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Abstract. The problem of three stars arises in many connections in stellar dynamics: three-
body scattering drives the evolution of star clusters, and bound triple systems form long-lasting
intermediate structures in them. Here we address the question of stability of triple stars. For a
given system the stability is easy to determine by numerical orbit calculation. However, we often
have only statistical knowledge of some of the parameters of the system. Then one needs a more
general analytical formula. Here we start with the analytical calculation of the single encounter
between a binary and a single star by Heggie (1975). Using some of the later developments we get
a useful expression for the energy change per encounter as a function of the pericenter distance,
masses, and relative inclination of the orbit. Then we assume that the orbital energy evolves
by random walk in energy space until the accumulated energy change leads to instability. In
this way we arrive at a stability limit in pericenter distance of the outer orbit for different mass
combinations, outer orbit eccentricities and inclinations. The result is compared with numerical
orbit calculations.
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1. Introduction
Three-body scattering was studied comprehensibly in the pioneering work of Heggie

(1975). Among the many results in this work was an expression for energy change when
a single body passes by a binary. The calculation was carried out in greater detail by
Roy & Haddow (2003) for a parabolic passage, and by Heggie (2006) for a hyperbolic
passage. Valtonen & Karttunen (2006) calculate the same quantity for a passage in a
low-eccentricity elliptic orbit.

In a bound triple system a number of passages takes place one after another. Even
though each passage may change the orbits only slightly, a large number of them may
lead to an accumulated energy change which eventually leads to the break-up of the
triple system. The energy steps in this process may be in one direction only, or they may
happen in both directions in the manner of random walk. In either case, the orbits evolve
with time toward instability (Valtonen & Karttunen 2006).

In this paper we study the analytical expressions for the energy change in a single
encounter, and simplify them a little for the purpose of the stability study. We then
derive an analytical expression for the stability limit which improves the formula given
by Valtonen & Karttunen (2006). This formula also improves the results given in previous
works: Golubev (1967), Golubev (1968), Harrington (1977), Eggleton & Kiseleva (1995),
Mardling & Aarseth (1999), Mardling & Aarseth (2001) (see Aarseth 2003 and Tokovinin
2004).
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2. Energy change in a single encounter
Heggie (1975) and Roy & Haddow (2003) derive the expression for the relative en-

ergy change δε/ε in a single parabolic encounter. Heggie (2006) finds the corresponding
formula for hyperbolic encounters and shows that it agrees with the result of Roy &
Haddow (2003) at the parabolic limit. Let the binary have masses m1 and m2 , with
M12 = m1 + m2 , semi-major axis ai and eccentricity ei. The third body orbit relative to
the barycenter of the binary has pericenter distance q, with Q = q/ai, and eccentricity
e. The mass of the third body is m3 . Its orbital plane relative to the binary plane is
described by the usual elements i, ω, and Ω. Then, as was derived in the papers cited
above, by the first order perturbation theory

δε

ε
� −

√
π

4
m3

M12
Q−3K5/2e−(2/3)K {e1 [sin(2ω + nt0)(cos 2i − 1)

− sin(2ω + nt0) cos(2i) cos(2Ω) − 3 sin(nt0 + 2ω) cos(2Ω)
− 4 sin(2Ω) cos(2ω + nt0) cos i] + e2(1 − e2

i ) [sin(2ω + nt0)(1 − cos 2i) (2.1)
− sin(2ω + nt0) cos(2i) cos(2Ω) − 3 sin(nt0 + 2ω) cos(2Ω)

− 4 cos(nt0 + 2ω) sin(2Ω) cos i] + e4

√
1 − e2

i [−2 cos(2i) cos(2ω + nt0) sin(2Ω)

− 6 cos(2ω + nt0) sin(2Ω) − 8 cos(2Ω) sin(2ω + nt0) cos i]} .

Here n is the mean motion of the binary and t0 is a reference time. The true anomaly of
the binary M = n(t− t0). If we agree that at the pericenter t = 0, then the value of true
anomaly at the pericenter is M0 ≡ 2Φ0 = −nt0 . The quantity K is defined as

K =
√

2
√

M12

M12 + m3
Q3/2 .

The functions e1 , e2 and e4 are

e1 = J−1(ei) − 2eiJ0(ei) + 2eiJ2(ei) − J3(ei),
e2 = J−1(ei) − J3(ei),
e4 = J−1(ei) − eiJ0(ei) − e1J2(ei) + J3(ei).

Here J−1 , . . . , J3 are the Bessel functions.
Let us simplify (2.1) by assuming that ei is small, and use only first order terms. Also

we write the dependence on Q with the help of a scale distance Q1 :

Q1 = 2.5
(

1 +
m3

M12

)1/3

whereby
K = 5.59(Q/Q1)3/2

and
K5/2 = 73.9(Q/Q1)15/4 .

We also approximate the exponential factor by a power-law in the interval 1 � Q/Q1 �
1.5; thus

(2.5)−3(Q/Q1)−3K5/2e−(2K/3) � 0.11(Q/Q1)−7 .

After all these modifications, the dominant term of (2.1) becomes

δε

ε
� ei

m3

M12

(
Q

Q1

)−7 (
1 + cos i

2

)2

sin 2(Φ0 − (ω + Ω)) (2.2)
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Figure 1. The relative energy change δε/ε in a single parabolic encounter between an equal
mass circular binary and a single star. The energy change consists of constant shift (marked
Delta) and of a sinusoidal variation with amplitude A(Delta).

Thus the energy change is a sinusoidally varying function of the initial phase angle (Φ0)
of the binary. For initially zero eccentricity binaries, a suitable value to insert in (2.2)
is ei � 0.05 since the binary eccentricity does not remain zero during the encounter but
changes to a non-zero value.

Valtonen & Karttunen (2006) derive a similar result by using a low-eccentricity outer
orbit instead of a parabolic orbit. They find approximately for ei = 0 that

δε

ε
� 0.03

m3

M12

(
Q

Q1

)−7 (
1 + cos i

2

)2

cos 2(Φ0 − Ω). (2.3)

Because of zero eccentricity, we have put ω = 0, since the orientation of the major axis
is of no consequence.

Numerical calculations show that the inclination function is in fact somewhat more
complicated than in (2.2) and (2.3). We will find below an expression which is more
suitable for the stability study. Note that the

(
1 + cos i

2

)2

function cannot possibly be correct since it would make the energy change at retrograde
orbit zero.

The functional forms of the relative energy change have been tested by single encounter
parabolic orbit calculations. Fig. 1 shows that the δε/ε variation is sinusoidal. Fig. 2
shows the amplitude of the sinusoidal variation as a function of Q. It may be modelled
as pure power-law at small Q, and by a combination of power-law and exponential at
larger Q (dotted line). This simple sinusoidal behavior is valid only if Q � Qst where
Qst may be called the stability limit of a single encounter. Fig. 3 shows that Qst depends
strongly on the inclination. The stability limit also depends on the mass of the third body,
as shown by Fig. 4. The limit may be defined in two ways: either from the Q−distance
where exchanges between binary bodies and third bodies first start, or from the innermost
point to which a power-law dependence on Q is valid. These stability limits are compared
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Figure 2. The amplitude of the sinusoidal (relative) energy change in a parabolic single star –
binary encounter, as a function of the pericenter distance Q (in units of the binary semi-major
axis). A pure power-law (solid line) fits at low Q while at higher Q a power-law times an
exponential gives a better fit.
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Figure 3. The stability limit Qst as a function of cos i in a parabolic single – star – binary
encounter.

with the expression

2.1
(

1 +
m3

M12

)1/3

by a dashed line in Fig. 4. Note the connection with the scale distance Q1 defined above.
The dependence of δε/ε on Q and m3/M12 is shown in Fig. 5, while the dependence

on Q and i is displayed in Fig. 6. The lines show that simple analytical models describe
the data when Q > Qst.

3. Evolution of the outer orbit
The energy of the outer orbit Eout is connected to the binary energy EB by

EB

Eout
=

m1m2

M12m3

a

ai
=

m1m2

M12m3

Q

1 − e
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Figure 4. The stability limit Qst as a function of third body mass, m3/M12 , for i = 0◦. The
points may be defined either by the lower limit of power-law description in δε/ε α Q−m , where
m � 7, or by the limit where exchanges begin between the binary members and the third body.
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Figure 5. The dependence of δε/ε on pericentric distance Q at various mass values m3/M12 .

where a is the semi-major axis of the outer orbit. If m1 = m2 ,

EB

Eout
� M12

m3

Q/Q1

1 − e
.

Therefore the relative change in the binary energy

�EB

EB
= −�Eout

Eout

Eout

EB
� − (1 − e)

Q/Q1

m3

M12

�Eout

Eout
.

Let us assume that the triple system breaks up when �Eout � Eout . It can happen after
N steps of random walk. If the step size �Eout/Eout = x, then

√
N x = 1

or N = x−2 .
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Figure 6. The dependence of δε/ε on pericentric distance Q at various inclination values.

If x = 10−2 , N = 104 . In other words, if we put

�Eout

Eout
= 10−2 ,

the system should be stable over 104 revolutions of the outer orbit. Thus

�Eout

Eout
� 10−2 (1 − e)

Q/Q1

m3

M12
.

Let us put this equal to the amplitude of δε/ε :

10−2 (1 − e)
Q/Q1

m3

M12
= 0.03

m3

M12

(
Q

Q1

)−7 (
1 + cos i

2

)2

.

Solve for Q :

Q � 3
(

1 +
m3

M12

)1/3

(1 − e)−1/6
(

1 + cos i

2

)1/3

. (3.1)

This value is referred to as the stability limit Qst.

4. Stability experiments
Numerical orbit calculations have been carried for triple systems where the binary

members are of equal mass. The value of e is varied in 5 steps from 0 to 0.9 and m3/M12
in the range from 0.0005 to 5. Inclination values from zero to 180◦ have been studied. For
the numerical integration of the equations of motion we used the code kindly provided
by S. Mikkola that applies Wisdom-Holman method with time transformation in the
extended phase-space (for the details see Mikkola 1997). The system is classified as
stable if after N = 104 revolutions of the outer orbit there have been no escapes and no
exchanges of binary members. The stability limit for fixed e, m3/M12 and i is determined
such that the triple systems are stable down to this value of Q for any value of ω and
Ω. There may be stable systems even at smaller Q, but there is no guarantee that for
Q < Qst the system is definitely stable.
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Figure 7. Results from numerical stability calculations for hierarchical triple systems for up
to 104 revolutions of the outer orbit. The parameters are η = ai/a and ξ = cos i. Every dot
represents an unstable orbit. The vertical line follows the Mardling & Aarseth (2001) criterion
while the curved line is from this work. There should be no dots to the left of the line if the
boundary is correct. The case of e = 0, m3 = 0.1 (left panel), m3 = 1 (right panel) and
m1 = m2 = 1.

Figure 8. Same as Fig. 7, except that e = 0.3, m3 = 0.01 (left), m3 = 0.1 (right).

As we mentioned earlier, the functional forms present in (3.1) are not necessarily
optimal for this problem. Therefore small variants have been tried. For the inclination,
the functional form (

7
4

+
1
2

cos i − cos2 i

)1/3

have been found to improve the fit relative to the [(1 + cos i)/2]1/3 form. Then the whole
formula becomes

Qst = 3 (1 + m3/M12)
1/3 (1 − e)−1/6

(
7
4

+
1
2

cos i − cos2 i

)1/3

.

The agreement between experiments and theory is shown in Figs. 7–11. The expression
is not good for 0.025 < m3/M12 < 0.17 for retrograde orbits. In such cases one may use
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Figure 9. Same as Fig. 7, except that e = 0.3, m3 = 1 (left), m3 = 10 (right).

Figure 10. Same as Fig. 7, except that e = 0.7, m3 = 0.333 (left), m3 = 5 (right).

Figure 11. Same as Fig. 7, except that e = 0.9, m3 = 0.2 (left), m3 = 1 (right).
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cos i = 0 in the formula whenever cos i < 0. Outside this mass range the formula works
well, at least for 0 < m3/M12 � 0.025 and for 0.17 � m3/mB � 5, where we have been
able to test it. Typically there is about 5% safely margin in Qst, i.e. the limit could be
reduced by this much and only very few exceptions to the rule would arise.

5. Conclusions
As we mentioned in the introduction, several stability criteria have been proposed. In

general, they are simpler formulae than what is presented in this paper. The Valtonen &
Karttunen (2006) formula is an earlier and less accurate formulation of the same theory as
is presented here. We have compared our data with Mardling & Aarseth (2001) criteria.
In general it is good, but as can be seen in Fig. 7 it sometimes doesn’t work in the middle
inclinations. Zhuchkov, Orlov & Rubinov (2006) have shown that the stability criteria
of Golubev, Harrington and Tokovinin are not always good. It would be an interesting
project to compare the other criteria with ours and with numerical orbit calculations,
but it will be left to another paper.
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