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1. Introduction

If R is a ring with identity and E is the semigroup of identity preserving ring
endomorphisms of R then the fixed ring of E is denned by RE = {a e R\<t>(a) = a, for
each <f> G E}. R is said to be rigid if RB = R. Equivalently, R is rigid if and only if
E = {idR}.

More generally, a ring R, not necessarily with an identity, is said to be rigid if
R2 5* (0) and the only ring endormorphisms of R are the.trivial ones, 0R and idR. In this
paper we consider the problem of characterising rigid rings.

To provide some setting for the research of this paper we note that fixed rings with
respect to certain specialised semigroups have been the objects of study in several
investigations. Bergman and Isaacs (1) consider the problem of characterising rings R
with the property that Ra = (0) where G is a group of automorphisms of R. In (5)
Herstein investigates rings R being acted upon by a cyclic group G of prime order
such that Ra is in the center of R.

Rigidity in other algebraic structures has also been the topic of previous in-
vestigations. In (7), Volpenka, Pultr, and Hedrlin show that there exists a rigid binary
relation /3 on any set X. Rigid semigroups appear in (3) and rigid rings first appear in
(6).

We note that if one drops the restriction "i?2 ̂  (0)" from the definition of rigid
rings then the problem of characterising the subclass of rigid rings for which R2 = (0)
reduces to a well-known result in group theory. That is, a rigid ring R with R2 = (0) is
just the zero ring on Z2.

A brief summary is now given. First some general properties of rigid rings are
obtained. In Section 3 chain conditions are imposed. Here we show that a rigid ring R
with descending chain conditions on left ideals must be commutative and in several
instances R must be a field. In the final section rigid fields are considered.

The author wishes to thank Dr. Matthew J. O'Malley for many helpful suggestions
relative to rigid rings.

2. Properties of Rigid Rings

In this section we establish some properties of rigid rings and then use these
general properties to obtain information about specific classes of rigid rings.

To fix our notation, let R be a ring with Jacobson radical J(R) and centre Z(R).
Further let G(R) denote the group of quasi-regular elements of R. If R has an identity
element then we let U(R) denote the group of units of R.
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Our first result establishes that in a rigid ring, J(R)C Z(R). More generally we
have the following.

Theorem 2.1. / / R is a rigid ring G(R) C Z(R).

Proof . L e t a G G(R). T h e n t h e r e e x i s t s b G R s u c h t h a t 0=a + b + ab =
a + b + ba.The map tf>(a, b):R-* R given by JC1-* x + ax + xb + axb is a ring morphism.
Consequently <f>(a, b) = 0R or (f>(a, b) = idR. If <£(a, b) = 0R then, for every x in R,
x + ax + xb + axb = 0 and in particular a + a2 + ab + a2b = 0. Hence a = 0 and a G
Z(R). If <j>(a,b) = idR, then, for every x in /?, ax + xb + axb = 0. Since b = - a - ba,
ax + x(— a — ba) + ax(— a — ba) = 0. Thus ax-xa + {xb + ax + axb)a. Hence ax = xa
which implies that a G Z(R).

Corollary 2.1. Let R be a rigid ring. If R is a radical ring then R is commutative.

Suppose I? is a rigid ring with an identity element. Then for u G U(R) the map
il/:R-*R given by x>-> uxu'1 is a nonzero ring morphism and thus the identity map.
Consequently, we have U(R) C Z(R).

Let e be a nonzero central idempotent. Then the Peirce decomposition R =
ReQ){r- re\rG R} is a two-sided decomposition. If R is a rigid ring we must have
Re = R and hence e is an identity element for R. We now show that every idempotent
of a rigid ring is a central idempotent. As a consequence we see that a rigid ring has at
most two idempotents.

Theorem 2.2. Every idempotent of a rigid ring is a central idempotent.

Proof. Let e be an idempotent of the rigid ring R. Then for each x in R, ex — exe
and xe — exe are nilpotent and hence quasi-regular. Since G(R)CZ(R), ex —exe =
e(ex — exe) = (ex — exe)e = 0 = e(xe — exe) = (xe - exe)e = xe — exe. Thus ex = xe as
desired.

We now apply the above properties to show that for many classes of rings the
additional hypothesis that a ring of the given class be rigid implies that the ring is
commutative.

Theorem 2.3». / / R is a rigid ring containing a minimal right ideal I such that
I2 * (0) then R is a field.

(In this paper "field" always means "commutative field".)

Proof. Since I2 ^ (0) and / is a minimal right ideal there exists an idempotent e in
/ such that / = eR. But from the above theorem e must be an identity for R. Hence,
/ = R. It then follows that R is a division ring and since R - {0} = U(R) C Z(R), R is a
field.

Corollary 2.2. / / R is a rigid semisimple ring (i.e., J(R) = (0)) with a minimal right
ideal then R is a field.
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For any subring S of a ring R, let [S, S] denote the subring of S generated by
{5,52 - s2si\su s2 G S}. For x£R, let ls(x) = {sG S\sx = 0}.

Theorem 2.4. A ring R is commutative if and only if there exists x G Z(R) such
that Rx C Z(R) and /(RR,(x) = (0).

Proof. Suppose such an element x exists. Let r, s £ / ! . Then (rs - sr)x =
rsx — srx = sxr - srx = srx - srx = 0. But rs - sr G [R, R] and (rs - sr)x = 0 implies
rs — sr = 0. Hence R is commutative. On the other hand if R is commutative,
R = Z(R) and [R, R] = (0). Since R has at least one element x, x G Z(R), RxQR =
Z(R) and llR,R{x)C[R,R] = (0).

Corollary 2.3. Let R be a rigid ring. If there exists some x G J(R) such that
hn.R](x) = (0) then R is commutative.

Proof. Since R is rigid, J(R)CZ(R). Hence RxCZ(R) and the result now
follows from the above theorem.

Of course if R has no divisors of zero then 1[R,R](X) = (0) for each nonzero x in R.
Thus we can use the above results to obtain information about rigid rings without
divisors of zero. In case R is commutative and of prime characteristic a complete
characterisation can be given.

Theorem 2.5. Let D be a nonzero commutative ring without divisors of zero.
Suppose further that the characteristic of D is a prime, p. Then D is a rigid ring if and
only if D s Zp.

Proof. Suppose D is rigid. The map <j>:D^>D given by x*~*x" is a nonzero ring
morphism. Thus each x in D is a root of the polynomial f(x) = x" — x. Let K denote
the quotient field of D. Then f(x) has at most p roots in K. Since every element of D
is a root of f(x) in K, D has at most p elements. Thus D is a finite field of cardinality
p. Consequently D = Zp. Since the converse is clear, the proof is complete.

Corollary 2.4. Let F be a field of prime characteristic. F is rigid if and only if
F^ZP.

Corollary 2.5. Let R be a nonzero ring without divisors of zero such that R
has prime characteristic p. If R has a minimal left ideal then R is rigid if and only if
R = ZP.

Proof. Immediate from Theorem 2.3 and Theorem 2.5.

If, in the above corollary, we replace the condition that R have a minimal left ideal
by the condition that the centre of R contain a nonzero ideal of R then the same
conclusion follows using Corollary 2.3 and Theorem 2.5. We note however, that a
characterisation of rigid rings without divisors of zero and of prime characteristic has
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not yet been found. We also mention that the author knows of no example of a
noncommutative rigid ring.

3. Rigid Artinian Rings

We now restrict our attention to rigid rings satisfying the descending chain
condition on left ideals, henceforth called rigid artinian rings. In this case much more
can be said. In fact, we find that rigid artinian rings are commutative. Under various
hypotheses complete characterisations are obtained.

Theorem 3.1. If R is a rigid artinian ring then R is commutative. If R¥^ J(R) then R is
a complete local ring. If R = J(R) then R is a nilpotent ring.

Proof. Suppose R^ J(R). Then RU(R) is a nonzero semisimple artinian ring and
hence RU(R) has an identity element. Since /(/?) is nilpotent, idempotents modulo J(R)
can be lifted. Thus R has a nonzero idempotent which must be an identity element for R
since R is rigid. Further, since R is artinian with identity and only two idempotents, it is
known that R = U(R) UJ(R). Since R is rigid, R = U(R) UJ(R) C Z(R) and thus R is
commutative. Since artinian rings with identity are Noetherian, R is a complete local
ring.

If R = J(R) then R is a commutative nilpotent ring since J(R) is nilpotent and is
contained in Z(R).

In the above proof we also established the following.

Corollary 3.1. Let R be a rigid artinian ring. The following are equivalent:
(i) R has an identity,

(ii) R*J(R),
(iii) R is a complete local ring.
As a consequence we have that a finite rigid ring with identity is a complete local

ring. We present an example to show that this does not characterise finite rigid rings
with identity.

Example. Let H = (H, + ) be the group (Z3 0 Z3, +) and define a multi-
plication * on H by (a, b) * (c, d) = (ac, ad + be). Then (H,+ ,*) is a complete
local ring with identity. However, the map <f>:H^>H given by (a, b)'-*(a,0) is a
nonzero, nonidentity ring morphism.

In order to further classify rigid artinian rings with identity we apply some known
results concerning the structure of complete local rings. As is often the case in the
study of local rings, the "equal characteristics" case is easier to handle than the
"unequal characteristics" case.

Theorem 3.2. // R is a rigid artinian ring with identity and with prime or zero
characteristic then R is a field.

Proof. We first show that the characteristic of the complete local ring R is the
same as the characteristic of its residue field RU(R).
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Suppose ch(RU(R)) = 0. Thus, if 1 denotes the identity of R, n • 1 £ J(R) for each
positive integer n. Consequently, n • 1 ¥• 0 for each positive integer n. Hence ch(R) = 0.

Suppose ch(RU(R)) = p where p is a prime. Then p • 1 G /(R). Since /(J?) is
nilpotent there exists a positive integer f such that 0 = (p • 1)' = p' • 1. This implies
that the characteristic of R equals p' for some positive integer s, 1 =s s *= f. Since, by
hypothesis the characteristic of R is either zero or a prime, we have ch(i?) = p.

Thus R is a complete local ring with the same characteristic as its residue field
RIJ(R). Hence (2, Theorem 9, p. 72) £ contains a subfield K isomorphic to R/J(R).
Let il/:RU(R)-*K be an isomorphism, let <f>:R^*RU(R) be the canonical epimor-
phism and let i:K-*R be the insertion morphism. Then itf/<f> = idR. Hence I? is a field.

Corollary 3.2. Let R be an artinian ring with identity and of prime characteristic.
R is rigid if and only if R = Zp.

Proof. This is immediate from the above theorem and Corollary 2.4.

Turning to the unequal characteristic case we have only a partial characterisation.
For this we suppose R is a rigid artinian ring with identity such that ch(J?) = p \ k > 1,
and ch(R/J{R)) = p where p is a prime. Suppose further that J(R) is generated by
p i ; i.e., J(R) = R • p. Thus by (2, Corollary 3, p. 83), R s Cl((p • 1)*) where C is a
complete discrete unramified valuation ring of characteristic zero and such that
CIJ(C) = RU(R).

If RU(R) is a perfect field then C can be taken as the ring of Witt vectors over
RU{R) and hence R(= Cl((p • 1)*) can be considered as the ring of Witt vectors over
RU(R) of length k. (See (4), Chapter 6 for results on Witt vectors.) Now, the map
<t>: Cl((p • l)*)->C/((p • l)k) given by (a0, a , , . . . , aR-t)>-*(ap

0, a\,..., afc_,) is a nonzero
ring morphism (see (4)) and since R is rigid this implies that ag = a0 for all a0G
RIJ(R). Hence RU(R)=ZP. Thus the ring of Witt vectors over RU(R) of length k has
pk elements. Since Zp* can be embedded in Cl((p • I)1), we have Zp* = R.

We have established the following.

Theorem 3.3. Let R be a rigid artinian ring with identity such that ch(R) = pk,
k> 1, p a prime andJ(R) = R • p. If RU(R) is a perfect field then R = Zp*. Conversely, if
R = Zp*, k> 1, p a prime, then R is a rigid artinian ring with identity, J(R) = R • p and
RU(R) is a perfect field.

4. Rigid Fields

In Theorem 3.2 we found that a rigid artinian ring with identity of prime or zero
characteristic is a field. Further, in Corollary 2.4, rigid fields of prime characteristic
were characterised. In this section we give a few remarks about rigid fields of zero
characteristic.

We say that a subring R of a ring S is S-rigid if for every endomorphism 4> of 5,
<f>\R = 0R or <£|l? = idR. Clearly every subring of a rigid ring S is S-rigid. Moreover, if
P is a prime field then P is K-rigid for every extension K of P.
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Theorem 4.1. Let K be a field such that for some K-rigid subfield A of K,
K = A(a). K is rigid if and only if the minimum polynomial, pa(x), of a over A has
exactly one root in K.

Proof. For every fi in K such that pa(/3) = 0, the map leaving A fixed and taking
a into fi determines an endormorphism of K. Consequently, if K is rigid, a must be
the only root of pa(x) in K. On the other hand, let 4> be a non-zero element in End (K)
and let /3 = <f>(a). Since <f>\A = 1,,, pa(0) = 0. Hence, a = /3 which in turn implies that <f>
is the identity on K. _

As an application of the above theorem we note that Q(Vp) is rigid for all primes
p and all odd positive integers n, where Q denotes the field of rational numbers.

More generally, if K is a finite algebraic extension of some X-rigid subfield A
then, from the "theorem of primitive elements", K = A(a). Hence the above theorem
gives necessary and sufficient conditions for a finite algebraic extension of the
rationals to be rigid. In our next theorem we consider arbitrary algebraic extensions.

Lemma 4.1. / / K is an algebraic extension of a K-rigid field A, then every nonzero
endomorphism of K is an automorphism.

Proof. Since every nonzero endomorphism is one-one it remains to show that
every nonzero endomorphism is an onto map. Let $ be a nonzero endomorphism of
K and let a be an arbitrary element in K. Now a is a root of an irreducible polynomial
f(x) £ A[x]. Let a = a0, a{,..., at be the distinct roots of f(x) in K. Since <f>\A = id^,
<f>(a0), <f>(ai),..., tf>(a,) are also distinct roots of f(x) in K. Hence for some a,,
4>{a{) = a. Hence 4> >s an automorphism of K.

Recall that a field K is a normal extension of a field A if the fixed field of
Aut(K, A) is A; i.e., KAutlK-A) = A.

Theorem 4.2 Let K be an algebraic extension of some K-rigid subfield A. K is
rigid if and only if K is not a normal extension of any of its proper subfields.

Proof. Suppose K is a rigid field and H a proper subfield of K. Thus KAutiKH) =
KT* H. Hence, K is not a normal extension of K. Conversely suppose K is not rigid.
Then by the above lemma there is a nonzero automorphism tji of K such that ip^ id*-
Let K* = {a E K\tl>{a) = a}. Since t/f^ idK, K* C K. Now let G = Aut(X, K*). Since
«A £ G, KG C K*. Clearly K* C Ka. Thus KG = K* and consequently K is a normal
extension of K*.

Since the rational numbers Q are X-rigid for every extension K of Q the above
theorem gives necessary and sufficient conditions for an algebraic extension of Q to
be rigid.
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