 : G𝑛 (A) → C

is an automorphic form on G𝑛 (A) if 𝜑 satisfies the following conditions:

(i) 𝜑 is smooth and of moderate growth;
(ii) 𝜑 is left G𝑛 (𝐿)-invariant;
(iii) 𝜑 is right K-finite
(iv) 𝜑 is 𝔷-finite, where 𝔷 is the center of the universal enveloping algebra of

Lie (G𝑛 (K∞) ⊗R C)
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Since there is no definition of cusp forms and global genericity on G𝑛 (A) in [5], we
define those concepts precisely as follows:

Definition 2.2 For an automorphic form 𝜑 on G𝑛 (A), we say 𝜑 is a cusp form if∫
N(𝐹 )\N(A)

𝜑(𝑛)𝑑𝑛 = 0

for all nontrivial unipotent subgroups N of all standard parabolic subgroups P = MN ⊂
H𝑛. If an automorphic representation 𝜋̃ of G𝑛 (A) occurs in the space of cusp forms of
G𝑛 (A), we call 𝜋̃ a cuspidal representation of G𝑛 (A).

WriteA(G𝑛) (resp.A𝑐𝑢𝑠𝑝 (G𝑛)) for the space of automorphic (resp. cusp) forms of
G𝑛 (A). For an automorphic generic character 𝜒̃ of Ũ(A), we define globally 𝜒̃-generic
automorphic representations of G𝑛 (A) as follows.

Definition 2.3 Let 𝜒̃ be an automorphic generic character of Ũ(A). Assume that 𝜋̃ is
an irreducible cuspidal representation of G𝑛 (A) inA(G𝑛) and let 𝜑 be an cusp form in
𝜋̃. Let

𝑊
𝜒

𝜑
(𝑔) =

∫
𝜇2 (𝐿)\𝜇2 (A)

∫
U(𝐿)\U(A)

𝜑(𝑢(t · 𝜖̃)𝑔) · 𝜒̃(𝑢(t · 𝜖̃))𝑑𝑢𝑑t. (2.3)

Then 𝜋̃ is called globally 𝜒̃-generic if𝑊 𝜒

𝜑
(1) ≠ 0 for some 𝜑 ∈ 𝜋̃. If 𝜋̃ is globally 𝜒̃-

generic for some automorphic generic character 𝜒̃ of Ũ(A), we say that 𝜋̃ is globally
generic.

Proposition 2.3 Let 𝜋̃ be an irreducible globally 𝜒̃-generic cuspidal representation of
G𝑛 (A). Then there exists an irreducible globally 𝜒-generic cuspidal representation 𝜋 of
H𝑛 (A) that appears in 𝜋̃ |H𝑛 (A) .

Proof 𝑊
𝜒

𝜑
(𝑔) absolutely converges for all 𝜑 ∈ 𝜋̃ and 𝑔 ∈ G𝑛 (A) because U(𝐿)\U(A)

and 𝜇2 (𝐿)\𝜇2 (A) are compact. Since 𝜑(𝑔) is right K-finite, there is a finite subset 𝑆 of
places including all archimedean places of 𝐿 such that 𝜑 is

∏
𝑣∉𝑆 𝜇2 (𝐿𝑣) · 𝜖̃-invariant.

Choose a place 𝑣0 ∉ 𝑆 and put Kfin B
∏
𝑣∉𝑆∪{𝑣0 } 𝜇2 (𝐿𝑣). Then

∏
𝑣∉𝑆 𝜇2 (𝐿𝑣) =

{(1, 𝐾fin)}
⊔{(−1,Kfin)}. Here, {(1,Kfin)} is {(1, 𝑘) | 𝑘 ∈ Kfin}.

Since
∏
𝑣∈𝑆 𝜇2 (𝐿𝑣) is a finite set, we can write

∏
𝑣∈𝑆 𝜇2 (𝐿𝑣) = {(±1, · · · ,±1)}.

Considering both
∏
𝑣∈𝑆 𝜇2 (𝐿𝑣) and

∏
𝑣∉𝑆 𝜇2 (𝐿𝑣) as a natural subgroup of 𝜇2 (A), we

have

𝜇2 (𝐿)\𝜇2 (A) �
⊔

𝑎∈∏𝑣∈𝑆 𝜇2 (𝐿𝑣 )
{(𝑎, 1,Kfin)}.

and thus we have

𝑊
𝜒

𝜑
(𝑔) =

∑︁
𝑎∈∏𝑣∈𝑆 𝜇2 (𝐿𝑣 )

∫
(𝑎,1,Kfin )

∫
U(𝐿)\U(A)

𝜑(𝑢(t · 𝜖̃)𝑔) · 𝜒̃(𝑢(t · 𝜖̃))𝑑𝑢𝑑t.
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Recall that this is a finite sum since |∏𝑣∈𝑆 𝜇2 (𝐿𝑣) | is finite. Therefore, if𝑊 𝜒

𝜑
(1) ≠ 0,

there exists some 𝑎 ∈ ∏
𝑣∈𝑆 𝜇2 (𝐿𝑣) such that

𝜒̃(𝑎 · 𝜖̃) · (
∫

Kfin

𝜒̃(t · 𝜖̃) ·
∫

U(𝐿)\U(A)
𝜑(𝑢(𝑎 · 𝜖̃) (t · 𝜖̃)) · 𝜒̃(𝑢)𝑑𝑢𝑑t) ≠ 0.

Since 𝜑 is Kfin · 𝜖̃-invariant, we have

𝜒̃(𝑎 · 𝜖̃) · (
∫

Kfin

𝜒̃(t · 𝜖̃)𝑑t) ·
∫

U(𝐿)\U(A)
𝜑(𝑢(𝑎 · 𝜖̃)) · 𝜒̃(𝑢)𝑑𝑢 ≠ 0.

As discussed in [5, Section 7.3], we define the restriction map

Res : A(G𝑛) → A(H𝑛), Res(𝜑) = 𝜑|H𝑛 (A) .

Write 𝜑 = Res ((𝑎 · 𝜖̃) · 𝜑) and 𝜒 = 𝜒̃ |U(A) . Then we have𝑊
𝜒
𝜑 (1) ≠ 0. Moreover, Defi-

nition 2.2 implies that the restriction of a cusp form on G𝑛 (A) to H𝑛 (A) is also a cusp
form on H𝑛 (A). Therefore, there exists an irreducible cuspidal automorphic represen-
tation 𝜋 that appears in 𝜋̃ |H𝑛 (A) such that 𝜑 is a cusp form in the space of 𝜋. We conclude
that 𝜋 is globally 𝜒-generic by definition. ■

Meanwhile, the converse of the above proposition holds in the following manner.

Proposition 2.4 Let 𝜋 be an irreducible globally 𝜒-generic cuspidal representation of
H𝑛 (A). Then there exists an automotphic character 𝜒̃ of Ũ(A) such that 𝜒̃ |U(A)= 𝜒

and an irreducible globally 𝜒̃-generic cuspidal representation 𝜋̃ of G𝑛 (A) such that 𝜋
appears in 𝜋̃ |H𝑛 (A) .

Proof Note that 𝜖̃ acts onH𝑛 (A) by a conjugation. By defining an action of 𝜖̃ ∈ G𝑛 (𝐿)
on 𝜋 as follows

(𝜖̃ · 𝜑) (ℎ) B 𝜑(𝜖̃−1ℎ𝜖̃), for all 𝜑 ∈ 𝜋, ℎ ∈ H𝑛 (A),

we may view 𝜋 as a cuspidal representation of G𝑛 (𝐿) · H𝑛 (A).
Let IndG𝑛 (A)

G𝑛 (𝐿) ·H𝑛 (A) (𝜋) be the induced representation defined by the space of the
functionsΦ∗ : G𝑛 (A) → H(𝜋), 𝑔 ↦→ Φ𝑔 such that

• Φℎ𝑔 (𝑥) = Φ𝑔 (𝑥ℎ) for ℎ ∈ G𝑛 (𝐿) · H𝑛 (A), 𝑔 ∈ G𝑛 (A), and 𝑥 ∈ H𝑛 (A);
• for each 𝑥 ∈ H𝑛 (A), the function 𝑔 ↦→ Φ𝑔 (𝑥) ∈ C is a smooth function onG𝑛 (A).

As discussed in [5, Remark 7.10], the mapΦ∗ ↦→ [𝑔 ↦→ Φ𝑔 (1)] gives an embedding
IndG𝑛 (A)

G𝑛 (𝐿) ·H𝑛 (A) (𝜋) intoA𝑐𝑢𝑠𝑝 (G𝑛 (A)). Choose an irreducible sub-representation 𝜋̃ in
IndG𝑛 (A)

G𝑛 (𝐿) ·H𝑛 (A) (𝜋). Let Res: A𝑐𝑢𝑠𝑝 (G𝑛 (A)) → A𝑐𝑢𝑠𝑝 (H𝑛 (A)), 𝜑 ↦→ 𝜑|H𝑛 (A) be the
restrictionmap. Using the above embedding, wemay regard 𝜋̃ as an irreducible cuspidal
representations of G𝑛 (A) such that Res(𝜋̃) = 𝜋.

Since 𝜋 is 𝜒-generic, there exists some 𝜑 ∈ 𝜋 such that 𝑊 𝜒
𝜑 (1) =∫

U(𝐿)\U(A) 𝜑(𝑢)𝜒(𝑢)𝑑𝑢 ≠ 0. Choose an element 𝜙 ∈ 𝜋̃ such that Res(𝜙) = 𝜑. It can
be expressed as a sum of pure tensors, namely, 𝜙 =

∑ℓ
𝑖=1 𝜙𝑖 , where each 𝜙 is of the form

2025/04/02 13:52

https://doi.org/10.4153/S0008414X25000276 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000276


The local converse theorem for quasi-split O2𝑛 and SO2𝑛
5 11

𝜙𝑖 = ⊗𝑣𝜙𝑖,𝑣 . Since Res(𝜙) =
∑ℓ
𝑖=1 Res(𝜙𝑖) = 𝜑 and𝑊 𝜒

𝜑 (1) ≠ 0, there is a 1 ≤ 𝑗 ≤ ℓ

such that𝑊 𝜒

Res(𝜙 𝑗 )
(1) ≠ 0. Let us denote this particular 𝜙 𝑗 by 𝜌̃.

There is a finite set 𝑆0 including all archimedean places of 𝐿 such that 𝜌̃ is right
(∏𝑣∉𝑆0 𝜇2 (𝐿𝑣)) · 𝜖̃-invariant. For each 𝑣 ∈ 𝑆0, decompose 𝜌̃𝑣 = 𝜌̃𝑣,1 + 𝜌̃𝑣,2 (one of
𝜌̃𝑣,𝑖 might be zero) such that 𝜌̃𝑣,𝑖 is in (−1)𝑖+1-eigenspace of 𝜖𝑣 in 𝜋̃𝑣 for each 𝑖 = 1, 2.
Therefore, we can write 𝜌̃ =

∑𝑘
𝑚=1 𝜌̃𝑚 such that for each 𝜌̃𝑚 = ⊗𝑣 ( 𝜌̃𝑚)𝑣 , ( 𝜌̃𝑚)𝑣 is an

eigen-vector of 𝜖𝑣 for each 𝑣 ∈ 𝑆0.
Again, since𝑊 𝜒

Res(𝜌) (1) ≠ 0 and Res( 𝜌̃) =
∑𝑘
𝑚=1 Res( 𝜌̃𝑚), there is a 1 ≤ 𝑘0 ≤ 𝑘

such that𝑊 𝜒

Res(𝜌𝑘0 )
(1) ≠ 0. Denote 𝜌̃𝑘0 by 𝜑1, which can bewritten as 𝜑1 = ⊗𝑣𝜑1,𝑣 ∈ 𝜋̃.

Let 𝑡0 = (𝑡0,𝑣) ∈
∏
𝑣∈𝑆0 𝜇2 (𝐿𝑣) be given by

𝑡0,𝑣 =

{
1, if 𝜑1,𝑣 is an eigenvector of 𝜖𝑣 with the eigenvalue 1
−1, if 𝜑1,𝑣 is an eigenvector of 𝜖𝑣 with the eigenvalue −1.

Let 𝑆 be a subset of 𝑆0 consisting of place 𝑣 such that 𝑡0,𝑣 = −1. Since (𝜖̃ · 𝜑1) (1) =
𝜑1 (1), we see that the number of elements in 𝑆 is even. We define a character 𝜒̃ = ⊗𝑣 𝜒̃𝑣
of Ũ(A) by 𝜒̃ |U(A)= 𝜒 and

𝜒̃(t · 𝜖̃) B
∏
𝑣∈𝑆

𝑡𝑣 , for t = (𝑡𝑣) ∈ 𝜇2 (A).

Since |𝑆 |= even, 𝜒̃ is an automorphic character of Ũ(A).
Then, we have

𝑊
𝜒

𝜑1
(1) =

∫
𝜇2 (𝐿)\𝜇2 (A)

∫
U(𝐿)\U(A)

𝜑1 (𝑢(t · 𝜖̃)) · 𝜒̃(𝑢(t · 𝜖̃))𝑑𝑢𝑑t

=
∫
𝜇2 (𝐿)\𝜇2 (A)

∫
U(𝐿)\U(A)

𝜑1 (𝑢) · 𝜒̃(𝑢)𝑑𝑢𝑑t (since 𝜑1 = ⊗𝑣𝜑1,𝑣 and
∏
𝑣∈𝑆

𝑡0,𝑣 = 1)

=
∫
𝜇2 (𝐿)\𝜇2 (A)

𝑊
𝜒

Res(𝜑1 ) (1) 𝑑t ≠ 0.

Hence, 𝜋̃ is the globally 𝜒̃-generic cuspidal representation of G𝑛 (A). ■

2.4 𝛾-factors

LetGbe eitherH𝑛 := SO2𝑛 or J𝑚 := Sp2𝑚. Let 𝜋 be an irreducible generic representation
of G(𝐹) and𝜎 an irreducible generic representation of GL𝑘 (𝐹). Then the local twisted
𝛾-factors 𝛾(𝑠, 𝜋 × 𝜎, 𝜓) are defined as the proportionality constants appearing in the
functional equations of local Rankin–Selberg type integrals for G × GL𝑘 or Langlands-
Shahidi method. It is a product of a monomial of 𝑡 = 𝑞−𝑠 and a rational function 𝑄 (𝑡 )

𝑃 (𝑡 ) ,
where 𝑄(𝑡), 𝑃(𝑡) ∈ C[𝑡] such that 𝑄(0) = 𝑃(0) = 1. For the precise definition, see
[37] for local factors in terms of Rankin-Selberg type integrals and see [49, 42, 43] for
local factors of Langlands-Shahidi method. In [37], Kaplan demonstrated the equality
of the definitions of twisted 𝛾-factors via Rankin–Selberg integrals with those arising
from the Langlands–Shahidi method as defined in [49]. Consequently, when char(𝐹) =
0, the choice of which definition of 𝛾-factors to use becomes inconsequential. In the
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case where char(𝐹) = 𝑝, however, we employ the Langlands–Shahidi method to define
twisted 𝛾-factors since the definition using Rankin-Selberg integrals has not yet been
established.

On the other hand, when G B GL𝑛 and 𝜋 is an irreducible generic representation of
G(𝐹), 𝛾(𝑠, 𝜋×𝜎, 𝜓) is also defined as the Rankin-Selberg 𝛾-factor of Jacquet, Piatetski-
Shapiro and Shalika [33] (in the non-archimedean case) and Jacquet and Shalika [34]
(in the archimedean case) or 𝛾-factors of Langlands-Shahidi. From the definition of 𝛾-
factors for GL1 × GL𝑘 , it is easy to infer that

𝛾(𝑠, 𝜒 × 𝜎, 𝜓) = 𝛾(𝑠, I × (𝜒 ⊗ 𝜎), 𝜓)

for any character 𝜒 of 𝐹× and 𝜎 ∈ Irr(GL𝑘 (𝐹)). For brevity, we write 𝛾(𝑠, 𝜎, 𝜓) for
𝛾(𝑠, I × 𝜎, 𝜓).

It is worth mentioning that the Langlands-Shahidi method produces not only 𝛾-
factors but also local 𝐿-factors and local 𝜖-factors as follows:

Let us first consider the tempered case, that is, 𝜋 and 𝜎 are tempered. Write 𝛾(𝑠, 𝜋 ×
𝜎, 𝜓) = 𝛼 · 𝑞−𝑠𝑘 · 𝑄 (𝑞−𝑠 )

𝑃 (𝑞−𝑠 ) for some 𝛼 ∈ C× and polynomials 𝑄(𝑡), 𝑃(𝑡) ∈ C[𝑡] such
that gcd(𝑄(𝑡), 𝑃(𝑡)) = 1 and 𝑄(0) = 𝑃(0) = 1. Then 𝐿 (𝑠, 𝜋 × 𝜎) and 𝜖 (𝑠, 𝜋 × 𝜎, 𝜓)
is defined by

𝐿 (𝑠, 𝜋 × 𝜎) B 𝑄(𝑞−𝑠)−1 (2.4)

𝜖 (𝑠, 𝜋 × 𝜎, 𝜓) B 𝛾(𝑠, 𝜋 × 𝜎, 𝜓) · 𝐿 (𝑠, 𝜋 × 𝜎)
𝐿 (1 − 𝑠, 𝜋∨ × 𝜎∨) . (2.5)

In general, we follow the Langlands classification to define 𝐿-functions from
Langlands-Shahidi method for any admissible generic representations 𝜋 and 𝜎.

We recall some important properties of 𝛾-factors of H𝑛 × GL𝑘 and J𝑚 × GL𝑘 that
will be utilized later in our discussion. (Caution : the property (vi) does not exist in the
char(𝐹) = 𝑝 case.)

Property 2.5 (Properties of 𝛾-factors in the generic case)

(i) (Unramified twist) 𝛾(𝑠, 𝜋 × 𝜎 | det |𝑠0
𝐹
, 𝜓) = 𝛾(𝑠 + 𝑠0, 𝜋 × 𝜎, 𝜓) for 𝑠0 ∈ R.

(ii) (Multiplicative property) Let P = MN be a parabolic subgroup of G such that M �
GL𝑛1 × · · · ×GL𝑛𝑟 ×G′, where G′ is either SO2𝑛′ or Sp2𝑚′ , which is the same type
as G. Let R = MRNR be a parabolic subgroup of GL𝑘 such that MR � GL𝑘1 × · · · ×
GL𝑘𝑡 . Let 𝜏1 ⊗ · · · ⊗ 𝜏𝑟 ⊗ 𝜋0 be an irreducible generic representation of M(𝐹)
and𝜎1 ⊗ · · · ⊗𝜎𝑡 be an irreducible generic representation of MR (𝐹). Assume that
𝜋 (resp. 𝜎) is an irreducible constituent of a parabolically induced representation
Ind(𝜏1 ⊗ · · · ⊗ 𝜏𝑟 ⊗ 𝜋0) (resp. Ind(𝜎1 ⊗ · · · ⊗ 𝜎𝑡 ) of M(𝐹) (resp. MR (𝐹).)

𝛾(𝑠, 𝜋 × 𝜎, 𝜓) = 𝛾(𝑠, 𝜋0 × 𝜎, 𝜓)
𝑟∏
𝑖=1

𝛾(𝑠, 𝜏𝑖 × 𝜎, 𝜓)𝛾(𝑠, 𝜏∨𝑖 × 𝜎, 𝜓),

𝛾(𝑠, 𝜋 × 𝜎, 𝜓) =
𝑡∏
𝑖=1

𝛾(𝑠, 𝜋 × 𝜎𝑖 , 𝜓).
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(iii) (Dependence on 𝜓) Given 𝑎 ∈ 𝐹× , denote by 𝜓𝑎 the character of 𝐹 given by
𝜓𝑎 (𝑥) B 𝜓(𝑎𝑥) for 𝑥 ∈ 𝐹 . Let 𝜔𝜋 , 𝜔𝜎 be the central character of 𝜋 and 𝜎,
respectively. Then,

𝛾(𝑠, 𝜋 × 𝜎, 𝜓𝑎) = 𝜔𝜋 (𝑎)ℎ𝜔𝜎 (𝑎)𝑘 |𝑎 |
ℎ𝑘 (𝑠− 1

2 )
𝐹

𝛾(𝑠, 𝜋 × 𝜎, 𝜓).

Here, ℎ = 2𝑛 if G = H𝑛; ℎ = 2𝑚 + 1 if G = J𝑚.
(iv) (Unramified factors) When all data are unramified, we have

𝛾(𝑠, 𝜋 × 𝜎, 𝜓) =
𝐿 (1 − 𝑠, 𝜋∨ × 𝜎∨)
𝐿 (𝑠, 𝜋 × 𝜎) .

(v) (Global property: Functional equation) Let 𝐾 be a global field with a ring of ade-
les A and Ψ be a nontrivial character of 𝐾\A. Assume that Π and Σ are generic
cuspidal representations of G(A) and GL𝑘 (A), respectively. Let 𝑆 be a finite set of
places of 𝐹 such that for 𝑣 ∉ 𝑆, all data are unramified. Then

𝐿𝑆 (𝑠,Π × Σ) =
∏
𝑣∈𝑆

𝛾(𝑠,Π𝑣 × Σ𝑣)𝐿𝑆 (1 − 𝑠,Π∨ × Σ∨).

Here, 𝐿𝑆 (𝑠,Π × Σ) :=
∏
𝑣∉𝑆

𝐿 (𝑠,Π𝑣 × Σ𝑣) is the partial 𝐿-function with respect to

𝑆.
(vi) (Archimedean property) For an archimedean field 𝐹 ,

𝛾(𝑠, 𝜋 × 𝜎, 𝜓) = 𝛾Artin (𝑠, 𝜋 × 𝜎, 𝜓).

Here, 𝛾Artin (𝑠, 𝜋×𝜎, 𝜓) is the Artin 𝛾-factor under the local Langlands correspon-
dence.

(vii) (Tempered 𝐿-function) Let 𝜋, 𝜎 be irreducible tempered representations of G(𝐹)
and GL𝑘 (𝐹). Then 𝐿 (𝑠, 𝜋 × 𝜌) is holomorphic for Re(𝑠) > 0.

(viii) (Functorial lift of H∗
1) Suppose that H∗

1 is non-split but quasi-split SO(𝑉1). Let I be
the trivial character of H∗

1 (𝐹). For any character 𝜒 of 𝐹× ,

𝛾(𝑠, I × 𝜒, 𝜓) = 𝛾(𝑠, 𝜒, 𝜓) · 𝛾(𝑠, 𝜒 · 𝜒𝑉1 , 𝜓).

The properties (i)-(vi) are proved in [49] for the char(𝐹) = 0 case and in [42, 43] for
the char(𝐹) = 𝑝 case. Property (vii) is proved in [12, page 573] and [28, Theorem 1.1]
for the char(𝐹) = 0 case, and in [11, Theorem 1.1] for the char(𝐹) = 𝑝 case. Prop-
erty (viii) is proved in [15, Proposition 5.2, §7.2] for the char(𝐹) = 0 case, and in [10,
Proposition 5.1.1, §3.4] for the char(𝐹) = 𝑝 case.

Remark 2.6 When 𝑛 = 0 and𝑚 = 0, the 𝛾-factors of H0×GL𝑘 and J0×GL𝑘 are defined
as follows:
Put I𝑉0 (resp. I𝑊0 ) the trivial representation of H0 (𝐹) (resp. J0 (𝐹)). Then for any
irreducible generic representation 𝜎 in Irr(GL𝑘),

𝛾(𝑠, I𝑉0 × 𝜎, 𝜓) B 1
𝛾(𝑠, I𝑊0 × 𝜎, 𝜓) B 𝛾(𝑠, 𝜎, 𝜓).

It is clear that these definitions are compatible with the local functorial lifting.
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Remark 2.7 When 𝑘 = 1, Lapid and Rallis [41] defined 𝛾-factors for (possibly non-
generic) irreducible smooth representations of G × GL1 which arise from the doubling
method. Further, they proved ‘Ten Commandments’ which refers to the ten properties
of 𝛾-factors. Recently, Cai, Friedberg, and Kaplan made a breakthrough by generalizing
Lapid-Rallis’s Ten Commandments to G × GL𝑘 for 𝑘 ≥ 1 arising from the doubling
method to the twisted doubling method in [9]. It is noteworthy that their 𝛾-factors
are defined not only for generic representations but also for non-generic representa-
tions of G(𝐹) × GL𝑘 (𝐹) and they proved that three different definitions of 𝛾-factors
actually coincide for generic representations. In the proof of Theorem 1.1, we shall use
the twisted 𝛾-factors 𝛾(𝑠, 𝜋 × 𝜎, 𝜓) for (possibly) non-generic 𝜋 ∈ Irr(J𝑚 (𝐹)) and
𝜎 ∈ Irr(GL𝑘 (𝐹)). However, due to the absence of a definition for the twisted 𝛾-factor
for non-generic representations of J𝑚 (𝐹) in the char(𝐹) = 𝑝 case, we propose the
following working hypothesis.

Working Hypothesis on char 𝑝 case The 𝛾-factors for J𝑚×GL𝑘 are properly defined in
char(𝐹) = 𝑝 case. Furthermore, they satisfy Property 2.5 (i)-(vii) (except (vi)).

Whenwe refer the twisted 𝛾-factor of J𝑚 in char(𝐹) = 𝑝 case, we work under the above
working hypothesis.

Next, we consider the case of O2𝑛 groups and define the 𝛾-factors for O2𝑛 × GL𝑘 .
We first need the following lemma:

Lemma 2.8 For any irreducible generic representation 𝜋 of H𝑛 (𝐹) and 𝜎 of GL𝑘 (𝐹), we
have

𝛾(𝑠, 𝜋 × 𝜎, 𝜓) = 𝛾(𝑠, 𝜋𝜖 × 𝜎, 𝜓). (2.6)

Proof First, we prove the case when 𝜋, 𝜎 are unique unramified quotients of princi-
pal series representations induced from minimal parabolic subgroups. There is a Borel
subgroup B = TU of H𝑛 and characters {𝜒1, · · · , 𝜒𝑛} of 𝐹× such that 𝜋 is a subquotient
of the induced representation IndH𝑛 (𝐹 )

B(𝐹 ) (𝜒1 ⊗ · · · ⊗ 𝜒𝑛). Similarly, 𝜋𝜖 is a subquotient of

an induced representation IndH𝑛 (𝐹 )
B(𝐹 ) (𝜒′1 ⊗ · · · ⊗ 𝜒′𝑛) for some characters 𝜒′

𝑖
of 𝐹× , for

𝑖 = 1, . . . , 𝑛. Since conjugating the induced representation by 𝜖 permutes the inducing
characters and their inverses, we see

{𝜒1, · · · , 𝜒𝑛, 𝜒−1
1 , · · · , 𝜒−1

𝑛 } = {𝜒′1, · · · , 𝜒′𝑛, 𝜒′1−1, · · · , 𝜒′𝑛−1}.

Then the multiplicative property of 𝛾-factors implies

𝛾(𝑠, 𝜋×𝜎, 𝜓) =
𝑛∏
𝑖=1

𝛾(𝑠, 𝜒𝑖×𝜎, 𝜓)𝛾(𝑠, 𝜒−1
𝑖 ×𝜎, 𝜓) =

𝑛∏
𝑖=1

𝛾(𝑠, 𝜒′𝑖×𝜎, 𝜓)𝛾(𝑠, 𝜒′𝑖 −1×𝜎, 𝜓) = 𝛾(𝑠, 𝜋𝜖×𝜎, 𝜓).

Next, we prove the general case. There exists a parabolic subgroup P = MN of G with
Levi component

M = GL𝑛1 × · · · × GL𝑛𝑟 × H𝑛′
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where H𝑛′ = SO(𝑉 ′) with 𝑉 ′ a 2𝑛′-dimensional symmetric space over 𝐹 , and irre-
ducible supercuspidal representation 𝜏𝑖 of GL𝑛𝑖 (𝐹), 𝑖 = 1, . . . , 𝑟 and 𝜋′ of H𝑛′ (𝐹) such
that 𝜋 is a subquotient of IndH𝑛 (𝐹 )

P(𝐹 ) (𝜏1 ⊗ · · · ⊗ 𝜏𝑟 ⊗ 𝜋′). Note that

IndH𝑛 (𝐹 )
P(𝐹 ) (𝜏1 ⊗ · · · ⊗ 𝜏𝑟 ⊗ 𝜋′) 𝜖 =

{
IndH𝑛 (𝐹 )

P(𝐹 ) (𝜏1 ⊗ · · · ⊗ 𝜏𝑟 ⊗ (𝜋′) 𝜖 ), if𝑉 ′ ≠ 0
IndH𝑛 (𝐹 )

P𝜖 (𝐹 ) (𝜏1 ⊗ · · · ⊗ 𝜏𝑟 ), if𝑉 ′ = 0,

where P𝜖 is the 𝜖-conjugate of P.
If𝑉 ′ = 0, then P𝜖 is another Siegel parabolic subgroup of H𝑛 and hence by applying

the multiplicative property of 𝛾-factors both to P𝜖 and P, we have

𝛾(𝑠, 𝜋𝜖 × 𝜎, 𝜓) =
𝑟∏
𝑖=1

𝛾(𝑠, 𝜏𝑖 × 𝜎, 𝜓)𝛾(𝑠, 𝜏∨𝑖 × 𝜎, 𝜓) = 𝛾(𝑠, 𝜋 × 𝜎, 𝜓).

Suppose that 𝑉 ′ ≠ 0. Then by the multiplicative property of 𝛾-factors, we may assume
that 𝜋 and𝜎 are supercuspidal. Nowwe use a standard global-to-local argument. In the
characteristic zero case (resp. positive characteristic case), [49, Proposition 5.1] (resp.
[20, Theorem 1.1]) implies that we have the following data:

• 𝐿, a number field (resp. global function field) such that 𝐿𝑣0 = 𝐹 for some finite
place 𝑣0 of 𝐿

• Ψ, a nontrivial additive character of 𝐿\A (whereA is the ring of adeles of 𝐿) such
that Ψ𝑣0 = 𝜓

• V, a quadratic space over 𝐿 of dimension 2𝑛 such thatV𝑣0 = 𝑉
• Π and Σ, a globally generic cuspidal representations of SO(V) (A) and GL𝑟 (A)
respectively such that Π𝑣0 = 𝜏 and Σ𝑣0 = 𝜎 and for all places 𝑣 ≠ 𝑣0 of 𝐿, Π𝑣 and
Σ𝑣 are unramified.

Using a similar argument as in the unramified case, we see that the equality (2.6) also
holds for all archimedean places 𝑣 of 𝐿 because 𝜋𝑣 is the generic quotient of a principal
series representation 𝐼 (𝜋𝑣). Then Property 2.5(v) and the equality (2.6) at all places 𝑣
except for 𝑣0 imply

𝛾(𝑠, 𝜋 × 𝜎, 𝜓) = 𝛾(𝑠,Π𝑣 × Σ𝑣 ,Ψ𝑣) = 𝛾(𝑠,Π 𝜖
𝑣 × Σ𝑣 ,Ψ𝑣) = 𝛾(𝑠, 𝜋𝜖 × 𝜎, 𝜓).

This completes the proof of the lemma. ■

Definition 2.4 For 𝜋̃ ∈ Irr(G𝑛 (𝐹)), choose an irreducible sub-representation 𝜋 of
𝜋̃ |H𝑛 (𝐹 ) , the restriction of 𝜋̃ to H𝑛 (𝐹). Assume that 𝜋̃ is 𝜇±

𝑐′-generic. Then for an
arbitrary element 𝜎 in Irr(GL𝑟 (𝐹)), define

𝛾(𝑠, 𝜋̃ × 𝜎, 𝜓) B 𝛾(𝑠, 𝜋 × 𝜎, 𝜓),

where 𝛾(𝑠, 𝜋 × 𝜎, 𝜓) is defined by Rankin-Selberg type integrals [37] or Langlands-
Shahidi methods [49, 42, 43].

By Proposition 2.1, if 𝜋̃ |H𝑛 (𝐹 ) is reducible, it decomposes into two irreducible rep-
resentations of H𝑛 (𝐹), which are 𝜖-conjugate to each other. By Lemma 2.8, the two
𝛾-factors associated with each component of 𝜋̃ |H𝑛 (𝐹 ) are the same, and therefore,
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𝛾(𝑠, 𝜋̃ × 𝜎, 𝜓) is well-defined. With this definition, we also have

𝛾(𝑠, 𝜋̃ × 𝜎, 𝜓) = 𝛾(𝑠, (𝜋̃ ⊗ det) × 𝜎, 𝜓). (2.7)

Remark 2.9 When 𝐹 is an archimedean local field, we can define 𝛾(𝑠, 𝜋̃ ×𝜎, 𝜓) in the
sameway as in the non-archimedean case because the proof of Lemma2.8 also covers the
archimedean case. As a result, based onProperty 2.5(i)–(vii) of the 𝛾-factors forH𝑛×GL𝑘
and Proposition 2.3, it is straightforward to verify that the 𝛾-factors for G𝑛 × GL𝑘 also
satisfy these properties. Therefore, when there is no confusion, we will use the same
notation 𝛾(𝑠, 𝜋 × 𝜎, 𝜓) and 𝛾(𝑠, 𝜋̃ × 𝜎, 𝜓).

2.5 Extension of Jo’s result

Now we recall a local converse theorem for Sp2𝑚 obtained in [36].

Theorem 2.10 ([36]) Let 𝜋 and 𝜋′ be irreducible 𝜇′1-generic representations of J𝑚 (𝐹) with
the same central characters such that

𝛾(𝑠, 𝜋 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋′ × 𝜌, 𝜓)

holds for any irreducible supercuspidal representation 𝜌 of GL𝑖 (𝐹) with 1 ≤ 𝑖 ≤ 𝑚. Then
𝜋 ≃ 𝜋′.

We extend the above result to general 𝜇′
𝜆
-generic representations of J𝑚 (𝐹). In order

to accomplish our goal, we rely on the following lemma.

Lemma 2.11 A T′ (𝐹)-orbit of irreducible 𝜇′
𝜆
-generic representations with respect to 𝜓 is

equals to aT′ (𝐹)-orbit of irreducible admissible 𝜇′1-generic representations with respect to𝜓𝜆.

Proof Let 𝜋 be an irreducible 𝜇′
𝜆
-generic representation of J𝑛 (𝐹) with respect to 𝜓.

We aim to show that 𝜋 is 𝜇′1-generic with respect to 𝜓𝜆.
Consider the action of 𝑡 ∈ T′ (𝐹) on a generic character 𝜒′ of U′ (𝐹), given by

(𝜒′)𝑡 (𝑢′) = 𝜒′ (𝑡−1𝑢′𝑡). Specifically, for 𝑡 ∈ T′ (𝐹) with 𝑡 ( 𝑓𝑖) = 𝑡𝑖 𝑓𝑖 and 𝑡 ( 𝑓 ∗𝑖 ) = 𝑡−1
𝑖
𝑓 ∗
𝑖

(1 ≤ 𝑖 ≤ 𝑛), we have

(𝜇′𝜆)𝑡 (𝑢′) = 𝜓

(
𝑛−1∑︁
𝑖=1

𝑡−1
𝑖 𝑡𝑖+1⟨𝑢′ 𝑓𝑖 , 𝑓 ∗𝑖+1⟩ + 𝜆𝑡−2

𝑛

⟨𝑢′ 𝑓 ∗𝑛 , 𝑓 ∗𝑛 ⟩
2

)
.

In particular, if we choose 𝑡 ∈ T′ (𝐹) specifically with 𝑡𝑖 = 𝜆−(𝑛−𝑖) , then we obtain

(𝜇′𝜆)𝑡 (𝑢′) = 𝜓𝜆

(
𝑛−1∑︁
𝑖=1

⟨𝑢′ 𝑓𝑖 , 𝑓 ∗𝑖+1⟩ +
⟨𝑢′ 𝑓 ∗𝑛 , 𝑓 ∗𝑛 ⟩

2

)
.

Therefore, a (𝜇′
𝜆
)𝑡 -generic representation (with respect to 𝜓) is 𝜇′1-generic with

respect to 𝜓𝜆. Since the notion of genericity is invariant under T′ (𝐹)-orbits, it follows
that 𝜋 is 𝜇′1-generic with respect to 𝜓𝜆. ■

Based on Jo’s result and the lemma mentioned above, we obtain the following.
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Theorem 2.12 Let 𝜋 and 𝜋′ be irreducible 𝜇′
𝜆
-generic representations of J𝑚 (𝐹) with the

same central characters such that

𝛾(𝑠, 𝜋 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋′ × 𝜌, 𝜓)

holds for any irreducible supercuspidal representation 𝜌 of GL𝑖 (𝐹) with 1 ≤ 𝑖 ≤ 𝑚. Then
𝜋 ≃ 𝜋′.

3 Local theta correspondence for (O(𝑉𝑛), Sp(𝑊𝑚))

In this section, we introduce the local theta correspondence induced by the Weil rep-
resentation of G𝑛 (𝐹) × J𝑚 (𝐹), denoted by 𝜔𝜓,𝑉𝑛 ,𝑊𝑚

. Here, 𝜓 is a fixed non-trivial
additive character of 𝐹 , and 𝑉𝑛 and 𝑊𝑚 are vector spaces of dimensions 2𝑛 and 2𝑚,
respectively. In what follows, wewill recall some fundamental results related to the local
theta correspondence.

For 𝜋̃ ∈ Irr(G𝑛 (𝐹)), the maximal 𝜋̃-isotypic quotient of 𝜔𝜓,𝑉𝑛 ,𝑊𝑚
is of the form

𝜋̃ ⊠ Θ𝜓,𝑉𝑛 ,𝑊𝑚
(𝜋̃),

for some smooth finite length representationΘ𝜓,𝑉𝑛 ,𝑊𝑚
(𝜋̃) of J𝑚 (𝐹), called the big theta

lift of 𝜋̃. The maximal semisimple quotient ofΘ𝜓,𝑉𝑛 ,𝑊𝑚
(𝜋̃) is called the small theta lift

of 𝜋̃. Changing the role of 𝑉𝑛 and𝑊𝑚, for 𝜏 ∈ Irr(J𝑚 (𝐹)), we obtain a smooth finite
length representation Θ𝜓,𝑊𝑚 ,𝑉𝑛 (𝜏) of G𝑛 (𝐹). The maximal semi-simple quotient of
Θ𝜓,𝑊𝑚 ,𝑉𝑛 (𝜏) (resp.Θ𝜓,𝑉𝑛 ,𝑊𝑚

(𝜋̃)) is denoted by 𝜃𝜓,𝑊𝑚 ,𝑉𝑛 (𝜏) (resp. 𝜃𝜓,𝑉𝑛 ,𝑊𝑚
(𝜋̃)) and

is called the small theta lift of 𝜋̃.
The following theorem and proposition are independent of the local Langlands

correspondence for G𝑛.

Theorem 3.1 (Howe duality, [22, 23],[54]) Let 𝜋̃ ∈ Irr(G𝑛 (𝐹)) and 𝜏 ∈ Irr(J𝑚 (𝐹)).
If Θ𝜓,𝑉𝑛 ,𝑊𝑛

(𝜋̃) and Θ𝜓,𝑊𝑛 ,𝑉𝑛 (𝜏) are nonzero, then 𝜃𝜓,𝑉𝑛 ,𝑊𝑚
(𝜋̃) and 𝜃𝜓,𝑊𝑚 ,𝑉𝑛 (𝜏) are

irreducible. Moreover, for 𝜋1, 𝜋2 ∈ Irr(G𝑛 (𝐹)) which occur as quotients of 𝜔𝜓,𝑉𝑛 ,𝑊𝑚
, if

𝜃𝜓,𝑉𝑛 ,𝑊𝑚
(𝜋1) ≃ 𝜃𝜓,𝑉𝑛 ,𝑊𝑚

(𝜋2), then 𝜋1 ≃ 𝜋2.

Proposition 3.2 Let 𝜋̃ ∈ Irrtemp (G𝑛 (𝐹)). If Θ𝜓,𝑉𝑛 ,𝑊𝑛
(𝜋̃) is non-zero, then

Θ𝜓,𝑉𝑛 ,𝑊𝑛
(𝜋̃) is an irreducible tempered representation of J𝑛 (𝐹).

Proof In char(𝐹) = 0, it is a part of [19, Proposition C.4]. The key ingredients of the
proof therein are the Howe duality and the Kudla’s filtrartion on the normalized Jacquet
module of the Weil representation. However, Howe duality does hold for char(𝐹) ≠ 2
case and the Kudla’s computation on the Jacquet module of theWeil representation also
holds for char(𝐹) ≠ 2 (see [40, III.8]). Except for these, other arguments in [19, Theorem
C.4] equally apply to char(𝐹) = 𝑝 case too. ■

Now we can prove the following proposition. In the case of a split J𝑛 (𝐹), it has been
proved in [24, Corollary 2.5] that when 𝜏 ∈ Irr(J𝑛 (𝐹)) is 𝜇′𝜆-generic and Θ𝜓,𝑊𝑛 ,𝑉𝑛 (𝜏)
is nonzero, then 𝜃𝜓,𝑊𝑛 ,𝑉𝑛 (𝜏) is (𝜇−𝜆)−1-generic.
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Proposition 3.3 Let 𝜋̃ ∈ Irrtemp (G𝑛 (𝐹)).

(i) If 𝜋̃ is 𝜇+
𝑐′-generic, then Θ𝜓,𝑉𝑛 ,𝑊𝑛

(𝜋̃) is nonzero and 𝜃𝜓,𝑉𝑛 ,𝑊𝑛
(𝜋̃) is (𝜇′−𝑐′ )−1-

generic.
(ii) If 𝜋̃ is 𝜇−

𝑐′-generic but not 𝜇
+
𝑐′-generic, then Θ𝜓,𝑉𝑛 ,𝑊𝑛

(𝜋̃) is zero or 𝜃𝜓,𝑉𝑛 ,𝑊𝑛
(𝜋̃)

is not (𝜇′−𝑐′ )−1-generic.

Proof Write (𝜔𝜓,𝑉𝑛 ,𝑊𝑛
)U′ (𝐹 ) , (𝜇′−𝑐′ )

−1 for the twisted Jacquet module of 𝜔𝜓,𝑉𝑛 ,𝑊𝑛

with respect to U′ (𝐹) and (𝜇′−𝑐′ )−1 (i.e. the quotient space 𝜔𝜓,𝑉𝑛 ,𝑊𝑛
/V , where V

is a subspace spanned by {𝜔𝜓,𝑉𝑛 ,𝑊𝑛
(𝑢) · 𝜙 − (𝜇′−𝑐′ )−1 (𝑢) · 𝜙}𝑢∈U′ ,𝜙∈𝜔𝜓,𝑉𝑛,𝑊𝑛

.) By
Theorem A.2, we have

HomG𝑛 (𝐹 )×U′ (𝐹 ) (𝜔𝜓,𝑉𝑛 ,𝑊𝑛
, 𝜋̃ ⊗ (𝜇′−𝑐′ )−1) � HomG𝑛 (𝐹 ) ((𝜔𝜓,𝑉𝑛 ,𝑊𝑛

)U′ (𝐹 ) , (𝜇′−𝑐′ )
−1 , 𝜋̃)

� HomG𝑛 (𝐹 ) ( indG𝑛 (𝐹 )
Ũ(𝐹 )

(𝜇+𝑐′ ), 𝜋̃) � HomŨ(𝐹 ) (𝜇
+
𝑐′ , (𝜋̃∨ |Ũ(𝐹 ) )

∨)

� HomŨ(𝐹 ) (𝜋̃
∨, (𝜇+𝑐′ )∨) � HomŨ(𝐹 ) (𝜋̃, 𝜇

+
𝑐′ ),

where the last equality follows from the facts that 𝜋̃ and 𝜇+
𝑐′ are unitary.

On the other hand,

HomG𝑛 (𝐹 )×U′ (𝐹 ) (𝜔𝜓,𝑉𝑛 ,𝑊𝑛
, 𝜋̃ ⊗ (𝜇′𝑐−′ )−1) � HomU′ (𝐹 ) (Θ𝜓,𝑉𝑛 ,𝑊𝑛

(𝜋̃), (𝜇′−𝑐′ )−1).

If 𝜋̃ is 𝜇+
𝑐′-generic, then HomŨ(𝐹 ) (𝜋̃, 𝜇+

𝑐′ ) ≠ 0, and henceforth,
HomU′ (𝐹 ) (Θ𝜓,𝑉𝑛 ,𝑊𝑛

(𝜋̃), (𝜇′−𝑐′ )−1) ≠ 0. Therefore, we have Θ𝜓,𝑉𝑛 ,𝑊𝑛
(𝜋̃) ≠ 0,

and by Proposition 3.2, HomU′ (𝐹 ) (𝜃𝜓,𝑉𝑛 ,𝑊𝑛
(𝜋̃), (𝜇′−𝑐′ )−1) ≠ 0. This proves (i).

If 𝜋̃ is not 𝜇+
𝑐′-generic, then HomŨ(𝐹 ) (𝜋̃, 𝜇+𝑐′ ) = 0, and from the above argument

we have

HomU′ (𝐹 ) (Θ𝜓,𝑉𝑛 ,𝑊𝑛
(𝜋̃), (𝜇′−𝑐′ )−1) = 0

which proves (ii). ■

Remark 3.4 Proposition 3.3 can be obtained using the local Langlands correspondence
for G𝑛 ([5]) and J𝑛 ([2]). However, since our other goal is to prove our main theorems
without using Arthur’s results, we prove it by computing the twisted Jacquet module of
Weil representation, which is independent of Arthur’s results.

The following is an easy consequence of Lemma 2.2 and Proposition 3.3.

Corollary 3.5 ([44, Cor 9.3]) Let 𝜋 ∈ Irrtemp (H𝑛 (𝐹)). If 𝜋 is 𝜇𝑐′-generic, then there is
a unique 𝜇+

𝑐′-generic irreducible constituent 𝜋̃ of IndG𝑛 (𝐹 )
H𝑛 (𝐹 ) (𝜋) such that Θ𝜓,𝑉𝑛 ,𝑊𝑛

(𝜋̃) is
nonzero and 𝜃𝜓,𝑉𝑛 ,𝑊𝑛

(𝜋̃) is (𝜇′−𝑐′ )−1-generic.

4 𝛾-factors and the local theta correspondence

In this section, we examine the relationship of 𝛾-factors under the local theta correspon-
dence for (O2𝑛, Sp2𝑚).
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Let 𝜋̃ ∈ Irr(G𝑛 (𝐹)), 𝜏 ∈ Irr(J𝑚 (𝐹)). Suppose that they correspond to each other
under the local theta correspondence for (G𝑛, J𝑚). In this section, we establish a pre-
cise relation between the two twisted 𝛾-factors of 𝜋̃ and 𝜏. Consider a unitary induced
representation

IndG𝑛 (𝐹 )
P(𝐹 ) (𝜌1 | det |𝑠1

𝐹
⊗ · · · ⊗ 𝜌𝑟 | det |𝑠𝑟

𝐹
⊗ 𝜋0), (4.1)

where

• 𝑉 = 𝑉𝑛 and𝑉0 = 𝑉𝑛0 are symmetric spaces of dimension 2𝑛 and 2𝑛0, respectively;
• P is a parabolic subgroup of G𝑛 with the Levi subgroup isomorphic to GL𝑛1 ×· · ·×

GL𝑛𝑟 × G𝑛0 ;
• 𝜌𝑖 is an irreducible unitary supercuspidal representation of GL𝑛𝑖 (𝐹);
• 𝑠𝑖 is a real number such that 𝑠1 ≥ . . . ≥ 𝑠𝑟 ≥ 0;
• 𝜋0 is an irreducible 𝜇±𝑐′-generic tempered representation of G𝑛0 (𝐹).

It is well-known and can be easily verified from [6, Theorem 4.2] and [36, Lemma
4.11] that an irreducible 𝜇±

𝑐′-generic representation 𝜋̃ of G𝑛 (𝐹) is a subquotient of
the form (4.1) (See [6] and [36, Lemma 4.11]). Then we say that 𝜋̃ has a tempered
support (𝑃, 𝜌1, · · · , 𝜌𝑟 ; 𝜋0) with exponents (𝑠1, · · · , 𝑠𝑟 ). Especially, when 𝜋0 is super-
cuspidal, we say that 𝜋̃ has supercuspidal support (𝑃, 𝜌1, · · · , 𝜌𝑟 ; 𝜋0) with exponents
(𝑠1, · · · , 𝑠𝑟 ). Similarly, we can define the supercuspidal support with exponents of an
irreducible 𝜇′

𝑐′-generic representation of J𝑚 (𝐹). The notion of supercuspidal support
can also be defined without exponents by allowing the inducing representations 𝜌𝑖 to
be supercuspidal (not necessarily unitary). It is also well-known that supercuspidal sup-
ports are uniquely determined up to conjugacy class of Weyl group elements. We note
that the central characters and 𝜇±

𝑐′-genericity of 𝜋̃ and 𝜋0 are the same.
The following is a summary of Kudla’s supercuspidal support theorem.

Proposition 4.1 ([40, Theorem 7.1] or [19, Proposition 5.2]) Let 𝜋̃ ∈ Irr(G𝑛 (𝐹))
be such that Θ𝜓,𝑉𝑛 ,𝑊𝑚

(𝜋̃) is nonzero. Put 𝜏 = 𝜃𝜓,𝑉𝑛 ,𝑊𝑚
(𝜋̃). We assume that 𝜋̃ ∈

Irr(G𝑛 (𝐹)) and 𝜏 ∈ Irr(J𝑚 (𝐹)) have supercuspidal supports (𝜌1, · · · , 𝜌𝑟 ; 𝜋0) with
𝜋0 ∈ Irr(G𝑛0 (𝐹)) and (𝜌′1, · · · , 𝜌′𝑠 ; 𝜏0) with 𝜏0 ∈ Irr(J𝑚0 (𝐹)), respectively. Put 𝑙 =
2𝑛 − 2𝑚 − 1 and 𝑙0 = 2𝑛0 − 2𝑚0 − 1. Then the following holds:

(i) 𝜏0 = 𝜃𝜓,𝑉0 ,𝑊0 (𝜋0).
(ii) If 𝑚 − 𝑚0 ≤ 𝑛 − 𝑛0, then

{𝜌1, · · · , 𝜌𝑟 } = {| · | 𝑙−1
2 , | · | 𝑙−3

2 , · · · , | · |
𝑙0+1

2 , 𝜌′1𝜒
−1
𝑉𝑛
, · · · , 𝜌′𝑠𝜒−1

𝑉𝑛
}.

(iii) If 𝑚 − 𝑚0 ≥ 𝑛 − 𝑛0, then

{𝜌′1, · · · , 𝜌′𝑠} = {𝜒𝑉𝑛 | · |
−(𝑙+1)

2 , 𝜒𝑉𝑛 | · |
−(𝑙+3)

2 , · · · , 𝜒𝑉𝑛 | · |
−(𝑙0−1)

2 , 𝜌1𝜒𝑉𝑛 , · · · , 𝜌𝑟 𝜒𝑉𝑛 }.

For an irreducible smooth representation 𝜌 of GL𝑟 (𝐹) and a 2𝑛-dimensional sym-
metric space𝑉 over 𝐹 , set

𝛾(𝜎,𝑉) B
{

𝛾 (𝑠,𝜎,𝜓)
𝛾 (𝑠,𝜎𝜒𝑉 ,𝜓) , if dim(𝑉an) = 0
1, if dim(𝑉an) = 2.
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The following lemma is an application of Proposition 4.1, which illustrates the pre-
cise relationship between the GL1-twisted 𝛾-factors of 𝜋̃ and 𝜃𝜓,𝑉𝑛 ,𝑊𝑚

(𝜋̃) when 𝜋̃ is
an unramified representation. When char(𝐹) = 0, it is a part of [19, Lemma 11.8]. How-
ever, the formula therein is only valid when G𝑛 is non-split but quasi-split. For the case
when G𝑛 is split, some adjustments are required.

Lemma 4.2 Let 𝜋̃ ∈ Irr(G𝑛 (𝐹)). Suppose that 𝜋̃ is unramified and Θ𝜓,𝑉𝑛 ,𝑊𝑚
(𝜋̃) is

nonzero. Put 𝜏 = 𝜃𝜓,𝑉𝑛 ,𝑊𝑚
(𝜋̃). Write 𝑙 = 2𝑛−2𝑚−1. Then for any character𝜎 ofGL1 (𝐹),

the following hold:

(i) if 𝑙 ≥ 1, then

𝛾(𝑠, 𝜏 ×𝜎, 𝜓) = 𝛾(𝜎,𝑉𝑛) · 𝛾(𝑠, 𝜋̃ ×𝜎𝜒𝑉𝑛 , 𝜓) ·
𝑙∏
𝑖=1

𝛾(𝑠 + 𝑙 + 1
2

− 𝑖, 𝜎𝜒𝑉𝑛 , 𝜓)−1.

(ii) if 𝑙 ≤ −1, then

𝛾(𝑠, 𝜏 × 𝜎, 𝜓) = 𝛾(𝜎,𝑉𝑛) · 𝛾(𝑠, 𝜋̃ × 𝜎𝜒𝑉𝑛 , 𝜓) ·
−𝑙∏
𝑖=1

𝛾(𝑠 + −𝑙 + 1
2

− 𝑖, 𝜎𝜒𝑉𝑛 , 𝜓).

Proof We keep the notation in Proposition 4.1, i.e., 𝜋̃ and 𝜏 have supercuspidal
supports (𝜌1, · · · , 𝜌𝑟 ; 𝜋0) with 𝜋0 ∈ Irr(G𝑛0 (𝐹)) and (𝜌′1, · · · , 𝜌′𝑠 ; 𝜏0) with 𝜏0 ∈
Irr(J𝑚0 (𝐹)), respectively. For convenience in notation, set 𝜒 = 𝜒𝑉𝑛 . Note that 𝜒 = 𝜒−1.
Since 𝑉𝑛0 (resp. 𝑊𝑚0 ) is the anisotropic kernel of 𝑉𝑛 (resp. 𝑊𝑚), 𝑛0 = 0 or 1 (resp.
𝑚0 = 0). Furthermore, 𝜌𝑖 , 𝜌′𝑗 are 1-dimensional character of GL1 (𝐹) and 𝜋0 = I𝑉𝑛0
(resp. 𝜏0 = I𝑊𝑚0

) the trivial representation of G𝑛0 (𝐹) (resp. J𝑚0 (𝐹)).
We first prove (i). By Proposition 4.1 (ii),

𝛾(𝑠, 𝜋̃ × 𝜎𝜒, 𝜓) = 𝛾(𝑠, I𝑉𝑛0
× 𝜎𝜒, 𝜓) ·

𝑠∏
𝑗=1

(𝛾(𝑠, 𝜌′𝑖 𝜒−1 × 𝜎𝜒, 𝜓) · 𝛾(𝑠, (𝜌′𝑖 𝜒−1)−1 × 𝜎𝜒, 𝜓))

×

𝑙−𝑙0
2∏
𝑖=1

𝛾(𝑠 + 𝑙 + 1
2

− 𝑖, 𝜎𝜒, 𝜓) · 𝛾(𝑠 + 𝑖 − 𝑙 + 1
2
, 𝜎𝜒, 𝜓)

=
𝛾(𝑠, I𝑉𝑛0

× 𝜎𝜒, 𝜓)
𝛾(𝑠, I𝑊𝑚0

× 𝜎, 𝜓) · 𝛾(𝑠, I𝑊𝑚0
× 𝜎, 𝜓)

𝑠∏
𝑗=1
𝛾(𝑠, 𝜌′𝑖 × 𝜎, 𝜓) · 𝛾(𝑠, (𝜌′𝑖)−1 × 𝜎, 𝜓)

×
∏𝑙
𝑖=1 𝛾(𝑠 + 𝑙+1

2 − 𝑖, 𝜎𝜒, 𝜓)∏𝑙0
𝑖=1 𝛾(𝑠 +

𝑙0+1
2 − 𝑖, 𝜎𝜒, 𝜓)

= 𝛾(𝑠, 𝜏 × 𝜎, 𝜓) ·
𝛾(𝑠, I𝑉𝑛0

× 𝜎𝜒, 𝜓)
𝛾(𝑠, I𝑊𝑚0

× 𝜎, 𝜓) ·
∏𝑙
𝑖=1 𝛾(𝑠 + 𝑙+1

2 − 𝑖, 𝜎𝜒, 𝜓)∏𝑙0
𝑖=1 𝛾(𝑠 +

𝑙0+1
2 − 𝑖, 𝜎𝜒, 𝜓)

.

Here,
∏𝑙0
𝑖=1 𝛾(𝑠 +

𝑙0+1
2 − 𝑖, 𝜎𝜒, 𝜓) is defined as 𝛾(𝑠, 𝜎𝜒, 𝜓)−1 if 𝑙0 = −1.
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If 𝑛0 = 0, then 𝑙0 = −1. By Remark 2.6, we have

𝛾(𝑠, 𝜋̃ × 𝜎𝜒, 𝜓) = 𝛾(𝑠, 𝜏 × 𝜎, 𝜓) · 𝛾(𝑠, 𝜎𝜒, 𝜓)
𝛾(𝑠, 𝜎, 𝜓) ·

𝑙∏
𝑖=1

𝛾(𝑠 + 𝑙 + 1
2

− 𝑖, 𝜎𝜒, 𝜓).

If 𝑛0 = 1, then 𝑙0 = 1. By Property 2.5 (viii) and Remark 2.6, we have

𝛾(𝑠, 𝜋̃ × 𝜎𝜒, 𝜓) = 𝛾(𝑠, 𝜏 × 𝜎, 𝜓) · 𝛾(𝑠, 𝜎𝜒, 𝜓) · 𝛾(𝑠, 𝜎, 𝜓)
𝛾(𝑠, 𝜎, 𝜓) · 𝛾(𝑠, 𝜎𝜒, 𝜓) ·

𝑙∏
𝑖=1

𝛾(𝑠 + 𝑙 + 1
2

− 𝑖, 𝜎𝜒, 𝜓)

= 𝛾(𝑠, 𝜏 × 𝜎, 𝜓) ·
𝑙∏
𝑖=1

𝛾(𝑠 + 𝑙 + 1
2

− 𝑖, 𝜎𝜒, 𝜓).

Next, we prove (ii). By Proposition 4.1 (iii),

𝛾(𝑠, 𝜏 × 𝜎, 𝜓) = 𝛾(𝑠, I𝑊𝑚0
× 𝜎, 𝜓) ·

𝑟∏
𝑗=1
𝛾(𝑠, 𝜌 𝑗 𝜒 × 𝜎, 𝜓) · 𝛾(𝑠, (𝜌 𝑗 𝜒)−1 × 𝜎, 𝜓)

×

𝑙0−𝑙
2∏
𝑖=1

𝛾(𝑠 − (𝑙 − 1)
2

− 𝑖, 𝜎𝜒, 𝜓) · 𝛾(𝑠 + 𝑖 + 𝑙 − 1
2
, 𝜎𝜒−1, 𝜓)

=
𝛾(𝑠, I𝑊𝑚0

× 𝜎, 𝜓)
𝛾(𝑠, I𝑉𝑛0

× 𝜎𝜒, 𝜓) · 𝛾(𝑠, I𝑉𝑛0
× 𝜎𝜒, 𝜓) ·

𝑟∏
𝑗=1
𝛾(𝑠, 𝜌 𝑗 × 𝜎𝜒, 𝜓) · 𝛾(𝑠, (𝜌 𝑗 )−1 × 𝜎𝜒, 𝜓)

×
∏−𝑙
𝑖=1 𝛾(𝑠 −

(𝑙−1)
2 − 𝑖, 𝜎𝜒, 𝜓)∏−𝑙0

𝑖=1 𝛾(𝑠 −
(𝑙0−1)

2 − 𝑖, 𝜎𝜒, 𝜓)

= 𝛾(𝑠, 𝜋̃ × 𝜎𝜒, 𝜓) ·
𝛾(𝑠, I𝑊𝑚0

× 𝜎, 𝜓)
𝛾(𝑠, I𝑉𝑛0

× 𝜎𝜒, 𝜓) ·
∏−𝑙
𝑖=1 𝛾(𝑠 −

(𝑙−1)
2 − 𝑖, 𝜎𝜒, 𝜓)∏−𝑙0

𝑖=1 𝛾(𝑠 −
(𝑙0−1)

2 − 𝑖, 𝜎𝜒, 𝜓)
.

Here,
∏−𝑙0
𝑖=1 𝛾(𝑠 −

(𝑙0−1)
2 − 𝑖, 𝜎𝜒, 𝜓) is defined as 𝛾(𝑠, 𝜎𝜒, 𝜓)−1 if 𝑙0 = 1.

If 𝑛0 = 0, then 𝑙0 = −1. By Remark 2.6,

𝛾(𝑠, 𝜏 × 𝜎, 𝜓) = 𝛾(𝑠, 𝜋̃ × 𝜎𝜒, 𝜓) · 𝛾(𝑠, 𝜎, 𝜓)
𝛾(𝑠, 𝜎𝜒, 𝜓) ·

−𝑙∏
𝑖=1

𝛾(𝑠 − (𝑙 − 1)
2

− 𝑖, 𝜎𝜒, 𝜓).

If 𝑛0 = 1, then 𝑙0 = 1. By Property 2.5 (viii) and Remark 2.6,

𝛾(𝑠, 𝜏 × 𝜎, 𝜓) = 𝛾(𝑠, 𝜋̃ × 𝜎𝜒, 𝜓) · 𝛾(𝑠, 𝜎, 𝜓)
𝛾(𝑠, 𝜎, 𝜓) · 𝛾(𝑠, 𝜎𝜒, 𝜓) · 𝛾(𝑠, 𝜎𝜒, 𝜓)−1 ·

−𝑙∏
𝑖=1

𝛾(𝑠 − (𝑙 − 1)
2

− 𝑖, 𝜎𝜒, 𝜓)

= 𝛾(𝑠, 𝜋̃ × 𝜎𝜒, 𝜓) ·
−𝑙∏
𝑖=1

𝛾(𝑠 − (𝑙 − 1)
2

− 𝑖, 𝜎𝜒, 𝜓).

This completes the proof. ■

The following theorem is the generalization of Lemma 4.2.
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Theorem 4.3 Let 𝜋̃ ∈ Irr(G𝑛 (𝐹)). Suppose that 𝜋̃ is 𝜇±
𝑐′-generic and Θ𝜓,𝑉𝑛 ,𝑊𝑚

(𝜋̃) is
nonzero. Put 𝜏 = 𝜃𝜓,𝑉𝑛 ,𝑊𝑚

(𝜋̃). Write 𝑙 = 2𝑛 − 2𝑚 − 1. Then for any irreducible generic
representation 𝜎 of GL𝑟 (𝐹), the following hold:

(i) if 𝑙 ≥ 1, then

𝛾(𝑠, 𝜏 ×𝜎, 𝜓) = 𝛾(𝜎,𝑉𝑛) · 𝛾(𝑠, 𝜋̃ ×𝜎𝜒𝑉𝑛 , 𝜓) ·
𝑙∏
𝑖=1

𝛾(𝑠 + 𝑙 + 1
2

− 𝑖, 𝜎𝜒𝑉𝑛 , 𝜓)−1.

(ii) if 𝑙 ≤ −1, then

𝛾(𝑠, 𝜏 × 𝜎, 𝜓) = 𝛾(𝜎,𝑉𝑛) · 𝛾(𝑠, 𝜋̃ × 𝜎𝜒𝑉𝑛 , 𝜓) ·
−𝑙∏
𝑖=1

𝛾(𝑠 + −𝑙 + 1
2

− 𝑖, 𝜎𝜒𝑉𝑛 , 𝜓).

Remark 4.4 Theorem 4.3 can be considered as a generalization of [19, Theorem 11.5].
It is important to note that [19, Theorem 11.5] utilizes Lapid-Rallis’s 𝛾-factors for G𝑛 ×
GL1 and J𝑚 × GL1 defined in [41]. Lapid-Rallis’s 𝛾-factors are defined for all smooth
representations, not necessarily limited to generic ones. In Proposition 3.3, we observed
that 𝜏 = 𝜃𝜓,𝑉𝑛 ,𝑊𝑚

(𝜋̃) is generic if 𝑛 = 𝑚. However, when 𝑛 ≠ 𝑚, 𝜏 need not necessarily
be a generic representation. Hence, for 𝛾(𝑠, 𝜏 × 𝜎, 𝜓) that appears in Theorem 4.3, we
adopt the definition of 𝛾-factors for J𝑚×GL𝑘 in [9] for char(𝐹) = 0 case and inWorking
hypothesis on char(𝐹) = 𝑝 case. See Remark 2.7.

To begin the proof of Theorem 4.3, we state the following lemma which will be used
in our argument. It directly follows from the Kudla’s supercuspidal support theorem,
i.e., Proposition 4.1.

Lemma 4.5 Let {𝑊𝑟 } be the Witt tower containing 𝑊𝑚, and let 𝜋̃ ∈ Irr(G𝑛 (𝐹)). Sup-
pose that Proposition 4.3 holds for some 𝑊 ′ ∈ {𝑊𝑟 } such that Θ𝜓,𝑉𝑛 ,𝑊 ′ (𝜋̃) ≠ 0. Then
Theorem 4.3 holds for all𝑊 in {𝑊𝑟 } such that Θ𝜓,𝑉𝑛 ,𝑊 (𝜏) ≠ 0.

Now we are ready to prove Theorem 4.3.

Proof The proof follows a similar line of reasoning in [19, Theorem 11.5]. Write 𝑉 =
𝑉𝑛.

By the multiplicative property of 𝛾-factors, it is enough to consider the case when
𝜋̃ and 𝜎 are supercuspidal. This can be proved using a global-to-local argument.
Let 𝜋 be an irreducible supercuspidal constituent of 𝜋̃ |SO(𝑉 ) . (See [6, Section 2] for
supecuspidality of 𝜋.) Suppose we have the following data:

• 𝐿, a totally imaginary number field (or a global function field) withA its adele ring
such that 𝐿𝑣0 = 𝐹 for some finite place 𝑣0 of 𝐿

• Ψ, a nontrivial additive character of 𝐿\A such that Ψ𝑣0 = 𝜓
• 𝔘, a generic automorphic character of 𝑈 (𝐿)\𝑈 (A) associated to Ψ such that
𝔘𝑣0 = 𝜇𝑐′

• W, a symplectic space over 𝐿 of dimension 2𝑚, with associated isometry group
Sp(W)
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• V, a symmetric space over 𝐿 of dimension 2𝑛 such that V𝑣0 = 𝑉 , with associated
isometry group O(V) and Hecke character 𝜒 ofA× such that 𝜒𝑣0 = 𝜒𝑉

• {W𝑘}, the tower of symplectic spaces over 𝐿 containingW
• 𝑆, a finite set consisting all archimedean places of 𝐿 and 𝑣0 (if 𝐿 is a global function
field, 𝑆 = {𝑣0})

• Π, a globally 𝔘-generic cuspidal representation of SO(V) (A) such that Π𝑣0 = 𝜋

and for all places 𝑣 ∉ 𝑆 of 𝐿, Π𝑣 is unramified
• Σ, a globally generic cuspidal representation of GL𝑟 (A) such that Σ𝑣0 = 𝜎 and for
all places 𝑣 ∉ 𝑆 of 𝐿, Σ𝑣 is unramified

• 𝑘0, the first index of the global theta lift tower {ΘV,W𝑘
(Π)} with respect toΨ and

𝜒 such thatΘV,W𝑘0
(Π) is nonzero

• Ξ, an irreducible constituent ofΘV,W𝑘0
(Π)

The existence of such 𝐿 follows from a similar argument in [44, Lemma 5.2]. We can
always construct such Π and Σ. (For the char(𝐹) = 0 case, see [49, Proposition 5.1]
and for the char(𝐹) = 𝑝 case, see [20, Theorem 1.1].) Furthermore, Theorem B.1
tells that such 𝑘0 exists and Ξ is cuspidal. By Proposition 2.4, there is an automorphic
generic character 𝔘̃ of Ũ(A) such that 𝔘̃ |U(A)= 𝔘 and a globally 𝔘̃-generic cuspidal
representation Π̃ of O(V) (A) such that Res(Π̃) = Π. By Proposition 2.1, we have
Π̃𝑣0 = 𝜋̃ or 𝜋̃ ⊗ det.

Write 𝑙0 = 2𝑛 − 2𝑘0 − 1. For simplicity, we assume 𝑙0 ≥ 1. (The case 𝑙0 ≤ −1
can be proved similarly.) For unramified places 𝑣 ∉ 𝑆, an unramified representation
Σ𝑣 is considered the unique unramified quotient of a principal series IndGL𝑟 (𝐿𝑣 )

B(𝐿𝑣 ) (𝜒1 ⊗
· · · ⊗ 𝜒𝑟 ), where 𝜒𝑖 are unramified character of 𝐹× and B is a Borel subgroup of GL𝑟 .
Therefore, multiplicativity property of 𝛾-factors together with Lemma 4.2 imply the
following:

𝛾(𝑠,Ξ𝑣×Σ𝑣 ,Ψ𝑣) = 𝛾(Σ𝑣 ,V𝑣) ·𝛾(𝑠, Π̃𝑣×Σ𝑣𝜒𝑣 ,Ψ𝑣) ·
𝑙0∏
𝑖=1

𝛾(𝑠+ 𝑙0 + 1
2

−𝑖, Σ𝑣𝜒𝑣 ,Ψ𝑣)−1.

(4.2)
Note that for all places 𝑣 ∉ 𝑆, Ξ𝑣 ,Π𝑣 and Σ𝑣 are unramified. Therefore, Property 2.5
(iv) of 𝛾-factors implies that by taking products of (4.2) over all places 𝑣 ∉ 𝑆 we have

𝐿𝑆 (1 − 𝑠,Ξ∨ × Σ∨)
𝐿𝑆 (𝑠,Ξ × Σ)

= 𝛾𝑆 (Σ𝑣 ,V𝑣)·
𝐿𝑆 (1 − 𝑠, Π̃∨ × Σ∨𝜒∨)

𝐿𝑆 (𝑠, Π̃ × Σ𝜒)
×
𝑙0∏
𝑖=1

𝐿𝑆 (1 − 𝑠 − 𝑙0+1
2 + 𝑖, Σ∨𝜒−1)−1

𝐿𝑆 (𝑠 + 𝑙0+1
2 − 𝑖, Σ𝜒)−1

.

For any archimedean place 𝑣 of 𝐿, 𝐿𝑣 = C. The theta correspondence for complex
groups is well-understood and can be described in terms of the local Langlands cor-
respondence (see [1]). Applying the archimedean property of 𝛾-factors, we have the
identity (4.2) at the archimedean places 𝑣 of 𝐿 as well.

By the global functional equation of 𝛾-factors,

𝐿𝑆 (1 − 𝑠,Ξ∨ × Σ∨)
𝐿𝑆 (𝑠,Ξ × Σ)

×
∏
𝑣∈𝑆

𝛾(𝑠,Ξ𝑣 × Σ𝑣 ,Ψ𝑣) = 1
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= 𝛾𝑆 (Σ𝑣 ,V𝑣) ·
𝐿𝑆 (1 − 𝑠, Π̃∨ × Σ∨𝜒∨)

𝐿𝑆 (𝑠, Π̃ × Σ𝜒)
×

𝑙0∏
𝑖=1

𝐿𝑆 (1 − 𝑠 − 𝑙0+1
2 + 𝑖, Σ∨𝜒−1)−1

𝐿𝑆 (𝑠 + 𝑙0+1
2 − 𝑖, Σ𝜒)−1

×
∏
𝑣∈𝑆

(
𝛾(Σ𝑣 ,V𝑣) · 𝛾(𝑠, Π̃𝑣 × Σ𝑣𝜒𝑣 ,Ψ𝑣) ×

𝑙0∏
𝑖=1

𝛾(𝑠 + 𝑙0 + 1
2

− 𝑖, Σ𝑣𝜒𝑣 ,Ψ𝑣)−1

)
.

By canceling the identities at places outside 𝑣0, we have

𝛾(𝑠,Ξ𝑣0×Σ𝑣0 ,Ψ𝑣0 ) = 𝛾(Σ𝑣0 ,V𝑣0 )·𝛾(𝑠, Π̃𝑣0×Σ𝑣0 𝜒𝑣0 ,Ψ𝑣0 )·
𝑙0∏
𝑖=1

𝛾(𝑠+ 𝑙0 + 1
2

−𝑖, Σ𝑣0 𝜒𝑣0 ,Ψ𝑣0 )−1.

Since Π̃𝑣0 = 𝜋̃ or 𝜋̃ ⊗ det, Σ𝑣0 = 𝜎, V𝑣0 = 𝑉 and Ξ𝑣0 = 𝜃𝜓,V𝑣0 , (W𝑘 )𝑣0
(𝜋̃), (2.7) implies

the desired identity for this specific theta lift Ξ𝑣0 . Moreover, Lemma 4.5 establishes the
desired identity for any arbitrary non-zero theta lift. ■

The following corollary plays a key role in proving our main theorem.

Corollary 4.6 Let 𝜋̃ ∈ Irrtemp (G𝑛 (𝐹)) and suppose that 𝜋̃ is 𝜇+
𝑐′-generic. Put 𝜏 =

𝜃𝜓,𝑉𝑛 ,𝑊𝑛
(𝜋̃) ∈ Irrtemp (J𝑛 (𝐹)). Then for any irreducible supercuspidal representation 𝜎 of

GL𝑟 (𝐹),

𝛾(𝑠, 𝜏 × 𝜎, 𝜓) = 𝛾(𝜎,𝑉𝑛) · 𝛾(𝑠, 𝜋̃ × 𝜎𝜒𝑉𝑛 , 𝜓) · 𝛾(𝑠, 𝜎𝜒𝑉𝑛 , 𝜓).

Proof Note that 𝜏 is nonzero and tempered by Proposition 3.2 and Proposition 3.3.
Then this is a special case of Theorem 4.3 when 𝑛 = 𝑚, 𝑙 = −1, and 𝜎 is a supercuspidal
representation. ■

5 The proof

In this section, we prove our main theorem. The proof consists of two steps; the first
step is to prove the following tempered case.

Theorem 5.1 Let 𝜋1 and 𝜋2 be generic tempered irreducible representations of G𝑛 (𝐹) with
the same central characters and the same 𝜇±

𝑐′-genericity. Suppose that

𝛾(𝑠, 𝜋1 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋2 × 𝜌, 𝜓)

holds for any irreducible supercuspidal representation 𝜌 of GL𝑡 (𝐹) with 1 ≤ 𝑡 ≤ 𝑛. Then

𝜋1 ≃ 𝜋2.

Proof Let𝑊𝑛 be a 2𝑛-dimesional symplectic space. Put

(𝜋1
′
, 𝜋2

′) =

{
(𝜋1, 𝜋2) if 𝜋1, 𝜋2 are 𝜇+𝑐′-generic
(𝜋1 ⊗ det, 𝜋2 ⊗ det) if 𝜋1, 𝜋2 are 𝜇−𝑐′-generic but not 𝜇

+
𝑐′-generic.

Then by Proposition 3.3, Θ𝜓,𝑉𝑛 ,𝑊𝑛
(𝜋1

′) and Θ𝜓,𝑉𝑛 ,𝑊𝑛
(𝜋2

′) are nonzero and
(𝜇′−𝑐′ )−1-generic. Put 𝜏1 := 𝜃𝜓,𝑉𝑛 ,𝑊𝑛

(𝜋1
′) and 𝜏2 := 𝜃𝜓,𝑉𝑛 ,𝑊𝑛

(𝜋2
′). Since 𝜋1 and
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𝜋2 have the same central characters, 𝜏1, 𝜏2 also have the same central characters by
Proposition A.1. Furthermore, by Corollary 4.6,

𝛾(𝑠, 𝜏1 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋1
′ × 𝜌𝜒𝑉𝑛 , 𝜓) · 𝛾(𝑠, 𝜌𝜒𝑉𝑛 , 𝜓),

𝛾(𝑠, 𝜏2 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋2
′ × 𝜌𝜒𝑉𝑛 , 𝜓) · 𝛾(𝑠, 𝜌𝜒𝑉𝑛 , 𝜓)

for any irreducible supercuspidal representation 𝜌 of GL𝑖 (𝐹) where 1 ≤ 𝑖 ≤ 𝑛.
Therefore, we obtain

𝛾(𝑠, 𝜏1 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜏2 × 𝜌, 𝜓)

and due to property of the dependence on 𝜓 of 𝛾-factors, i.e., Property 2.5(iii), we have

𝛾(𝑠, 𝜏1 × 𝜌, 𝜓−1) = 𝛾(𝑠, 𝜏2 × 𝜌, 𝜓−1).

Then by Theorem 2.12, we have 𝜏1 ≃ 𝜏2 and by Howe duality, 𝜋1
′ ≃ 𝜋2

′. Henceforth,
we have 𝜋1 ≃ 𝜋2. ■

The following proposition is analogous to [35, Proposition 3.2] and [36, Corollary
5.9, Proposition 5.11], representing their extension from the supercuspidal case to the
tempered case.

Proposition 5.2 Let G be either G𝑛 or J𝑛. For an irreducible generic tempered repre-
sentation 𝜏 of G(𝐹) and irreducible unitary supercuspidal representations 𝜌 and 𝜌𝑖 of
GL𝑘 (𝐹) and GL𝑘𝑖 (𝐹), respectively, we have the following:

(i) The product
∏𝑟
𝑖=1 𝛾(𝑠 + 𝑠𝑖 , 𝜌𝑖 × 𝜌, 𝜓) has a real pole (respectively, a real zero) at

𝑠 = 𝑠0 if and only if 𝜌 � 𝜌∨
𝑖
and 𝑠0 = 1 − 𝑠𝑖 (respectively, 𝑠0 = −𝑠𝑖) for some

1 ≤ 𝑖 ≤ 𝑟 .
(ii) The product

∏𝑟
𝑖=1 𝛾(𝑠 − 𝑠𝑖 , 𝜌∨𝑖 × 𝜌, 𝜓) has a real pole (respectively, a real zero)

at 𝑠 = 𝑠0 if and only if 𝜌 � 𝜌𝑖 and 𝑠0 = 1 + 𝑠𝑖 (respectively, 𝑠0 = 𝑠𝑖) for some
1 ≤ 𝑖 ≤ 𝑟 .

(iii) 𝛾(𝑠, 𝜏 × 𝜌, 𝜓) has no zero for Re(𝑠) > 0.
(iv) If 𝛾(𝑠, 𝜏 × 𝜌, 𝜓) has a real pole at 𝑠 = 𝑠0, then the pole must be a simple pole at

𝑠0 = 1 and 𝜌 ≃ 𝜌∨.

Proof (i) and (ii) follows a similar line reasoning in [35, Section 3.2]. Note that both 𝜏
and 𝜌 are tempered and generic. From the definition of local 𝐿-function (2.4), the zero
of 𝛾(𝑠, 𝜏×𝜌, 𝜓) comes from the poles of 𝐿 (𝑠, 𝜏×𝜌). However, Property 2.5 (vii) implies
that 𝐿 (𝑠, 𝜏 × 𝜌) has no pole for Re(𝑠) > 0. Therefore (iii) of the theorem follows.

When G = J𝑛, (iv) follows from [36, Corollary 5.9] and in the proof of [36, Corollary
5.9], the restriction that 𝜏 is supercuspidal is given to apply ‘Casselman–Shahidi Lemma’
([36, Lemma 5.8]). However, ‘Casselman–Shahidi Lemma’ also holds for tempered rep-
resentations by [38, Proposition 12.3]. Except that, other arguments of [36, Corollary
5.9] equally work for tempered representations. This completes the proof of (iv) when
G = J𝑛.

When G = G𝑛, suppose that 𝜏 is 𝜇±𝑐′-generic and let 𝜏
′ ∈ Irrtemp (G𝑛 (𝐹)) be an ele-

ment of, which is either 𝜏 or (𝜏⊗det), such that 𝜏′ be 𝜇±
𝑐′-generic. Put 𝜋 = 𝜃𝜓,𝑉𝑛 ,𝑊𝑛

(𝜏′).
Then by Proposition 3.2 and Proposition 3.3, 𝜋 is nonzero and (𝜇′−𝑐′ )−1-generic and
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tempered. By Corollary 4.6,

𝛾(𝑠, 𝜏′ × 𝜌, 𝜓) =

{
𝛾(𝑠, 𝜋 × 𝜌𝜒−1

𝑉𝑛
, 𝜓) · 𝛾(𝑠, 𝜌𝜒−1

𝑉𝑛
, 𝜓)−1, if G𝑛 is split

𝛾(𝑠, 𝜋 × 𝜌𝜒−1
𝑉𝑛
, 𝜓) · 𝛾(𝑠, 𝜌, 𝜓)−1, if G𝑛 is non-split

.

Proposition 5.2 (i) says that 𝛾(𝑠, 𝜌, 𝜓)−1 and 𝛾(𝑠, 𝜌𝜒−1
𝑉𝑛
, 𝜓)−1 and 𝛾(𝑠, 𝜌, 𝜓)−1 have no

pole at 𝑠 = 𝑠0 > 0. Therefore, Proposition 5.2 (iv) in case G = G𝑛 readily follows from
the above equality and Proposition 5.2 (iv) in case G = J𝑛. ■

The following proposition is a direct consequence of Proposition 5.2, and its proof
is essentially the same as that of [35, Theorem 5.1].

Proposition 5.3 Let 𝜋1 (resp. 𝜋2) be an irreducible 𝜇±
𝑐′-generic representations of

G𝑛 (𝐹), which has tempered support (𝜌1, · · · , 𝜌𝑟 ; 𝜋01) (resp. (𝜌′1, · · · , 𝜌′𝑟 ′ ; 𝜋02)) with
exponents (𝑠1, · · · , 𝑠𝑟 ) (resp. (𝑠′1, · · · , 𝑠′𝑟 ′ )). Suppose that[

𝑟∏
𝑖=1

𝛾(𝑠 + 𝑠𝑖 , 𝜌𝑖 × 𝜌, 𝜓) · 𝛾(𝑠 − 𝑠𝑖 , 𝜌∨𝑖 × 𝜌, 𝜓)
]
· 𝛾(𝑠, 𝜋01 × 𝜌, 𝜓)

=

[
𝑟 ′∏
𝑖=1

𝛾(𝑠 + 𝑠′𝑖 , 𝜌′𝑖 × 𝜌, 𝜓)𝛾(𝑠 − 𝑠′𝑖 , (𝜌′𝑖)∨ × 𝜌, 𝜓)
]
· 𝛾(𝑠, 𝜋02 × 𝜌, 𝜓) (5.1)

for any irreducible unitary supercuspidal representation 𝜌 of GL𝑡 (𝐹) with 1 ≤ 𝑡 ≤ 𝑛.
Then, 𝑟 = 𝑟 ′ and there exists a permutation 𝔰 of {1, 2, · · · , 𝑟} such that

(i) 𝑠𝑖 = 𝑠′
𝔰 (𝑖) and 𝜌𝑖 ≃ 𝜌′

𝔰 (𝑖) for all 𝑖 = 1, 2, · · · , 𝑟 ;
(ii) 𝛾(𝑠, 𝜋01 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋02 × 𝜌, 𝜓) for any irreducible unitary supercuspidal

representation 𝜌 of GL𝑡 (𝐹) with 1 ≤ 𝑡 ≤ 𝑛.

Proof By putting 𝜌 = 𝜌1 in the equation (5.1), we obtain[
𝑟∏
𝑖=1

𝛾(𝑠 + 𝑠𝑖 , 𝜌𝑖 × 𝜌1, 𝜓) · 𝛾(𝑠 − 𝑠𝑖 , 𝜌∨𝑖 × 𝜌1, 𝜓)
]
· 𝛾(𝑠, 𝜋01 × 𝜌1, 𝜓)

=

[
𝑟 ′∏
𝑖=1

𝛾(𝑠 + 𝑠′𝑖 , 𝜌′𝑖 × 𝜌1, 𝜓) · 𝛾(𝑠 − 𝑠′𝑖 , (𝜌′𝑖)∨ × 𝜌1, 𝜓)
]
· 𝛾(𝑠, 𝜋02 × 𝜌1, 𝜓). (5.2)

By Proposition 5.2, 𝛾(𝑠 − 𝑠1, 𝜌
∨
1 × 𝜌1, 𝜓) has a pole at 𝑠 = 𝑠1 + 1 and the left-hand side

(LHS) of the equation (5.2) has no zero at 𝑠 = 𝑠1 +1. Therefore, it has a pole at 𝑠 = 𝑠1 +1.
The poles on the right-hand side (RHS) of the equation (5.2) can arise from one of the
following terms:

(i)
∏

1≤𝑖≤𝑟 ′ 𝛾(𝑠 + 𝑠′𝑖 , 𝜌′𝑖 × 𝜌1, 𝜓),
(ii)

∏
1≤𝑖≤𝑟 ′ 𝛾(𝑠 − 𝑠′𝑖 , (𝜌′𝑖)∨ × 𝜌1, 𝜓); or

(iii) 𝛾(𝑠, 𝜋02 × 𝜌1, 𝜓).

If the pole 𝑠 = 𝑠1 + 1 on the RHS originates from
∏

1≤𝑖≤𝑟 ′ 𝛾(𝑠 − 𝑠′𝑖 , (𝜌′𝑖)∨ × 𝜌1, 𝜓),
then by Proposition 5.2 (ii), wemust have 𝑠1+1 = 𝑠′

𝑖
+1 and 𝜌1 = 𝜌′

𝑖
for some 1 ≤ 𝑖 ≤ 𝑟 ′.
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Consequently, we can cancel the term

𝛾(𝑠+ 𝑠1, 𝜌1 × 𝜌, 𝜓) · 𝛾(𝑠− 𝑠1, 𝜌
∨
1 × 𝜌, 𝜓) = 𝛾(𝑠+ 𝑠′𝑖 , 𝜌′𝑖 × 𝜌, 𝜓) · 𝛾(𝑠− 𝑠′𝑖 , (𝜌′𝑖)∨× 𝜌, 𝜓)

on both sides of the equation (5.1).
For later use in the proof, we call the above argument that cancels gamma factors as

Argument A.
By applying the Argument A iteratively for 𝑠 = 𝑠𝑖 + 1, there exist some 1 ≤ 𝑡 ≤ 𝑟

and a permutation 𝔭 of {1, 2, · · · , 𝑟 ′} such that 𝑠 = 𝑠 𝑗 + 1 is a pole of
∏𝑟 ′−(𝑡−1)
𝑖=1 𝛾(𝑠 −

𝑠′
𝔭(𝑖) , (𝜌

′
𝔭(𝑖) )

∨×𝜌𝑡 , 𝜓) for 𝑗 = 1, · · · , 𝑡−1 and 𝑠 = 𝑠𝑡 +1 is not a pole of
∏𝑟 ′−(𝑡−1)
𝑖=1 𝛾(𝑠−

𝑠′
𝔭(𝑖) , (𝜌

′
𝔭(𝑖) )

∨ × 𝜌𝑡 , 𝜓). Thus, we obtain the following refined equality:[
𝑟∏
𝑖=𝑡

𝛾(𝑠 + 𝑠𝑖 , 𝜌𝑖 × 𝜌, 𝜓) · 𝛾(𝑠 − 𝑠𝑖 , 𝜌∨𝑖 × 𝜌, 𝜓)
]
· 𝛾(𝑠, 𝜋01 × 𝜌, 𝜓)

=

[
𝑟 ′−(𝑡−1)∏
𝑖=1

𝛾(𝑠 + 𝑠′
𝔭(𝑖) , 𝜌

′
𝔭(𝑖) × 𝜌, 𝜓) · 𝛾(𝑠 − 𝑠

′
𝔭(𝑖) , (𝜌

′
𝔭(𝑖) )

∨ × 𝜌, 𝜓)
]
·𝛾(𝑠, 𝜋02×𝜌, 𝜓)

(5.3)

Note that 𝑠 = 𝑠𝑡 +1 is a pole of either
∏𝑟 ′−(𝑡−1)
𝑖=1 𝛾(𝑠+ 𝑠′

𝔭(𝑖) , 𝜌
′
𝔭(𝑖) × 𝜌𝑡 , 𝜓) or 𝛾(𝑠, 𝜋02 ×

𝜌𝑡 , 𝜓).
If 𝑠 = 1+ 𝑠𝑡 is a pole of 𝛾(𝑠, 𝜋02 × 𝜌𝑡 , 𝜓), then Proposition 5.2 (iv) implies that 𝑠𝑡 = 0

and 𝜌𝑡 = 𝜌∨𝑡 . Thus, 𝛾(𝑠, 𝜌𝑡 × 𝜌𝑡 , 𝜓)2 has a double pole at 𝑠 = 1, while 𝛾(𝑠, 𝜋02 × 𝜌𝑡 , 𝜓)
has a simple pole at 𝑠 = 1. Again, by putting 𝜌 = 𝜌𝑡 in the equation (5.3), we see that
there exists a 1 ≤ 𝑖 ≤ 𝑟 ′ − (𝑡 − 1) such that 𝛾(𝑠 + 𝑠′

𝔭(𝑖) , 𝜌
′
𝔭(𝑖) × 𝜌𝑡 , 𝜓) has a pole at

𝑠 = 1, which implies that 𝑠′
𝔭(𝑖) = 0 and 𝜌𝑡 = (𝜌′

𝔭(𝑖) )
∨. Therefore, if 𝑠 = 1 + 𝑠𝑡 is a pole

of 𝛾(𝑠, 𝜋02 × 𝜌𝑡 , 𝜓), then we can cancel out 𝛾(𝑠 + 𝑠𝑡 , 𝜌𝑡 × 𝜌, 𝜓) · 𝛾(𝑠− 𝑠𝑡 , 𝜌∨𝑡 × 𝜌, 𝜓) =
𝛾(𝑠+𝑠′

𝔭(𝑖) , 𝜌
′
𝔭(𝑖)×𝜌, 𝜓) ·𝛾(𝑠−𝑠

′
𝔭(𝑖) , (𝜌

′
𝔭(𝑖) )

∨×𝜌, 𝜓) on both sides of the equation (5.3).
Similarly, for later use in the proof, in case 𝑠 is a pole of 𝛾(𝑠, 𝜋02 × 𝜌𝑡 , 𝜓), we call the

above argument that cancels gamma factors as Argument B.
By applying Arguments A and B iteratively, we eventually obtain the following

equality:[
𝑟∏
𝑖=𝑡1

𝛾(𝑠 + 𝑠𝑖 , 𝜌𝑖 × 𝜌, 𝜓) · 𝛾(𝑠 − 𝑠𝑖 , 𝜌∨𝑖 × 𝜌, 𝜓)
]
· 𝛾(𝑠, 𝜋01 × 𝜌, 𝜓)

=

[
𝑟 ′−(𝑡1−1)∏

𝑖=1
𝛾(𝑠 + 𝑠′

𝔭1 (𝑖) , 𝜌
′
𝔭1 (𝑖) × 𝜌, 𝜓) · 𝛾(𝑠 − 𝑠

′
𝔭1 (𝑖) , (𝜌

′
𝔭1 (𝑖) )

∨ × 𝜌, 𝜓)
]
·𝛾(𝑠, 𝜋02×𝜌, 𝜓)

(5.4)

for some 𝑡 ≤ 𝑡1 ≤ 𝑟 and a permutation 𝔭1 of {1, 2, · · · , 𝑟 ′} such that 𝑠 = 1 + 𝑠𝑡1 is not a
pole of

∏𝑟 ′−(𝑡1−1)
𝑖=1 𝛾(𝑠 − 𝑠′

𝔭1 (𝑖) , (𝜌
′
𝔭1 (𝑖) )

∨ × 𝜌𝑡1 , 𝜓) and 𝛾(𝑠, 𝜋02 × 𝜌𝑡1 , 𝜓).
Since 𝑠 = 1 + 𝑠𝑡1 is a pole of 𝛾(𝑠 − 𝑠𝑡1 , 𝜌∨𝑡1 × 𝜌𝑡1 , 𝜓), it follows that the RHS of the

equation (5.4) with 𝜌 = 𝜌𝑡1 has a pole at 𝑠 = 1+𝑠𝑡1 . By our choice of 𝑡1, itmust be a pole of∏𝑟 ′−(𝑡1−1)
𝑖=1 𝛾(𝑠+ 𝑠′

𝔭1 (𝑖) , 𝜌
′
𝔭1 (𝑖) × 𝜌𝑡1 , 𝜓). By Proposition 5.2, we have 1+ 𝑠𝑡1 = 1− 𝑠′

𝔭1 (𝑖1 )
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and 𝜌𝑡1 = (𝜌′
𝔭1 (𝑖1 ) )

∨ for some 1 ≤ 𝑖1 ≤ 𝑟 ′ − (𝑡1 − 1). Therefore, 𝑠𝑡1 = 𝑠′
𝔭1 (𝑖1 ) = 0. If

𝑠′
𝔭1 (𝑘 ) > 0 for some 1 ≤ 𝑘 ≤ 𝑟 ′ − (𝑡1 − 1), then the LHS of the equation (5.4) with
𝜌 = 𝜌′

𝔭1 (𝑘 ) has a pole at 𝑠 = 1+ 𝑠′
𝔭1 (𝑘 ) . However, this is impossible because 𝑠𝑡1 = 𝑠𝑡1+1 =

· · · = 𝑠𝑟 = 0. Therefore, 𝑠′
𝔭1 (𝑖) = 0 for all 1 ≤ 𝑖 ≤ 𝑟 ′ − (𝑡1 − 1) and we have:[

𝑟∏
𝑖=𝑡1

𝛾(𝑠, 𝜌𝑖 × 𝜌, 𝜓) · 𝛾(𝑠, 𝜌∨𝑖 × 𝜌, 𝜓)
]
· 𝛾(𝑠, 𝜋01 × 𝜌, 𝜓)

=

[
𝑟 ′−(𝑡1−1)∏

𝑖=1
𝛾(𝑠, 𝜌′

𝔭1 (𝑖) × 𝜌, 𝜓) · 𝛾(𝑠, (𝜌
′
𝔭1 (𝑖) )

∨ × 𝜌, 𝜓)
]
· 𝛾(𝑠, 𝜋02 × 𝜌, 𝜓). (5.5)

Since 𝜌𝑡1 = (𝜌′
𝔭1 (𝑖1 ) )

∨, we can remove 𝛾(𝑠, 𝜌𝑡1 × 𝜌, 𝜓) · 𝛾(𝑠, 𝜌∨𝑡1 ×
𝜌, 𝜓) = 𝛾(𝑠, 𝜌′

𝔭1 (𝑖) × 𝜌, 𝜓) · 𝛾(𝑠, (𝜌′
𝔭1 (𝑖) )

∨ × 𝜌, 𝜓) on both sides of
the equation (5.5). In this way, applying Arguments A, B, and the above
argument, we can cancel out

[∏𝑟
𝑖=𝑡1 𝛾(𝑠, 𝜌𝑖 × 𝜌, 𝜓) · 𝛾(𝑠, 𝜌

∨
𝑖
× 𝜌, 𝜓)

]
in[∏𝑟 ′−(𝑡1−1)

𝑖=1 𝛾(𝑠, 𝜌′
𝔭1 (𝑖) × 𝜌, 𝜓) · 𝛾(𝑠, (𝜌

′
𝔭1 (𝑖) )

∨ × 𝜌, 𝜓)
]
and we obtain

𝛾(𝑠, 𝜋01 × 𝜌, 𝜓) =

[
𝑟 ′−𝑟∏
𝑖=1

𝛾(𝑠, 𝜌′
𝔭2 (𝑖) × 𝜌, 𝜓) · 𝛾(𝑠, (𝜌

′
𝔭2 (𝑖) )

∨ × 𝜌, 𝜓)
]
· 𝛾(𝑠, 𝜋02 × 𝜌, 𝜓)

(5.6)
for some permutation 𝔭2 of {1, 2, · · · , 𝑟 ′}. If 𝑟 ′ > 𝑟 , then we put 𝜌 = 𝜌′

𝔭2 (1) in the
equation (5.6). It follows that 𝛾(𝑠, (𝜌′

𝔭2 (1) )
∨ × 𝜌′

𝔭2 (1) , 𝜓) has a pole at 𝑠 = 1, and hence
𝛾(𝑠, 𝜋01 × 𝜌′𝔭2 (1) , 𝜓) must also have a pole at 𝑠 = 1, which implies 𝜌′

𝔭2 (1) = (𝜌′
𝔭2 (1) )

∨.
However, while the RHS of the equation (5.6) with 𝜌 = 𝜌′

𝔭2 (1) has at least double pole at
𝑠 = 1, 𝛾(𝑠, 𝜋01 × 𝜌′𝔭2 (1) , 𝜓) has at most a simple pole at 𝑠 = 1. This is a contradiction,
and thus we conclude that 𝑟 ′ = 𝑟 , completing the proof. ■

Now we are ready to prove the following main theorem.

Theorem 5.4 Let 𝜋1 and 𝜋2 be generic irreducible representations of G𝑛 (𝐹) with the same
central character and the same 𝜇±

𝑐′-genericity. Suppose that

𝛾(𝑠, 𝜋1 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋2 × 𝜌, 𝜓)

holds for any irreducible supercuspidal representation 𝜌 of GL𝑡 (𝐹) with 1 ≤ 𝑡 ≤ 𝑛. Then

𝜋1 ≃ 𝜋2.

Proof Suppose that tempered supports of 𝜋1 and 𝜋2 are as in Proposition 5.3. Then
the central characters of 𝜋01 and 𝜋02 are same. By Theorem 5.1 and Proposition 5.3, we
have 𝜋01 ≃ 𝜋02 and both 𝜋1 and 𝜋2, therefore, are 𝜇±𝑐′-generic irreducible constituents
of the induced representation

IndG𝑛 (𝐹 )
Q (𝐹 ) (𝜌1 | det |𝑠1

𝐹
⊗ · · · ⊗ 𝜌𝑟 | det |𝑠𝑟

𝐹
⊗ 𝜋01).
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Since such induced representation has a unique 𝜇±
𝑐′-generic constituent, it follows that

𝜋1 ≃ 𝜋2. ■

The following theorem is an easy consequence of Theorem 5.4.

Theorem 5.5 Let 𝜋1 and 𝜋2 be 𝜇𝑐′-generic irreducible representations of H𝑛 (𝐹) with the
same central character. Suppose that

𝛾(𝑠, 𝜋1 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋2 × 𝜌, 𝜓)

holds for any irreducible supercuspidal representation 𝜌 of GL𝑡 (𝐹) with 1 ≤ 𝑡 ≤ 𝑛. Then
[𝜋1] = [𝜋2].

Proof By Lemma 2.2, we can take 𝜋1 and 𝜋2 an irreducible 𝜇+𝑐′-generic constituent of
IndG𝑛 (𝐹 )

H𝑛 (𝐹 ) (𝜋1) and IndG𝑛 (𝐹 )
H𝑛 (𝐹 ) (𝜋2), respectively. Then by the definition of the 𝛾-factors

for G𝑛 × GL𝑡 , we have

𝛾(𝑠, 𝜋1 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋1 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋2 × 𝜌, 𝜓) = 𝛾(𝑠, 𝜋2 × 𝜌, 𝜓).

Due to Theorem 5.4, 𝜋1 ≃ 𝜋2 and hence by Proposition 2.1, we have [𝜋1] = [𝜋2]. ■

6 Applications

By applying our theorem directly, we obtain the weak rigidity theorems for O(𝑉) (A)
and SO(𝑉) (A), respectively. The discussion in this section closely parallels that of [35,
Theorem 5.3]. In this section, let 𝐿 be a number field andA its adéle ring. Let𝑉 be a 2𝑛-
dimensional symmetric space over 𝐿 such that O(𝑉) is quasi-split. As before, we use the
notation G𝑛 B O(𝑉) and H𝑛 B SO(𝑉).

Let 𝜋 = ⊗𝑣𝜋𝑣 and Π = ⊗𝑣Π𝑣 be irreducible automorphic representations of
SO(𝑉) (A) and GL2𝑛 (A), respectively. Then we say that Π is a weak functorial lift of 𝜋
ifΠ𝑣 is the local Langlands functorial lift of 𝜋𝑣 for all archimedean places and for almost
all places 𝑣 of 𝐿, where 𝜋𝑣 and Π𝑣 are unramified.

We are now ready to prove the weak rigidity theorem for G𝑛.

Theorem 6.1 (Weak rigidity theorem for O(𝑉)) Let 𝜒̃1, 𝜒̃2 be generic characters of
Ũ(𝐿)\Ũ(A) such that 𝜒̃1 |U(A)= 𝜒̃2 |U(A) . Let 𝜋̃ = ⊗𝑣 𝜋̃𝑣 (resp. 𝜋̃′ = ⊗𝑣 𝜋̃′𝑣 ) be an irre-
ducible cuspidal globally 𝜒̃1-generic (resp. 𝜒̃2-generic) automorphic representation of G𝑛 (A).
If 𝜋̃𝑣 ≃ 𝜋̃′𝑣 or 𝜋̃𝑣 ≃ 𝜋̃′𝑣 ⊗ det for almost all 𝑣, then 𝜋̃𝑣 ≃ 𝜋̃′𝑣 or 𝜋̃𝑣 ≃ 𝜋̃′𝑣 ⊗ det for all places
𝑣 of 𝐿.

Proof Put 𝜒 = 𝜒̃1 |U(A)= 𝜒̃2 |U(A) . Let 𝜋 and 𝜋′ be irreducible cuspidal globally 𝜒-
generic automorphic representations of H𝑛 (A) that appears in 𝜋̃ |H𝑛 (A) and 𝜋̃′ |H𝑛 (A) ,
respectively (such 𝜋, 𝜋′ exist by Lemma 2.3.) The main result in [15] implies that there
exists the weak functorial lift Π (resp. Π′) of 𝜋 (resp. 𝜋′) to GL2𝑛 (A). The assumption
and Definition 2.4 imply that for almost all places 𝑣 we have

𝛾(𝑠,Π𝑣×𝜌, 𝜓) = 𝛾(𝑠, 𝜋𝑣×𝜌, 𝜓) = 𝛾(𝑠, 𝜋̃𝑣×𝜌, 𝜓) = 𝛾(𝑠, 𝜋̃′𝑣×𝜌, 𝜓) = 𝛾(𝑠, 𝜋′𝑣×𝜌, 𝜓) = 𝛾(𝑠,Π′
𝑣×𝜌, 𝜓)
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for any irreducible supercuspidal representation 𝜌 of GL𝑡 (𝐿𝑣) with 1 ≤ 𝑡 ≤ 𝑛. This
implies Π𝑣 ≃ Π′

𝑣 for almost all places 𝑣 due to the local converse theorem for GL2𝑛
([13], [31]).

Then by the strongmultiplicity one theorem for general linear groups, it follows that
Π ≃ Π′ and thusΠ𝑣 ≃ Π′

𝑣 for all places 𝑣 of 𝐿. Then applying the local-to-global argu-
ment again exactly as in the proof of [14, Corollary 4] together with [14, Propositions
4.2 and 4.3], we have for arbitrary place 𝑣 of 𝐿,

𝛾(𝑠, 𝜋̃𝑣×𝜌, 𝜓) = 𝛾(𝑠, 𝜋𝑣×𝜌, 𝜓) = 𝛾(𝑠,Π𝑣×𝜌, 𝜓) = 𝛾(𝑠,Π′
𝑣×𝜌, 𝜓) = 𝛾(𝑠, 𝜋′𝑣×𝜌, 𝜓) = 𝛾(𝑠, 𝜋̃′𝑣×𝜌, 𝜓)

for any irreducible supercuspidal representation 𝜌 of GL𝑡 (𝐿𝑣) with 1 ≤ 𝑡 ≤ 𝑛. By the
assumption, 𝜋̃𝑣 and 𝜋̃′𝑣 are 𝜇+𝑐′-generic or 𝜇

−
𝑐′-generic for some 𝑐′ ∈ 𝐿×

𝑣 . Theorem 5.5
implies that 𝜋̃𝑣 ≃ 𝜋̃′𝑣 or 𝜋̃𝑣 ≃ 𝜋̃′𝑣 ⊗det. (Note that local functorial lifting at archimedean
place is injective for generic representations.) ■

The weak rigidity theorem for SO(𝑉) is a consequence of the weak rigidity theorem
for O(𝑉).

Corollary 6.2 (Weak rigidity theorem for SO(𝑉)) Let 𝜒 be a generic character of
U(𝐿)\U(A). Let 𝜋 = ⊗𝑣𝜋𝑣 and 𝜋′ = ⊗𝑣𝜋′𝑣 be irreducible cuspidal globally 𝜒-generic auto-
morphic representations of H𝑛 (A). If [𝜋𝑣] = [𝜋′𝑣] for almost all 𝑣, then [𝜋𝑣] = [𝜋′𝑣] for all
places 𝑣 of 𝐿.

Proof There are generic characters 𝜒̃1, 𝜒̃2 of Ũ(𝐿)\Ũ(A) such that 𝜒̃1 |U(A)=
𝜒̃2 |U(A)= 𝜒 and globally 𝜒̃1-generic and 𝜒̃2-generic cuspidal representations 𝜋̃, 𝜋̃′ of
G𝑛 (A) such that 𝜋 and 𝜋′ appear in 𝜋̃ |H𝑛 (A) and 𝜋̃′ |H𝑛 (A) , respectively (such 𝜋̃, 𝜋′
exist by Lemma 2.4.) For any finite place 𝑣 of 𝐿 such that [𝜋𝑣] = [𝜋′𝑣] , we have
IndG𝑛 (𝐿𝑣 )

H𝑛 (𝐿𝑣 ) 𝜋𝑣 ≃ IndG𝑛 (𝐿𝑣 )
H𝑛 (𝐿𝑣 ) 𝜋

′
𝑣 by Proposition 2.1. Since 𝜋̃𝑣 and 𝜋̃′𝑣 are irreducbile

constituent of IndG𝑛 (𝐿𝑣 )
H𝑛 (𝐿𝑣 ) 𝜋𝑣 and IndG𝑛 (𝐿𝑣 )

H𝑛 (𝐿𝑣 ) 𝜋
′
𝑣 , respectively, we see that

𝜋̃𝑣 ≃ 𝜋̃′𝑣 or 𝜋̃𝑣 ≃ 𝜋̃′𝑣 ⊗ det .

Therefore, since [𝜋𝑣] = [𝜋′𝑣] for almost all places of 𝐿, we have 𝜋̃𝑣 ≃ 𝜋̃′𝑣 or 𝜋̃𝑣 ≃
𝜋̃′𝑣 ⊗ det for almost all places 𝑣 of 𝐿, and hence by the weak rigidity theorem for O(𝑉),
𝜋̃𝑣 ≃ 𝜋̃′𝑣 or 𝜋̃𝑣 ≃ 𝜋̃′𝑣 ⊗ det for all places 𝑣 of 𝐿. Since 𝜋𝑣 and 𝜋′𝑣 are an irreducible
constituent of the restriction of 𝜋̃𝑣 and 𝜋̃𝑣 ′ to H𝑛 (𝐿𝑣), respectively, by Proposition 2.1,
we conclude that [𝜋𝑣] = [𝜋′𝑣] for all places 𝑣 of 𝐿. This completes the proof. ■

Remark 6.3 Note that there is direct proof of Theorem 6.1 without using the restric-
tion method. We can directly apply the arguments of the proof of Theorem 6.1 to the
case of H𝑛 (𝐹). Namely, using the existence of the weak functorial lift for H𝑛 (A), the
multiplicity one theorem for GL2𝑛, and the local-to-global argument, we can prove the
weak rigidity for SO(𝑉).
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A Computation of the twisted Jacquet module of the Weil
representation

In this section, we compute the twisted Jacquetmodule of theWeil representationwhich
is needed in the proof of Proposition 3.3. Write 𝑉 = 𝑉𝑛 and define a symplectic form
( , ) on𝑉 ⊗𝑊𝑚 as follows:

(𝑣1 ⊗ 𝑤1, 𝑣2 ⊗ 𝑤2) = ⟨𝑣1, 𝑣2⟩𝑉 · ⟨𝑤1, 𝑤2⟩𝑊𝑚
.

There is a natural embedding of G𝑛× J𝑚 into Sp(𝑉 ⊗𝑊𝑚). By pulling back the action of
S̃p(𝑉 ⊗𝑊𝑛) on the Schrödinger model of the Weil representation to G𝑛 × J𝑚, we have
an action 𝜔𝜓,𝑉,𝑊𝑚

of G𝑛 (𝐹) × J𝑚 (𝐹) on the Schwartz-Bruhat function space 𝑆(𝑉 ⊗
𝑌 ∗
𝑚) (𝐹) on (𝑉 ⊗ 𝑌 ∗

𝑚) (𝐹). To describe it, let P′ = M′N′ be a parabolic subgroup of J𝑚
stabilizing𝑌𝑚 with Levi subgroup M′. Then

M′ ≃ GL(𝑌𝑚) and N′ ≃ {𝛼 ∈ Hom(𝑌 ∗
𝑚, 𝑌𝑚) | 𝛼∗ = −𝛼},

where 𝛼∗ is the element in Hom(𝑌 ∗
𝑚, 𝑌𝑚) satisfying

⟨𝛼𝑦1, 𝑦2⟩ = ⟨𝑦1, 𝛼
∗𝑦2⟩, for all 𝑦1, 𝑦2 ∈ 𝑌 ∗

𝑚.

Let𝑚′ : GL(𝑌𝑚) → M′ be the isomorphismbetweenGL(𝑌𝑚) andM′. For 𝑎 ∈ GL(𝑌𝑚),
write 𝑎∗ the element in GL(𝑌 ∗

𝑚) satisfying

⟨𝑎𝑦, 𝑦∗⟩𝑊𝑚
= ⟨𝑦, 𝑎∗𝑦∗⟩𝑊𝑚

, for all 𝑦 ∈ 𝑌𝑚, 𝑦∗ ∈ 𝑌 ∗
𝑚.

Then the action of G𝑛 (𝐹) × P′ (𝐹) on 𝜔𝜓,𝑉𝑛 ,𝑊𝑚
is described as follows:

• 𝜔𝜓,𝑉,𝑊𝑚
(𝑔, 1)𝜙(𝑣) = 𝜙(𝑔−1 · 𝑣) for 𝑔 ∈ G𝑛 (𝐹),

• 𝜔𝜓,𝑉,𝑊𝑚
(1, 𝑚′ (𝑎))𝜙(𝑣) = 𝜒𝑉 (det(𝑎)) · | det(𝑎) |𝑛 ·𝜙(𝑎∗ ·𝑣) for 𝑎 ∈ GL(𝑌𝑚) (𝐹),

• 𝜔𝜓,𝑉,𝑊𝑚
(1, 𝑛)𝜙(𝑣) = 𝜓( 1

2 (𝑛 · 𝑣, 𝑣))𝜙(𝑣) for 𝑛 ∈ N′ (𝐹),

where 𝑣 ∈ (𝑉 ⊗ 𝑌 ∗
𝑚) (𝐹).

Using this action, we can prove the following proposition.
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Proposition A.1 Let 𝜋̃ ∈ Irr(G𝑛 (𝐹)). If Θ𝜓,𝑉,𝑊𝑚
(𝜋̃) is non-zero, then the cen-

tral characters 𝑤𝜋 and 𝑤 𝜃𝜓,𝑉,𝑊𝑚 (𝜋 ) of 𝜋̃ and 𝜃𝜓,𝑉,𝑊𝑚
(𝜋̃), respectively, are related as

𝑤 𝜃𝜓,𝑉,𝑊𝑚 (𝜋 ) = 𝑤𝜋 · 𝜒𝑚𝑉 .

Proof In case char(𝐹) = 0, it is stated in [19, Section 5.2]. However, since we were not
able to find a reference for char(𝐹) = 𝑝 ≠ 2 case, we provide the proof which works
for char(𝐹) ≠ 2 cases.

Since the small theta lift 𝜃𝜓,𝑉,𝑊𝑚
(𝜋̃) of 𝜋̃ is nonzero, we have

HomG𝑛 (𝐹 )×J𝑚 (𝐹 ) (𝜔𝜓,𝑉,𝑊𝑚
, 𝜋̃ ⊗ 𝜃𝜓,𝑉,𝑊𝑚

(𝜋̃)) ≠ 0. Choose a nonzero element
𝑙 ∈ HomG𝑛 (𝐹 )×J𝑚 (𝐹 ) (𝜔𝜓,𝑉,𝑊𝑚

, 𝜋̃ ⊗ 𝜃𝜓,𝑉,𝑊𝑚
(𝜋̃)). Denote by 𝐼𝑉 and 𝐼𝑊𝑚

the identity
element of G𝑛 (𝐹) and J𝑚 (𝐹), respectively. From the above action of G𝑛 (𝐹) × P′ (𝐹)
on 𝜔𝜓,𝑉,𝑊𝑚

, we have

(𝜔𝜓,𝑉,𝑊𝑚
(−𝐼𝑉 ,−𝐼𝑊𝑚

)·𝜙) (𝑣) = (𝜒𝑉 (−1))𝑚·𝜙(𝑣), for 𝜙 ∈ 𝜔𝜓,𝑉,𝑊𝑚
, 𝑣 ∈ (𝑉⊗𝑌 ∗

𝑚) (𝐹).

On the other hand, for a pure tensor 𝑓1 ⊗ 𝑓2 ∈ 𝜋̃ ⊗ 𝜃𝜓,𝑉,𝑊𝑚
(𝜋̃), (𝜋̃ ⊗

𝜃𝜓,𝑉,𝑊𝑚
(𝜋̃)) (−𝐼𝑉 ,−𝐼𝑊𝑚

) ( 𝑓1 ⊗ 𝑓2) = 𝜔𝜋 (−𝐼𝑉 ) · 𝜔𝜃𝜓,𝑉,𝑊𝑚 (𝜋 ) (−𝐼𝑊𝑚
) · ( 𝑓1 ⊗ 𝑓2).

Since every element of 𝜋̃⊗𝜃𝜓,𝑉,𝑊𝑚
(𝜋̃) is a sumof pure tensors, for an arbitrary element

𝑓 ∈ 𝜋̃ ⊗ 𝜃𝜓,𝑉,𝑊𝑚
(𝜋̃), we have

(𝜋̃ ⊗ 𝜃𝜓,𝑉,𝑊𝑚
(𝜋̃)) (−𝐼𝑉 ,−𝐼𝑊𝑚

) · 𝑓 = 𝜔𝜋 (−𝐼𝑉 ) · 𝜔𝜃𝜓,𝑉,𝑊𝑚 (𝜋 ) (−𝐼𝑊𝑚
) · 𝑓 .

Therefore, for any 𝜙 ∈ 𝜔𝜓,𝑉,𝑊𝑚
such that 𝑙 (𝜙) ≠ 0, we have

(𝜒𝑉 (−1))𝑚·𝑙 (𝜙) = 𝑙 ((−𝐼𝑉 ,−𝐼𝑊𝑚
)·𝜙) = (−𝐼𝑉 ,−𝐼𝑊𝑚

)·𝑙 (𝜙) = 𝜔𝜋 (−𝐼𝑉 )·𝜔𝜃𝜓,𝑉,𝑊𝑚 (𝜋 ) (−𝐼𝑊𝑚
)·𝑙 (𝜙).

Since the center of G𝑛 and J𝑚 are generated by−𝐼𝑉 and−𝐼𝑊𝑚
, respectively, it completes

the proof.
■

Let Z′ be the maximal unipotent subgroup of M′. Using a fixed basis {𝑤∗
1, · · · , 𝑤∗

𝑚}
of𝑌 ∗

𝑚, we may regard𝑉 ⊗ 𝑌 ∗
𝑚 as𝑉𝑚. Using the basis {𝑤1, · · · , 𝑤𝑚} of𝑌𝑚, we can write

Z′ as upper triangular matrix group

ℨ𝑚 =


©­­­­«

1 ∗ · · · ∗
0 1 · · · ∗
... 0

. . .
...

0 · · · 0 1

ª®®®®¬
∈ GL𝑚


through an isomorphism𝑚′. We denote by M𝑚×𝑚 the (𝑚 ×𝑚) matrix group. Similarly
using the basis {𝑤1, · · · , 𝑤𝑚} of𝑌𝑚 and {𝑤∗

𝑚, · · · , 𝑤∗
1} of𝑌 ∗

𝑚, we consider N′ as a sub-
group𝔖𝑚 of M𝑚×𝑚 and let 𝑛′ : 𝔖𝑚 → N′ be the isomorphism between𝔖𝑚 and N′.
We can then describe the action of Z′ and N′ on 𝜔𝜓,𝑉,𝑊𝑚

in terms of ℨ𝑚 and 𝔖𝑚 as
follows:

(𝜔𝜓,𝑉,𝑊𝑚
(1, 𝑚′ (𝑧))𝜙) (𝑣1, · · · , 𝑣𝑚) = 𝜙((𝑣1, · · · , 𝑣𝑚) · 𝑧) for 𝑧 ∈ ℨ𝑚 (A.1)

(𝜔𝜓,𝑉,𝑊𝑚
(1, 𝑛′ (𝑠))𝜙) (𝑣1, · · · , 𝑣𝑚) = 𝜓( 1

2
tr(𝐺𝑟 (v) · 𝑠 ·𝜛𝑚)𝜙(𝑣1, · · · , 𝑣𝑚) for 𝑠 ∈ 𝔖𝑚,

(A.2)
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where v = (𝑣1, 𝑣2, . . . , 𝑣𝑚),𝐺𝑟 (v) = (⟨𝑣𝑖 , 𝑣 𝑗⟩𝑉𝑚 ) and𝜛𝑚 =
©­­«

0 1

. .
.

1 0

ª®®¬ ∈ GL𝑚.

Inspired by the proof of [24, Proposition 2.4, Corollary 2.5], we now prove the fol-
lowing theorem, which is crucial when we generalize the converse proposition of [24,
Corollary 2.5] to the case of quasi-split orthogonal groups (Proposition 3.3). We also
note that [21, Proposition 9.2]mentions an analogous statement formetaplectic and odd
orthogonal groups when char(𝐹) = 0.

Theorem A.2 Let (𝜔𝜓,𝑉𝑛 ,𝑊𝑛
)U′ , (𝜇′−𝑐′ )

−1 be the twisted Jacquet module of 𝜔𝜓,𝑉𝑛 ,𝑊𝑛
with

respect to U′ and (𝜇′−𝑐′ )−1. Then, we have

(𝜔𝜓,𝑉𝑛 ,𝑊𝑛
)U′ , (𝜇′−𝑐′ )

−1 � indG𝑛

Ũ
(𝜇+𝑐′ ).

Proof Put

𝑉𝑐′ =

v = (𝑣1, · · · , 𝑣𝑛) ∈ 𝑉𝑛 | 𝐺𝑟 (v) = −2𝑐′
©­­«

0 · · · 0
...
...
...

0 · · · 1

ª®®¬
 ,

where𝐺𝑟 (v) = ((𝑣𝑖 , 𝑣 𝑗 )). We first claim that

(𝜔𝜓,𝑉𝑛 ,𝑊𝑛
)U′ , (𝜇′−𝑐′ )

−1 ≃ 𝑆(𝑉𝑐′ ).

Note that𝑉𝑐′ is a closed subset of𝑉𝑛. Therefore, by [8], we have the exact sequence

0 // S(𝑉𝑛\𝑉𝑐′ )− i // S(𝑉𝑛)−res // S(𝑉𝑐′ ) // 0 ,

where i is induced from the open inclusion map 𝑖 : 𝑉𝑛\𝑉𝑐′ → 𝑉𝑛 and res : S(𝑉𝑛) →
S(𝑉𝑐′ ) is the restrictionmap. Let 𝐽U′ , (𝜇′−𝑐′ )

−1 be the twisted Jacquet functorwith respect
to U′ and (𝜇′−𝑐′ )−1. Since the functor 𝐽U′ , (𝜇′−𝑐′ )

−1 is exact, we have the exact sequence

0 // 𝐽U′ , (𝜇′−𝑐′ )
−1 (S(𝑉𝑛\𝑉𝑐′ )) // 𝐽U′ , (𝜇′−𝑐′ )

−1 (S(𝑉𝑛)) // 𝐽U′ , (𝜇′−𝑐′ )
−1 (S(𝑉𝑐′ )) // 0 .

By the definition of 𝑉𝑐′ , 𝐽U′ , (𝜇′−𝑐′ )
−1 (S(𝑉𝑛\𝑉𝑐′ )) = 0 and 𝐽U′ , (𝜇′−𝑐′ )

−1 (S(𝑉𝑛)) =
S(𝑉𝑐′ ). Therefore, our first claim is proved.

Note that there is an action of G𝑛 × ℨ𝑛 on S(𝑉𝑐′ ) inherited from S(𝑉𝑛).
There is a (G𝑛×ℨ𝑛)-action on𝑉𝑐′ inherited from the left action of G𝑛× J𝑛 on𝑉 ×𝑊

as follows:

(𝑣1, , · · · , 𝑣𝑛)·(𝑔, 𝑧) = (𝑔−1𝑣1, , · · · , 𝑔−1𝑣𝑛)·𝑧, (𝑣1, · · · , 𝑣𝑛) ∈ 𝑉𝑐′ , (𝑔, 𝑧) ∈ G𝑛×ℨ𝑛.

From (A.1), for 𝑧 ∈ ℨ𝑛, (𝑣1, , · · · , 𝑣𝑛) · 𝑧 = (𝑣1, 𝑧12 · 𝑣1 + 𝑣2, · · · ,
∑𝑘−1
𝑖=1 𝑧𝑖,𝑘 ·

𝑣𝑖 + 𝑣𝑘 , · · · ,
∑𝑛−1
𝑖=1 𝑧𝑖,𝑛 · 𝑣𝑖 + 𝑣𝑛). Therefore, if 𝑣𝑘 is written as a linear

combination of 𝑣1, 𝑣2, · · · , 𝑣𝑘−1, then (𝑣1, · · · , 𝑣𝑘−1, 𝑣𝑘 , 𝑣𝑘+1, · · · , 𝑣𝑛) and
(𝑣1, · · · , 𝑣𝑘−1, 0, 𝑣𝑘+1, · · · , 𝑣𝑛) are in the same ℨ𝑛-orbit. Therefore, every ℨ𝑛-orbit in
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𝑉𝑐′ has the representative of the form

(0, · · · , 0, 𝑥1, 0, · · · , 0, 𝑥2, 0, · · · , 0, 𝑥 𝑗 , 0, · · · , 0; 𝑥) ∈ 𝑉𝑐′ ⊂ 𝑉𝑛,

for some 1 ≤ 𝑗 ≤ 𝑛 − 1 such that 𝑥𝑖 ≠ 0 for all 1 ≤ 𝑖 ≤ 𝑗 and for each 2 ≤ 𝑘 ≤
𝑗 , 𝑥𝑘 (resp. 𝑥) is not expressed as a linear combination of {𝑥𝑖}1≤𝑖<𝑘 (resp. {𝑥𝑖}1≤𝑖≤ 𝑗 ).
Furthermore, we cannot take the last element 𝑥 to be zero since if (𝑣1, 𝑣2, · · · , 𝑣𝑛) ∈
𝑉𝑐′ is such that 𝑣𝑛 is linear combination of 𝑣1, 𝑣2, · · · 𝑣𝑛−1 as 𝑣𝑛 =

∑𝑛−1
𝑖=1 𝑐𝑖𝑣𝑖 , then

⟨𝑣𝑛, 𝑣𝑛⟩ =
∑𝑛−1
𝑖=1 𝑐𝑖 ⟨𝑣𝑛, 𝑣𝑖⟩ = 0 and it contradicts that (𝑣1, 𝑣2, · · · , 𝑣𝑛) ∈ 𝑉𝑐′ . From

this, we see that {𝑥1, 𝑥2, · · · , 𝑥 𝑗−1, 𝑥 𝑗 , 𝑥} should be a linearly independent set.
By Witt extension theorem, we can choose more restrictive representatives of the

(G𝑛 × ℨ𝑛)-orbits of𝑉𝑐′ as

(0, · · · , 0, 𝑒1, 0, · · · , 0, 𝑒2, 0, · · · , 0, 𝑒 𝑗 , 0, · · · , 0; 𝑒) ∈ 𝑉𝑐′ ⊂ 𝑉𝑛.

(Here, 0 ≤ 𝑗 ≤ 𝑛 − 1 and we set 𝑒0 = 0.)
Therefore, there are finite (G𝑛×ℨ𝑛)-orbits in𝑉𝑐′ and index them by {𝑉𝑐′ (𝑖)}1≤𝑖≤𝑁

so that dim(𝑉𝑐′ (𝑖)) ≤ dim(𝑉𝑐′ ( 𝑗)) for 𝑖 ≤ 𝑗 .
Note that for each 𝑗 ≥ 1, 𝑉𝑐′ ( 𝑗) is a closed subset of

⋃
𝑖≥ 𝑗 𝑉𝑐′ (𝑖) and therefore, we

have the exact sequence

0 // S(⋃𝑖≥ 𝑗+1𝑉𝑐′ (𝑖)) // S(⋃𝑖≥ 𝑗 𝑉𝑐′ (𝑖)) // S(𝑉𝑐′ ( 𝑗)) // 0 .
(A.3)

We claim that the Schwartz space on each orbit 𝑉𝑐′ ( 𝑗) whose representative is of the
form

(0, · · · , 0, 𝑒1, 0, · · · , 0, 𝑒2, 0, · · · , 0, 𝑒𝑘 , 0, · · · , 0; 𝑒), for 𝑘 < 𝑛 − 1

is zero.
Let 𝑉𝑐′ ( 𝑗) be an orbit in 𝑉𝑐′ whose representative is v̄ =

(0, · · · , 0, 𝑒1, 0, · · · , 0, 𝑒2, 0, · · · , 0, 𝑒𝑘 , 0, · · · , 0; 𝑒) for some 𝑘 < 𝑛 − 1. Suppose
that𝑉𝑐′ ( 𝑗) is non-zero and put 𝑅v̄ the stabilizer of v̄ in G𝑛 × ℨ𝑛. Consider a map

Φv̄ : S(𝑉𝑐′ ( 𝑗)) → indG𝑛×ℨ𝑛

𝑅v̄
I, 𝜑 ↦→ Φv̄ (𝜑),

whereΦv̄ is defined by

Φv̄ (𝜑) (𝑔, 𝑧) B (𝜔𝜓,𝑉,𝑊𝑛
(𝑔, 𝑧)𝜑) (v̄).

It is easy to check thatΦv̄ is a (G𝑛×ℨ𝑛)-isomorphism. Since 𝑘 < 𝑛−1, there is a simple
root subgroup 𝐽 of ℨ𝑛 such that 1 × 𝐽 is a subgroup of 𝑅v̄. However, 𝜇′𝑐′ is non-trivial
on 𝐽 and it leads to a contradiction.

Therefore, by applying the exact sequence (A.3) repeatedly, we have

S(𝑉𝑐′ ) ≃ S(𝑉𝑐′ ( 𝑗0)),

where𝑉𝑐′ ( 𝑗0) has the representative v̄′ = (𝑒1, · · · , 𝑒𝑛−1; 𝑒). Let 𝑅v̄′ be the stabilizer of
v̄′ in G𝑛 × ℨ𝑛. Then,
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𝑅v̄′ =

{(( ©­­­«
𝑧 𝑎 ∗ ∗

1 0 ∗
1 𝑎′

(𝑧∗)−1

ª®®®¬ , 𝜖
)
,

©­­­«
𝑧 𝑎

1
1 𝑎′

(𝑧∗)−1

ª®®®¬
)
∈ G𝑛 × J𝑛 |

}
,

where we described the elements of G𝑛 amd J𝑛 using the basis
{𝑒1, · · · , 𝑒𝑛−1, 𝑒, 𝑒

′, 𝑒∗𝑛−1, · · · , 𝑒∗1} and {𝑤1, · · · , 𝑤𝑛, 𝑤∗
𝑛, · · · , 𝑤∗

1}, respectively.

Then for 𝑢̃ =
( ©­­­«
𝑧 𝑎 ∗ ∗

1 0 ∗
1 𝑎′

𝑧′

ª®®®¬ , 𝜖
)
∈ Ũ and 𝜙 ∈ S(𝑉𝑐′ ( 𝑗0)) ≃ indG𝑛×ℨ𝑛

𝑅v̄′
I, we have

𝜙(𝑢̃ ·𝑔, 1) = 𝜓(𝑧1,2+· · ·+ 𝑧𝑛−2,𝑛−1+𝑎𝑛−1)𝜙(𝑔, 1) = 𝜇+𝑐′ · (𝑢̃) ·𝜙(𝑔, 1) for all 𝑔 ∈ G𝑛.

(Here, we view 𝜙 as a function on G𝑛 × ℨ𝑛 viaΦv̄′ .) This proves Theorem A.2. ■

B Non-vanishing and cuspidality of global theta lifts

Let 𝐿 be a global field of characteristic zero or 𝑝 not equal to 2 and A be its adele ring.
Let (V𝑛, ⟨ , ⟩V𝑛

) be a 2𝑛-dimensional orthogonal space over 𝐿. LetH be the hyperbolic
plane over 𝐿, i.e. the split symplectic space of dimension 2, and we consider the Witt
towerW𝑘 = H⊕𝑘 .WriteW𝑘 = 𝑌𝑘⊕𝑌 ∗

𝑘
, where𝑌𝑘 and𝑌 ∗

𝑘
aremaximal isotropic subspaces

ofW𝑘 which are dual with respect to the symplectic form ⟨ , ⟩W𝑘
ofW𝑘 satisfying 0 =

𝑌0 ⊂ 𝑌1 ⊂ · · · ⊂ 𝑌𝑘 and 0 = 𝑌 ∗
0 ⊂ 𝑌 ∗

1 ⊂ · · · ⊂ 𝑌 ∗
𝑘
. As in the local case, we use the same

symbol G𝑛 (resp. J𝑘 ) to denote the isometric group ofV𝑛 (resp.W𝑘 .)
In this section, we state theorem and lemmas concerning the non-vanishing and

cuspidality of global theta lifts from G𝑛 (A) to J𝑚 (A).
We can define the global Weil representation 𝜔𝜓,V𝑛 ,W𝑚

:=
⊗

𝑣 𝜔𝜓𝑣 ,V𝑛,𝑣 ,W𝑚,𝑣
of

G𝑛 (A) × J𝑚 (A). Then it is realized in the Schwartz-Bruhat space 𝑆(V𝑛 ⊗ 𝑌 ∗
𝑚) (A) =⊗

𝑣 𝑆(V𝑛,𝑣 ⊗ 𝑌 ∗
𝑚,𝑣) (𝐿𝑣). Define a symplectic form ( , ) onV𝑛 ⊗W𝑚 as follows;

(𝑣1 ⊗ 𝑤1, 𝑣2 ⊗ 𝑤2) = ⟨𝑣1, 𝑣2⟩V𝑛
· ⟨𝑤1, 𝑤2⟩W𝑚

.

Let P′ = N′M′ be a parabolic subgroup of J𝑚 stabilizing 𝑌𝑚 with Levi subgroup M′.
Then

M′ ≃ GL(𝑌𝑚) and N′ ≃ {𝛼 ∈ Hom(𝑌 ∗
𝑚, 𝑌𝑚) | 𝛼 ∈ Hom(𝑌 ∗

𝑚, 𝑌𝑚) | 𝛼∗ = −𝛼},

where 𝛼∗ is the element in Hom(𝑌 ∗
𝑚, 𝑌𝑚) satisfying

⟨𝑎𝑦1, 𝑦2⟩ = ⟨𝑦1, 𝑎
∗𝑦2⟩, for all 𝑦1, 𝑦2 ∈ 𝑌 ∗

𝑚.

Then from the action of the (local) Weil representation, we have the action of G𝑛 (A) ×
N′ (A) on 𝜔𝜓,V𝑛 ,W𝑚

as follows:

• 𝜔𝜓,V𝑛 ,W𝑚
(𝑔, 1)𝜙(𝑣) = 𝜙(𝑔−1 · 𝑣) for 𝑔 ∈ G𝑛 (A)

• 𝜔𝜓,V𝑛 ,W𝑚
(1, 𝑛)𝜙(𝑣) = 𝜓( 1

2 (𝑛 · 𝑣, 𝑣))𝜙(𝑣) for 𝑛 ∈ N′ (A),

where 𝑣 ∈ (V𝑛 ⊗ 𝑌 ∗
𝑚) (A).
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There is an equivariant map 𝜃𝜓,V𝑛 ,W𝑚
: 𝑆((V𝑛 ⊗ 𝑌 ∗

𝑚) (A)) → A(G𝑛 × J𝑚) given
by the theta series

𝜃𝜓,V𝑛 ,W𝑚
(𝜙) (𝑔, ℎ) :=

∑︁
𝑦∈ (V𝑛⊗𝑌 ∗

𝑚 ) (𝐿)
𝜔𝜓,V𝑛 ,W𝑚

(𝜙) (𝑔, ℎ) (𝑦).

For an automorphic form 𝑓 of G𝑛 (A), put

𝜃𝜓,V𝑛 ,W𝑚
(𝜙, 𝑓 ) (ℎ) =

∫
G𝑛 (𝐿)\G𝑛 (A)

𝜃𝜓,V𝑛 ,W𝑚
(𝜙; 𝑔, ℎ) 𝑓 (𝑔)𝑑𝑔

and for an automorphic representation 𝜋 of G𝑛 (A), write Θ𝜓,V𝑛 ,W𝑚
(𝜋) =

{𝜃𝜓,V𝑛 ,W𝑚
(𝜙, 𝑓 ) | 𝜙 ∈ 𝜔𝜓,V𝑛 ,W𝑚

, 𝑓 ∈ 𝜋}. Then Θ𝜓,V𝑛 ,W𝑚
(𝜋) is an automorphic

representation of J𝑚 (A).

Theorem B.1 Let 𝜋 be an irreducible cuspidal representation of G𝑛 (A). Then there is a pos-
itive integer 𝑡 such that Θ𝜓,V𝑛 ,W𝑖

(𝜋) = 0 for all 0 ≤ 𝑖 < 𝑡 and Θ𝜓,V𝑛 ,W𝑡
(𝜋) ≠ 0.

Furthermore, Θ𝜓,V𝑛 ,W𝑡
(𝜋) is cuspidal.

We believe that the above theorem is almost certainly well known to experts. In par-
ticular, it should be noted that [47] deals with a similar statement. However, we are not
able to find a reference for positive characteristic cases and therefore provide a proof
for completeness. We hope this proof will be a useful reference for readers interested in
positive characteristic cases.

To prove this, we need two lemmas.

LemmaB.2 Let 𝑓 ∈ A𝑐𝑢𝑠𝑝 (G𝑛). LetP′
𝑘

= N′
𝑘

M′
𝑘
be a parabolic subgroup of J𝑚 stabilizing

𝑌𝑘 so that M′
𝑘
≃ GL(𝑌𝑘) × J𝑚−𝑘 . Then for all ℎ ∈ J𝑚−𝑘 (A),∫

N′
𝑘
(𝐾 )\N′

𝑘
(A)

𝜃𝜓,V𝑛 ,W𝑚
(𝜙, 𝑓 ) (𝑛ℎ)𝑑𝑛 = 𝜃𝜓,V𝑛 ,W𝑚−𝑘 (𝜙, 𝑓 ) (ℎ),

where 𝜙 is the restriction of 𝜙 via the natural inclusion map V𝑛 ⊗ 𝑌 ∗
𝑚−𝑘 ↩→ V𝑛 ⊗ 𝑌

∗
𝑚.

Proof For the case of char(𝐿) = 0, it is proved in [47, Theorem I.1.1]. Since the proof
for the case of char(𝐿) = 𝑝 is the same with that of char(𝐿) = 0, we omit it. ■

Lemma B.3 Let 𝑓 ∈ A𝑐𝑢𝑠𝑝 (G𝑛). If∫
G𝑛 (𝐿)\G𝑛 (A)

𝜃𝜓,V𝑛 ,W2𝑛 (𝜙; 𝑔, ℎ) 𝑓 (𝑔)𝑑𝑔 = 0

for all 𝜙 ∈ 𝜔, then 𝑓 = 0.

Proof The proof for the case char(𝐿) = 0 is implicitly included in [47, Theorem I.2.1].
To demonstrate that the argument also holds for char(𝐿) = 𝑝, we provide a detailed
proof. We do not claim originality for this proof.
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Put 𝔖 := {𝐴 ∈ 𝑀2𝑛×2𝑛 | 𝐴𝑡 = −𝐴}. Using bases 𝛽 = { 𝑓1, · · · , 𝑓2𝑛} of 𝑌2𝑛 and
𝛽∗ = { 𝑓 ∗1 , · · · , 𝑓 ∗2𝑛} of𝑌 ∗

2𝑛 satisfying ⟨ 𝑓𝑖 , 𝑓 ∗𝑗 ⟩W2𝑛 = 𝛿𝑖 𝑗 , it is easy to see that

{𝛼 ∈ Hom(𝑌 ∗
2𝑛, 𝑌2𝑛) | 𝛼∗ = −𝛼} ≃ 𝔖.

Let 𝑛′ : 𝔖 → N′ be the isomorphism between𝔖 and N′ and write 𝐽 = (⟨𝑒𝑖 , 𝑒 𝑗⟩V𝑛
) for

some basis 𝛼 = {𝑒1, · · · , 𝑒2𝑛} ofV𝑛.
For a function 𝜑 of J2𝑛 (A), define its Fourier coefficient 𝜑N′ ,𝐽 with respect to (N′, 𝐽)

by ∫
𝔖(𝐿)\𝔖(A)

𝜑(𝑛′ (𝑠)ℎ)𝜓(−1
2

tr(𝐽𝑠))𝑑𝑠,

where 𝑑𝑠 is the Haar measure of𝔖(A) such that Vol(𝔖(𝐿)\𝔖(A)) = 1. Note that

𝜃𝜓,V𝑛 ,W2𝑛 (𝜙)N′ ,𝐽 (𝑔, ℎ) =
∫
𝔖(𝐿)\𝔖(A)

𝜃𝜓,V𝑛 ,W2𝑛 (𝜙) (𝑔, 𝑛′ (𝑠)ℎ)𝜓(−
1
2

tr(𝐽𝑠))𝑑𝑠

=
∫
𝔖(𝐿)\𝔖(A)

∑︁
𝑦∗∈ (V𝑛⊗𝑌 ∗

2𝑛 ) (𝐿)
𝜔𝜓,V𝑛 ,W𝑚

(𝑔, 𝑛′ (𝑠)ℎ)𝜙(𝑦∗)𝜓(−1
2

tr(𝐽𝑠))𝑑𝑠

=
∫
𝔖(𝐿)\𝔖(A)

∑︁
𝑦∗∈ (V𝑛⊗𝑌 ∗

2𝑛 ) (𝐿)
𝜔𝜓,V𝑛 ,W𝑚

(𝑔, ℎ)𝜙(𝑦∗)𝜓( 1
2
(𝑛′ (𝑠)𝑦∗, 𝑦∗))𝜓(−1

2
tr(𝐽𝑠))𝑑𝑠.

Using the basis 𝛽∗ of𝑌 ∗
2𝑛 and the basis 𝛼 ofV𝑛, we view 𝑦∗ ∈ (V𝑛 ⊗𝑌 ∗

2𝑛) as a (2𝑛× 2𝑛)
matrix. Note that (𝑛′ (𝑠)𝑦∗, 𝑦∗) = tr((𝑦∗)𝑡 𝐽𝑦∗𝑠). Therefore,∫

𝔖(𝐿)\𝔖(A)
𝜓( 1

2
(𝑛′ (𝑠)𝑦∗, 𝑦∗))𝜓(−1

2
tr(𝐽𝑠))𝑑𝑠 =

{
1 if (𝑦∗)𝑡 𝐽𝑦∗ = 𝐽
0 otherwise

.

Since G𝑛 = {𝑦∗ ∈ V𝑛 ⊗ 𝑌 ∗
2𝑛 | (𝑦∗)𝑡 𝐽𝑦∗ = 𝐽}, we have

𝜃𝜓,V𝑛 ,W2𝑛 (𝜙)N′ ,𝐽 (𝑔, ℎ) =
∑︁

𝑦∗∈G𝑛 (𝐿)
𝜔(𝑔, ℎ)𝜙(𝑦∗).

Denote by S(G𝑛 (A)) (resp. S(G𝑛 (𝐿)\G𝑛 (A))) the Schwartz-Bruhat space on
G𝑛 (A) (resp. G𝑛 (𝐿)\G𝑛 (A).) Because the restriction map 𝑆(V𝑛 ⊗ 𝑌 ∗

2𝑛) ↦→ S(G𝑛 (A))
is surjective and every function in S(G𝑛 (𝐿)\G𝑛 (A)) is obtained by averaging
a function in S(G𝑛 (A)), we see that {𝜃𝜓,V𝑛 ,W2𝑛 (𝜙)N′ ,𝐽 (·, 1)}𝜙∈𝑆 (V𝑛⊗𝑌 ∗

2𝑛 ) forms
S(G𝑛 (𝐿)\G𝑛 (A)).

By the assumption, we have ⟨𝜃𝜓,V𝑛 ,W2𝑛 (𝜙)N′ ,𝐽 (·, 1), 𝑓 ⟩𝐿2 (G𝑛 (𝐿)\G𝑛 (A) ) = 0. Since
S(G𝑛 (𝐿)\G𝑛 (A)) is a dense subspace of 𝐿2 (G𝑛 (𝐿)\G𝑛 (A)), it follows that 𝑓 = 0. ■

Now we can prove Theorem B.1.

Proof Lemma B.3 tells us that Θ𝜓,V𝑛 ,W2𝑛 (𝜋) ≠ 0 and this proves the first statement.
The second statement follows from Lemma B.2. ■
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