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Abstract

We consider a stochastic model for the spread of an SEIR (susceptible → exposed →
infective → removed) epidemic among a population of individuals partitioned into
households. The model incorporates both vaccination and isolation in response to the
detection of cases. When the infectious period is exponential, we derive an explicit
formula for a threshold parameter, and analytic results that enable computation of the
probability of the epidemic taking off. These quantities are found to be independent
of the exposure period distribution. An approximation for the expected final size of an
epidemic that takes off is obtained, evaluated numerically, and found to be reasonably
accurate in large populations. When the infectious period is not exponential, but has
an increasing hazard rate, we obtain stochastic comparison results in the case where the
exposure period is fixed. Our main result shows that as the exposure period increases, both
the severity of the epidemic in a single household and the threshold parameter decrease,
under certain assumptions concerning isolation. Corresponding results for infectious
periods with decreasing hazard rates are also derived.
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1. Introduction

This paper is concerned with a model for the spread of an infectious disease through a
population structured into household units. Our motivation comes from considerations in
bioterror modelling (see below) regarding real-time response strategies to infectious diseases.
To this end, the model incorporates both vaccination and isolation of households, these events
being triggered by the appearance of symptoms in individuals. In these respects our modelling
is distinct from the following two cases:

(i) the modelling of new emerging diseases, in which vaccines are usually not available;

(ii) the modelling of endemic diseases in which mass or age-targeted vaccination takes place
in a programmed way that is independent of the course of a particular outbreak.
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Our model has two levels of mixing (see Ball et al. (1997)) in the sense that individuals may
have potentially infectious contacts with individuals within their own household, and also with
individuals in the population at large, according to two rate parameters of different orders of
magnitude. The model also incorporates an exposed (latent) period for the disease.

In recent years there has been considerable interest in the use of mathematical models for the
evaluation of possible response strategies in the face of possible bioterrorism activity; see, e.g.
Halloran et al. (2002), Kaplan et al. (2002), Eubank et al. (2004), and the references therein. It
is reasonable to assume that any infectious agents employed in bioterror actions are likely to be
well known in an epidemiological sense. In particular, a vaccine may exist, so that one pertinent
control issue is to ascertain the most effective use of such a vaccine, possibly in conjunction
with other control measures such as quarantine, movement restrictions, etc. Smallpox has
been prominent among modelling studies; for example, Halloran et al. (2002) and Kaplan et
al. (2002) both considered the merits of targeted versus mass vaccination, assuming various
outbreak scenarios for this disease. The methods developed in this paper are also relevant
to modelling targeted antiviral prophylaxis strategies for containing an emerging influenza
pandemic, where households are a key mixing group; see, for example, the simulation models
of Longini et al. (2004) and Ferguson et al. (2005).

It is typically the case that the bioterrorism and pandemic influenza models referred to
above are highly complex in nature, as driven by concerns for realism. This in turn makes
mathematical analysis virtually impossible, so that progress must be made by either numerical
or simulation studies. In the present paper our aim is more towards mathematical analysis, and
to this end we consider a simplified model which nevertheless captures many of the features of
the more complex models that have been utilised to date.

The paper is organised as follows. The model is defined in Section 2 and its threshold
behaviour is determined in terms of the severity of an associated single household epidemic.
Section 3 contains results when an exponentially distributed infectious period is assumed. The
threshold parameter and the probability of the epidemic taking off are obtained, and the final
outcome of epidemics that do take off is investigated. The first two quantities do not depend on
the exposure period distribution. Section 4 focuses on the comparison of results for epidemics
with different exposure period distributions and a common infectious period distribution, which
need not be exponential. Finally, some brief concluding comments are given in Section 5.

2. Model and threshold behaviour

2.1. Model

The model used is a modification of an SEIR (susceptible → exposed → infective →
removed) epidemic model among a closed population. Thus, at any time, each individual
is in one of four states: susceptible, exposed, infective, or removed. The population is
made up of N individuals partitioned into m groups, or households, of size n. Initially a
small number of individuals are infectives and the remaining individuals are susceptibles.
A susceptible individual becomes an exposed individual if contact is made with an infective in
the manner described below. An exposed individual remains so for a period of time distributed
according to some arbitrary but specified random variable TE and then becomes an infective.
An infective individual is infectious for a period of time distributed according to some arbitrary
but specified random variable TI and is then removed. Removed individuals play no further role
in the epidemic process. A given infective makes global contacts with any given susceptible
in the population at the points of a homogeneous Poisson process having rate λG/N and,
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additionally, it makes local contacts with any given susceptible in its household at the points
of a homogeneous Poisson process having rate λL. Each such contact immediately results in
the susceptible becoming exposed. All the Poisson processes describing infectious contacts,
as well as the random variables describing exposed and infectious periods, are assumed to be
independent. The epidemic continues until there are no more exposed or infective individuals
present in the population.

Vaccination and isolation policies are incorporated into the model. When a removal occurs
in a household, all other members of that particular household are vaccinated. A susceptible
individual, when vaccinated, immediately makes the transition from susceptible to removed.
Thus, the vaccine is assumed to be completely effective. Vaccination has no effect on individuals
in the three other states. This corresponds to an assumption that vaccination has no effect on
an individual who has already been contacted by an infective. Additionally, for j = 1, 2, . . . ,
at the time of the j th removal in a particular household there is, independently of all previous
events, a probability pj of the household being isolated. Infective individuals in an isolated
household are unable to make global contacts. An individual’s infectious period is therefore
made up of two parts, T +

I and T −
I , where T +

I is the length of time the infected individual
remains in the infective state whilst its household is not isolated and T −

I is the length of time
the infected individual remains in the infective state whilst its household is isolated. We refer
to T +

I and T −
I as the active and inactive parts of an individual’s infectious period, respectively.

2.2. Threshold behaviour

If the number of households is large and the number of initial infectives is small, then
during the early stages of the epidemic the probability that a global contact is with an individual
residing in a previously infected household is small. Hence, the initial behaviour of the epidemic
may be approximated by a process in which each global contact is made with an individual
in an otherwise completely susceptible household. The process of infected households in this
approximating process follows a branching process.

Consider a completely susceptible household in this approximating process into which
infection is introduced by a global contact. The infected individual will initiate a realisation
of a single household epidemic which does not receive any further global contacts owing to
the assumption that all such contacts are made with completely susceptible households. The
number of global contacts that emanate from this single household epidemic, R say, is the
offspring random variable for the approximating branching process.

This approximation of the epidemic process may be made fully mathematically rigorous
by considering a sequence of epidemics in which m → ∞ whilst n is held fixed, and using a
coupling argument; cf. Ball (1996). A threshold theorem for the epidemic process can then be
obtained by saying that a global epidemic occurs if in the limit asm → ∞ the epidemic infects
infinitely many households, i.e. if the branching process does not go extinct. Let R∗ = E[R]
and f (s) = E[sR] be the mean and probability generating function of R, respectively. Then,
by standard branching process theory, a global epidemic may occur only if R∗ > 1, so R∗
is a threshold parameter for the epidemic process. Moreover, if R∗ > 1 and the epidemic is
started by a initial infectives who reside in distinct households, then the probability of a global
epidemic is 1 − τa , where τ is the root of f (s) = s in (0, 1). For other configurations of initial
infectives, the probability of a global epidemic can be found by conditioning on the size of
the first generation in the branching process (cf. Ball et al. (1997)); note that in this case the
offspring law of initial individuals in the branching process who correspond to households with
more than 1 initial infective is different from that of individuals in subsequent generations.
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Consider a single household epidemic in the approximating branching process. Let TA be
the sum of the active parts of the infectious periods of all individuals who are infected in that
household. We refer to TA as the active severity of the single household epidemic. Note that TA
is not the same as the corresponding sum of both active and inactive parts, i.e. the integral under
the trajectory of infectives in the household. Following Picard and Lefèvre (1990), we refer
to this latter quantity as the severity of the single household epidemic. Since infectives make
global contacts at rate λG throughout the active parts of their infectious periods, the total number
of global contacts that emanate from this household follows a Poisson distribution with random
mean λGTA. Hence, R∗ = λG E[TA] and f (s) = ψ(λG(1 − s)), where ψ(θ) = E[e−θTA ] is
the moment generating function of TA.

3. Exponential infectious period

In this section TE has an arbitrary but specified distribution and TI ∼ Exp(γ ), i.e. TI is
exponentially distributed with mean γ−1. Explicit expressions are derived for E[TA] andψ(θ),
enabling the threshold parameter R∗ and the probability of a global epidemic to be determined.
The final size of a global epidemic is also investigated.

3.1. Calculation of R∗ and probability of a global epidemic

For t ≥ 0, let X(t) = (S(t), E(t), I (t), R(t)), where S(t),E(t), I (t), andR(t) respectively
denote the numbers of susceptible, exposed, infective, and removed individuals at time t in
the above single household epidemic. The time t = 0 is the start of the epidemic and,
since we assume that the population initially consists only of infectives and susceptibles,
E(0) = R(0) = 0. Consider the following random time scale transformation of {X(t)} =
{X(t) : t ≥ 0}; cf. Watson (1980). For t ≥ 0, let χ(t) = ∫ t

0 I (u) du be the severity of
the epidemic over [0, t]. For u ∈ [0, TA], let U(u) = min{t ≥ 0 : χ(t) = u} and let
X̃(u) = (S̃(u), Ẽ(u), Ĩ (u), R̃(u)) = X(U(u)). The process {X̃(u)} = {X̃(u) : 0 ≤ u ≤ TA}
is a random time scale transformation of {X(t)}, obtained by running the clock at rate I (t)−1

when I (t) > 0 and stopping the clock when I (t) = 0. Observe that in the transformed process
{X̃(u)},

(i) removals occur at the points of a homogeneous Poisson process with rate γ ,

(ii) the times of these removals give the severity up until the corresponding removals in
{X(t)},

(iii) independently of the removal process, susceptible individuals are infected independently
at rate λL, provided that Ĩ (u) > 0.

Let T0 be the time of the first removal in {X̃(u)} and letD = Ẽ(T0)+ Ĩ (T0) be the number of
exposed and infective individuals remaining just after that first removal occurs. Then (i) above
implies that T0 ∼ Exp(γ ) and (iii) implies that D | T0 ∼ Bin(n − 1, 1 − e−λLT0). No new
infections occur after time T0 in {X̃(u)} due to the vaccination scheme. Let D′ be the number
of removals that occur after time T0 in {X̃(u)} before the household is isolated, so D′ = 0 if
the household is isolated when the first removal occurs. It follows, from (i) and (ii) above, that
the active severity TA admits the representation

TA = T0 + TR, (1)
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where

TR =
D′∑
i=1

Wi, (2)

W1,W2, . . . ,Wn−1 are independent Exp(γ ) random variables which are independent of
(T0,D,D

′) and the sum is 0 ifD′ = 0. Note that TR is the severity generated in the household
after the first removal. Note also that the distribution of the active severity TA is invariant to the
distribution of the exposed period TE. Thus, the threshold parameter R∗ and the probability of
a global epidemic do not depend on the distribution of TE.

For k = 0, 1, . . . , n− 1 and i = 0, 1, . . . , k, let pki = P(D′ = i | D = k). Then

pki =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pi+1

i∏
j=1

(1 − pj ) if i < k,

k∏
j=1

(1 − pj ) if i = k,

where the products are 1 if vacuous. For k = 0, 1, . . . , n − 1, let µk = E[D′ | D =
k] = ∑k

i=0 ipki and ψk(θ) = E[e−θTR | D = k] = ∑k
i=0 pkiφ(θ)

i, θ ≥ 0, where φ(θ) =
γ /(γ + θ). Recall that T0 ∼ Exp(γ ) and D | T0 ∼ Bin(n− 1, 1 − e−λLT0). Conditioning on
T0, it follows, from (1) and (2), that

E[TA] = E[T0] + E[W1] E[E[D′ | T0]]

= 1

γ

{
1 + E

[n−1∑
k=0

(
n− 1

k

)
(1 − e−λLT0)ke−(n−1−k)λLT0µk

]}

= 1

γ
+ 1

γ

n−1∑
k=0

(
n− 1

k

)
µk

k∑
l=0

(
k

l

)
(−1)l E[e−(n−1−k+l)λLT0 ]. (3)

Note that E[e−θT0 ] = φ(θ), θ ≥ 0, and recall thatR∗ = λG E[TA]. Substituting i = n−1−k+l
in the second sum in (3) and changing the order of summation yields, after a little algebra,

R∗ = λG

γ

[
1 +

n−1∑
i=0

(
n− 1

i

)
φ(iλL)

i∑
j=0

(
i

j

)
(−1)i−jµn−1−j

]
. (4)

Turning to ψ(θ) = E[e−θTA ], by conditioning on T0 it follows, from (1), that

ψ(θ) = E[e−θT0 E[e−θTR | T0]].
Conditioning on D and using (2) yields

E[e−θTR | T0] =
n−1∑
k=0

(
n− 1

k

)
(1 − e−λLT0)ke−(n−1−k)λLT0ψk(θ);

whence,

ψ(θ) = E

[
e−θT0

n−1∑
k=0

(
n− 1

k

)
ψk(θ)

k∑
l=0

(
k

l

)
(−1)le−(n−1−k+l)λLT0

]

=
n−1∑
k=0

(
n− 1

k

)
ψk(θ)

k∑
l=0

(
k

l

)
(−1)lφ((n− 1 − k + l)λL + θ)
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=
n−1∑
i=0

(
n− 1

i

)
φ(iλL + θ)

i∑
j=0

(
i

j

)
(−1)i−jψn−1−j (θ), (5)

where the final step follows using similar algebraic manipulations to those used in the derivation
of (4). Recall that the offspring probability generating function for the approximating process
is f (s) = ψ(λG(1− s)). Thus, (5) enables the probability of a global epidemic to be computed
numerically.

3.1.1. Constant isolation probability. The formulae for R∗ and ψ(θ) simplify if the isolation
probability is constant. Suppose that pi = p, i = 1, 2, . . . , n. Then, for k = 0, 1, . . . ,
P(D′ ≥ i | D = k) = (1 − p)i, i = 0, 1, . . . , k, and, using µk = E[D′ | D = k] =∑k
i=1 P(D′ ≥ i | D = k), we obtain

µk =
⎧⎨
⎩
k if p = 0,
(1 − p)[1 − (1 − p)k]

p
if 0 < p ≤ 1.

Substituting these formulae for µk into (4) yields, after a little algebra,

R∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λG

γ

[
1 + (n− 1)λL

λL + γ

]
if p = 0,

λG

p

[
1

γ
−
n−1∑
i=0

(
n− 1

i

)
(1 − p)n−ipi

iλL + γ

]
if 0 < p ≤ 1.

(6)

A similar simplification is possible for ψ(θ). Omitting the details, we obtain

ψ(θ) = γ

θ + γp

[
p + (1 − p)θ

(γ + θ)n−1

n−1∑
i=0

(
n− 1

i

) [γ (1 − p)]n−i−1(θ + γp)i

iλL + γ + θ

]
, θ ≥ 0.

Note that if p = 1, so a household is isolated as soon as a removal occurs in it, then
R∗ = λG/γ and ψ(θ) = γ /(γ + θ). Thus, a global epidemic can occur only if λG > γ and in
that case, if initially there are a initial infectives, all in distinct households, then the probability
of a global epidemic is 1 − R−a∗ .

A related case of practical interest is p1 = 0, p2 = 1, meaning that households are isolated
in the event of a second removal. We find that µ0 = 0, ψ0(θ) = 1, and, for k ≥ 1, µk = 1 and
ψk(θ) = φ(θ). It follows, from (4) and (5), that

R∗ = λG

γ

[
1 + λL(n− 1)

γ + λL(n− 1)

]
, (7)

ψ(θ) = φ(θ)2 + φ(θ + λL(n− 1))(1 − φ(θ)), θ ≥ 0.

3.1.2. Remarks and extensions. The above formulae for the threshold parameter R∗ indicate
that isolation plays a key role in containing epidemic spread. Specifically, from (6) we see
that if there is no isolation, i.e. p = 0, then R∗ grows linearly in the household size n.
Conversely, if isolation may occur then both (6) and (7) show that R∗ = O(1) as n → ∞
and, in particular, R∗ is bounded above independently of household size. Note also that if
p1 = 1, so that isolation always occurs, thenR∗ is independent of household size. This last fact
is essentially a consequence of assuming an exponential infectious period and does not hold in
the nonexponential case.
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Finally, the threshold parameter can be easily derived in the case where the population
consists of households of unequal sizes. Specifically, for k = 1, 2, . . . , let αk denote the
proportion of households in the population containing k susceptibles at the start of the epidemic,
and let α̃k = kαk/

∑
i≥1 iαi denote the probability that a randomly selected individual resides

in a household of size k. Then it can be shown (cf. Ball et al. (1997)) that the threshold
parameter for this model is

R∗ =
∞∑
k=1

α̃kR
(k)∗ ,

where, for k = 1, 2, . . . , R(k)∗ is the R∗ in (4) with n = k.

3.2. Approximation to final size

The final size,Z say, of the epidemic is the number of susceptible individuals that are infected
during its course. Using the methodology of Ethier and Kurtz (1986, Chapter 11), it is possible
to obtain numerical estimates of E(Z) and var(Z), conditional upon a global epidemic. This is
achieved via a metapopulation deterministic approximation to the stochastic model, similar to
that used by Ball (1999) for a households SIS (susceptible → infective → susceptible) model.
Unfortunately, it is not possible to obtain analytic expressions for these quantities, although an
approximation to E[Z] can be obtained by considering a modification of the original epidemic
process in which, once a household is infected by a global contact, no further global contacts
are made with that household. Note that this assumption was made when deriving the threshold
behaviour of the original model, so the modification does not alter the threshold parameter or
the probability of a global epidemic. The final size, ZA say, of the modified process is clearly
no larger than Z, and moreover if λG is sufficiently small then we would expect ZA to be a
reasonable approximation to Z.

Consider the approximating process, and suppose that the number of householdsm is large,
the initial number of infectives is small, and that a global epidemic occurs. Let ρ denote
the expected proportion of households that are ultimately infected. Note that if a household
becomes infected then the active severity generated within it is given by TA as defined in
Section 3.1. It follows that the approximating process is equivalent to a homogeneously
mixing SIR (susceptible → infective → removed) epidemic in which individuals correspond
to households, the individual-to-individual infection rate is λG/m, and the infectious period of
an individual is distributed according to TA. We then have the following standard result (see,
e.g. Andersson and Britton (2000, Equation (4.2))):

1 − ρ = e−λG E[TA]ρ. (8)

If R∗ ≤ 1, then ρ = 0 is the only root of (8) in [0, 1], while if R∗ > 1 then there is a unique
second root giving the proportion of households ultimately infected by a global epidemic. Let
ν denote the expected number of infections (including the initially contacted individual) that
occur within a typical household that has been infected globally in the approximating process.
Since within-household spread in the approximating process is identical to that in the branching
process used to obtain R∗, ν = 1 + E[D]. Recall that D | T0 ∼ Bin(n − 1, 1 − e−λLT0) and
T0 ∼ Exp(γ ). Thus,

ν = 1 + E[E[D | T0]]
= 1 + E[(n− 1)(1 − e−λLT0)]
= 1 + (n− 1)λL

λL + γ
.
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Figure 1: Asymptotic expected proportion of individuals infected by a global epidemic in the
approximating and the original epidemic processes with n = 2, λG = 1, λL = 1

10 , µ = 1
8 , γ = 1

3 ,
and p1 = 1

2 . The original epidemic process is denoted by solid lines and the approximating process is
denoted by dashed lines.

It follows that the expected final size of the epidemic is approximately ρνm. Note that such
arguments can be extended to the case where the population consists of unequal household
sizes, the key difference being that now the approximating process is multitype, where type
corresponds to household size.

Figure 1 illustrates, for various values of λG, λL, γ , and p1, the asymptotic (m → ∞)
expected proportion of individuals ultimately infected by a global epidemic in the approximating
and original epidemic processes, when n = 2, TE ∼ Exp(µ), and TI ∼ Exp(γ ). Numerical
solutions of the metapopulation deterministic approximation referred to above were used to
obtain the plots for the original epidemic process. In each plot the effect of altering one
parameter while the other parameters are held fixed is demonstrated. Altering µ has very little
effect on Z and no effect on ZA so an example is not shown.

The difference in the expected proportion of individuals infected by a global epidemic in
the approximating process and in the original process decreases as λL becomes large. This
is because once a household is infected by a global contact then, with high probability, all
individuals of that household will become infected through local contacts if λL is sufficiently
large. This reduces the effect of the assumption in the approximating process that a household
can be globally contacted only once. Similarly, in either process, if γ is close to 0 then, with high
probability, all individuals in an infected household will become infected and if γ is sufficiently
large then, with high probability, no further infections will take place in an infected household.
Increasing the value of p1 reduces the difference in the expectations of the two processes
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because, as the probability of isolation increases, households in the original epidemic process
will, in general, be isolated sooner and receive no further global contacts. Again, the behaviour
of the original epidemic process becomes more like that of the approximating process. The
difference in the expectations is most striking as λG becomes large. This, of course, is owing to
the assumption in the approximating process that a household once infected globally will have
no further global contacts made with it. As λG increases this assumption becomes less feasible
and consequently ZA is a less reliable approximation to Z. However, for sufficiently small λG,
ZA appears to be a reasonable approximation to Z. Finally, changing the size of households
does not alter the above qualitative conclusions, although the accuracy of the approximation
decreases as the household size increases. Both of these observations were verified by further
numerical investigations not presented here.

4. Arbitrary infectious period

In this section, a coupling argument is used to explore stochastic comparisons for the active
severity and final outcome of single household epidemics with suitably ordered exposure
period distributions, when the hazard function of TI is monotone. This in turn leads to
results concerning the dependency of the threshold parameter on the exposure period. Broadly
speaking, we show that if TI has an increasing hazard rate, then longer exposure periods lead to
less overall severity, at least until the time of the first removal. The opposite conclusion holds
if TI has a decreasing hazard rate.

The intuition underlying such results is as follows. Consider a single household epidemic
with one initial infective, suppose that TI has an increasing hazard rate and that TE = c is fixed.
As c increases, individuals spend longer in the exposed state, and at any given time the severity
generated by that time decreases. However, at any fixed time the removal hazard rate due to
the first infective remains the same, and moreover this hazard increases through time. This
suggests that epidemics with longer exposure periods will generate less severity by the time of
the first removal than those with shorter exposure periods.

The proofs of the results that we derive are sufficiently involved that we concentrate on
conveying the key ideas in what follows. Full details are available in Ball et al. (2005). To start
with, consider a single household epidemic initiated by a single infective, in which both TE and
TI have arbitrary but specified distributions. We now give an alternative construction for this
epidemic, motivated by Sellke (1983).

4.1. Construction of the epidemic

Initially, at time t = 0, there exist a single infective individual and n − 1 susceptible
individuals who are labelled 0 and 1, 2, . . . , n − 1, respectively. For j = 1, 2, . . . , n − 1, let
Qj ∼ Exp(1) denote the infection tolerance of susceptible j , and without loss of generality
relabel the susceptibles so that Q1 ≤ Q2 ≤ · · · ≤ Qn−1. For t ≥ 0, let I (t) be the number of
infectives present at time t and let A(t) = ∫ t

0 λLI (u) du be the total infection pressure exerted
on each susceptible up to time t . Susceptible j becomes exposed when the total infection
pressure reaches Qj , i.e. at time inf{s ≥ 0 : A(s) ≥ Qj }, and then remains so for a time
TE,j ∼ TE, after which they become infective. Note that the individuals are labelled according
to the order in which they enter the exposed state.

For j = 0, 1, . . . , n−1 and t ≥ 0, let hj (t) denote the hazard rate at time t of the infectious
period of individual j , with the convention that hj (t) = 0 if individual j is not infective at
time t . Since the infectious periods of distinct individuals are mutually independent, the total
hazard rate of a removal occurring at time t is h(t) = ∑n−1

j=0 hj (t). Thus, the total removal
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pressure exerted on the household by time t is

V (t) =
∫ t

0
h(u) du.

Let � := {�(t) : t ≥ 0} denote a homogeneous Poisson process with unit rate. Then
removals occur at the points of the process {�(V (t)) : t ≥ 0}. LetW1,W2, . . . ,Wn be indepen-
dent U(0, 1) random variables. If a removal occurs at time t then the probability that individual
i is removed is hi(t)/h(t), i = 0, 1, . . . , n− 1. We therefore stipulate that if the j th removal
occurs at time t , then the individual removed has label min{l ≥ 0 : ∑l

k=0 hk(t) ≥ Wjh(t)}.
As previously, at the time of the first removal all remaining individuals in the household are

vaccinated, with the vaccine having the same action as described in Section 2.1. Additionally,
for j = 1, 2, . . . , n, the household is isolated at the time of the j th removal if Uj ≤ pj , where
Uj ∼ U(0, 1). The epidemic ceases when there is no exposed or infective individual present
in the household. The Qj s, TE,j s, Wj s, Uj s, and the Poisson process � are assumed to be
mutually independent.

4.2. Comparing epidemics with different exposed periods

4.2.1. Preliminaries and technical results. We now restrict our attention to epidemics in which
TE,j = c ≥ 0 for all j , i.e. the exposed period is constant for all individuals. Consider two
such epidemics, E(1) and E(2), with respective exposed periods c and c + �, where |�| is
small, as clarified later. Let λ(t) denote the hazard function of TI and recall that TI has an
increasing failure rate if λ(t) is a nondecreasing function of t . A decreasing failure rate is
defined analagously. We shall derive a comparison result for the severity, at the time of the first
removal, in the two epidemics under the assumption that TI has an increasing failure rate. This
is achieved via a coupling argument using the above construction.

Let (,F ,P) be a probability space upon which is defined a unit rate Poisson process� and
random vectors (Q1,Q2, . . . ,Qn−1), (W1,W2, . . . ,Wn), and (U1, U2, . . . , Un), distributed as
in Section 4.1. For j = 0, . . . , n− 1, set T (1)E,j = c and T (2)E,j = c +�, where � > −c.

Now construct epidemics E(1) and E(2) on  as follows. For i = 1, 2, E(i) is constructed
using the Qj s, Wj s, T (i)E,j s, Uj s, and �. Thus, for a given ω ∈  both epidemics have the
same tolerances to infection and equivalent removal processes, but individuals in E(2) remain
in the exposed state for longer if� > 0 (shorter if� < 0). In the remainder of this section the
explicit dependence on ω is often suppressed.

In this construction, if � > 0 and no removal has occurred in either epidemic, then
I (1)(t) ≥ I (2)(t) and χ(1)(t) ≥ χ(2)(t), where I (j)(t) and χ(j)(t) = ∫ t

0 I
(j)(u) du, are respec-

tively the number of infectives present at time t and the severity generated up to time t in
epidemic E(j). Let tR denote the time of the first removal in E(1).

Consider the epidemicE(2) without the removal of infected individuals and call this epidemic
E(∗). Define t∗ = t∗(tR) = inf{s ≥ 0 : χ(∗)(s) = χ(1)(tR)} to be the time at which the severity
in E(∗) reaches that of E(1) at the time of the first removal. We start with a technical lemma
that is needed in the sequel. Its proof is straightforward via induction.

Lemma 1. Let M > 0 be a positive integer, and suppose that a(0), a(1), . . . , a(M) is any
nondecreasing sequence of nonnegative integers such that a(0) = 0 and a(j) ≤ j for j =
1, 2, . . . ,M . Define a sequence η0, η1, . . . , ηM by η0 = 0 and

ηj = ηj−1 + (j + 1)−1(η̃j−1 − ηj−1 +�), j = 1, 2, . . . ,M,
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where η̃j = ηa(j) and � ≥ 0. Then, for j = 1, 2, . . . ,M ,

ηj ≥ ηj−1, η̃j − ηj +� ≥ 0.

Recall that epidemic E(1) has exposure period c. The next result essentially shows that we
can find a � > 0 such that epidemic E(∗), with exposure period c +�, has removal pressure
at time t∗ that is no less than that of E(1) at time tR. Thus, the comparison occurs at times
corresponding to equal severity. Furthermore, we can find a� < 0 with an appropriate converse
conclusion holding. We provide a sketch proof of part (a); part (b) is similar and hence omitted.

Lemma 2. Suppose that TI has an increasing failure rate.

(a) For P-almost all ω ∈ , for each c ≥ 0 there exists�(ω, c) > 0 such that V (∗)(t∗, ω) ≥
V (1)(tR, ω).

(b) For P-almost all ω ∈ , for each c > 0 there exists�(ω, c) < 0 such that V (∗)(t∗, ω) ≤
V (1)(tR, ω).

If TI has a decreasing failure rate then the above conclusions hold with the inequalities involving
V (∗) and V (1) reversed.

Proof of Lemma 2(a). Note that t∗ ≥ tR by construction. The result is straightforward if
tR = 0 or t∗ = tR, so suppose, henceforth, that t∗ > tR. For j = 1, 2, . . . , n− 1, let sj denote
the time at which the j th infectious individual (excluding the initial infective) appears in E(1).
If tj is the time at which this individual was infected then sj = tj + c. Denote by s∗j and t∗j the
corresponding times in E(∗), so that s∗j = t∗j + c +�. Let

A = {ω ∈  : Qi 	= Qj for i 	= j, i, j = 1, 2, . . . , n− 1}.
Note that P(A) = 1. We assume henceforth that ω ∈ A; whence, s1 < s2 < · · · < sm < tR,
where m = I (1)(tR−)− 1 ≥ 1, the latter inequality holding since t∗ > tR.

The remainder of the proof relies intrinsically upon the relative behaviour of the two severity
functions χ(1) and χ(∗), as illustrated in Figure 2. During [0, tR), χ(1) is piecewise linear,
with change-points at s1, s2 . . . , sm and gradients (χ(1)(t))′ = j for t ∈ (sj−1, sj ), where
s0 = 0. Thus, χ(1)(s1) < χ(1)(s2) < · · · < χ(1)(sm) < χ(1)(tR). Similar comments apply to
χ(∗). Note that, for clarity, the gradients in Figure 2 are not represented exactly.

In the sequel we shall be concerned with the quantity t∗ − tR. To this end, define a sequence
(δj ) = (δ1, δ2, . . . , δm) as illustrated in Figure 2, the point being that t∗−tR = δm. Specifically,
δj is the horizontal distance betweenχ(1) andχ(∗) when both functions have common derivative
j + 1. This sequence is well defined provided that � is small enough, which we assume
to be the case. We also require that I (∗)(t∗−) = I (1)(tR−) = m+ 1, which again holds for
small enough �. Next, it can be shown, by induction, that the definition of ηj in Lemma 1
corresponds to that of δj , assuming that a(j) = (χ(1)(tj ))

′, and δ̃j = δa(j), j = 1, 2, . . . , m.
The a(j)s indicate the difference in infection times, in that t∗j+1 − tj+1 = δa(j) = δ̃j under the
assumption that � is sufficiently small.

The initial infective is present in both E(1) just before time tR, and in E(∗) just before t∗,
since no removals occur in E(∗). The severity in E(1) at time tR is a sum of the contribution
from the initial infective and the other m infectives present at tR−. This and corresponding
reasoning for E(∗) gives

χ(1)(tR) = tR +
m∑
j=1

(tR − sj ) and χ(∗)(t∗) = t∗ +
m∑
j=1

(t∗ − s∗j ),

https://doi.org/10.1239/jap/1189717530 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1189717530


582 F. BALL ET AL.

δ3

δ2

δ1

ts1 s2 s
3 tRs1

* s
3
*s

2
* t*

Figure 2: Typical realisation of the two severity functions χ(1) (solid line) and χ(∗) (dashed line). Here
δm = δ3 = t∗ − tR. The horizontal dotted line indicates χ(1)(tR) = χ(∗)(t∗).

which, combined with the fact that χ(1)(tR) = χ(∗)(t∗), yields

t∗ − tR =
m∑
j=1

{(tR − sj )− (t∗ − s∗j )}. (9)

Similarly, the removal pressure in both epidemics can be written as a sum of the contributions
from the initial infective and any other infectives. It follows that

V (∗)(t∗)− V (1)(tR) =
∫ t∗

tR

λ(u) du−
m∑
j=1

∫ tR−sj

t∗−s∗j
λ(u) du. (10)

Recall now that t∗ − tR = δm, and that (tR−sj )−(t∗−s∗j ) = �+δ̃j−1 − δm. From Lemma 1,
the sequence (δ̃j ) is nondecreasing; hence, so is the sequence ((tR − sj )− (t∗ − s∗j )). Now,
t∗ − tR > 0, so it follows, from (9), that there exists a 1 ≤ k ≤ m such that

(tR − sj )− (t∗ − s∗j ) < 0 for j < k,

(tR − sj )− (t∗ − s∗j ) ≥ 0 for m ≥ j ≥ k.

Define

V + =
∫ t∗

tR

λ(u) du+
k−1∑
j=1

∫ t∗−s∗j
tR−sj

λ(u) du and V − =
m∑
j=k

∫ tR−sj

t∗−s∗j
λ(u) du,
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where a sum is 0 if vacuous. From (10) it follows that V (∗)(t∗)− V (1)(tR) = V + − V −. Now
(9) implies that

t∗ − tR +
k−1∑
j=1

{(t∗ − s∗j )− (tR − sj )} =
m∑
j=k

{(t∗ − s∗j )− (tR − sj )};

whence, the total lengths of the intervals of the integrals in V + is equal to that in V −. However,
since sj < sj+1 for j = 1, 2, . . . , m − 1, u ≥ tR − sk−1 in all of the integrals in V +, whilst
u ≤ tR − sk in all of the integrals in V −. Therefore, V + ≥ V − if TI has an increasing hazard
rate, and V + ≤ V − if TI has a decreasing hazard rate, as required.

4.2.2. Main results and discussion. We now turn our attention to the severity generated up until
the time of the first removal, i.e. T0, and view this quantity as a function of the latent period
length, c, writing T0(c).

Theorem 1. Suppose that TI has an increasing failure rate. Then, for P-almost all ω ∈ ,
T0(c) is nonincreasing on [0,∞). The reverse conclusion holds if TI has a decreasing failure
rate.

Proof. Suppose that TI has an increasing failure rate. (The proof when TI has a decreasing
failure rate is similar, and hence omitted.) Fix ω ∈ A and let c ≥ 0. Then by Lemma 2(a)
there exists � = �(ω, c) > 0 such that V (∗)(t∗) ≥ V (1)(tR). Let t (2)R denote the time of the
first removal in E(2). Then t (2)R ≤ t∗, since V (∗) and V (2) are nondecreasing and coincide over
[0, t (2)R ], and the same realisation of � is used to construct both E(1) and E(2). Hence, since
χ(1), χ(2), and χ(∗) are nondecreasing, and χ(2) and χ(∗) coincide over [0, t (2)R ],

T0(c +�) = χ(2)(t
(2)
R ) = χ(∗)(t (2)R ) ≤ χ(∗)(t∗) = χ(1)(tR) = T0(c).

Moreover, it is easily seen that Lemma 2(a) remains valid with � replaced by any smaller
positive value, i.e. by any 0 < x ≤ �. We may thus conclude that, for any c ≥ 0, there exists
�1 = �1(c) > 0 such that T0(c) ≥ T0(c + x) for all 0 ≤ x ≤ �1. A similar argument using
Lemma 2(b) shows that, for any c > 0, there exists�2 = �2(c) > 0 such thatT0(c) ≤ T0(c−x)
for all 0 ≤ x ≤ �2. Finally, it can be shown by contradiction, using a bisection argument, that
these two facts imply that T0(c) is nonincreasing on [0,∞), and the result follows.

Recall that, in the single household epidemic, D is the number of initially susceptible
individuals that are ultimately infected and TA is the active severity. We view these quantities
as functions of c and write D(c) and TA(c), respectively.

Corollary 1. Suppose that TI has an increasing failure rate. Then

(i) D(c) is nonincreasing on [0,∞) for P-almost all ω ∈ ,

(ii) if p1 = 1 then TA(c) is nonincreasing on [0,∞) for P-almost all ω ∈ ,

(iii) if p1 = 1 or pi = 0, i = 1, 2, . . . , n, then E[TA(c)] is nonincreasing on [0,∞).

The reverse conclusions hold if TI has a decreasing failure rate.

Proof. Part (i) follows from Theorem 1 on noting thatD(c) = |{j : Qj ≤ λLT0(c)}|, where
| · | denotes cardinality, since the same Qj s are used to construct the epidemic for different c.
Part (ii) follows from Theorem 1 since TA(c) = T0(c) if p1 = 1.
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For part (iii), if p1 = 1 then the result is an immediate consequence of part (ii). Otherwise,
label the individuals in the household 0, 1, . . . , n − 1, with 0 being the initial infective, and
construct the epidemic as in Section 2.1 but without global infection. For j = 0, 1, . . . , n− 1,
let αj = 1 if individual j is infected by the epidemic and let αj = 0 otherwise, and also let TI,j
denote the infectious period of individual j if they become infected. Note that if pi = 0, i =
1, 2, . . . , n, then TI,j and αj are independent (j = 0, 1, . . . , n − 1) and TA = ∑n−1

j=0 TI,j αj .
Thus,

E[TA] = (1 + E[D])E[TI], (11)

and the result follows using part (i).

Theorem 1 and Corollary 1 can be strengthened when TI does not have an exponential
distribution. In particular, it can be shown that if households are necessarily isolated when their
first removal occurs, i.e. p1 = 1, or there is no isolation, i.e. pi = 0, i = 1, 2, . . . , n, then
E[TA(c)] is strictly decreasing in c if TI has an increasing failure rate.

Recall that the threshold parameter R∗ of the households model described in Section 2.1
is given by R∗ = λG E[TA]. Suppose that TI has an increasing failure rate, and that either
p1 = 1 or pi = 0, i = 1, 2, . . . , n. Then Corollary 1(iii) implies that, in obvious notation,
R∗(c) is nonincreasing on [0,∞). Thus, in particular, upper and lower bounds for R∗(c) can
be obtained by letting c = 0 and c → ∞, respectively.

Bounds for R∗ may be also derived for nonconstant exposure periods as follows. Suppose
that TE has an arbitrary but specified distribution and construct epidemics E(1) and E(2) as in
Section 4.2.1, where, for j = 1, 2, . . . , n−1, T (1)E,j is distributed according to TE and T (2)E,j = ∞.
Note thatE(2) describes a situation in which only the initial infective contributes to the severity
and the removal pressure. By similar arguments to those in the proof of Lemma 2, it can be
shown that for P-almost all ω ∈ , V (∗)(t∗) ≥ V (1)(tR) if TI has an increasing failure rate.
Thus, if p1 = 1 or pi = 0, i = 1, 2, . . . , n, letting TE → ∞ yields a lower bound for R∗.
Similarly, an upper bound for R∗ is obtained if TI has a decreasing failure rate.

Calculation of theR∗ bounds as TE → ∞ is achieved as follows. Note that if TE → ∞ then
T0 → TI,0, whereTI,0 denotes the infectious period of the initial infective. Thus,R∗ = λG E[TI]
ifp1 = 1, whilst ifpi = 0, i = 1, 2, . . . , n, then, recalling thatD | T0 ∼ Bin(n−1, 1−e−λLT0)

and using (11), we have R∗ = λG E[TI](1 + (n− 1)(1 − φI(λL))), where φI(λL) = E[e−λLTI ].
Finally, consider two epidemics,E(1) andE(2), with a common infectious period distribution

but in which the exposure periods inE(1) are stochastically less than those inE(2). It is tempting
to conjecture that if TI has an increasing failure rate, then the severity at the time of the first
removal inE(1) exceeds that inE(2), from which results analogous to Corollary 1 would follow.
When the household size is n = 2, the conjecture can be established analytically by arguing
as in Lemma 2. For household sizes larger than 2, this approach no longer holds, although
numerical calculations continue to support the conjecture.

5. Concluding comments

We have provided a general framework for evaluating the usefulness of dynamic vaccination
and isolation strategies for SEIR epidemics among a community of households, explored in
detail the case of exponentially distributed infectious periods (when the threshold behaviour
does not depend on the exposed period distribution) and analysed the effect of the exposed
period distribution when the infectious period is not exponentially distributed. The model
can be generalised in several ways to make it more realistic. As previously indicated, it is
straightforward to extend the analyses of the paper to incorporate unequal household sizes;
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cf. Ball et al. (1997, Section 3.5). The model can be extended to include a random vaccine
response, for example by using the framework described by Becker and Starczak (1998),
and the exposed period can be split into a vaccine-sensitive period followed by a vaccine-
insensitive period, which is appropriate for smallpox. These latter two extensions present no
major conceptual difficulties, although calculation of the threshold parameterR∗ becomes much
more involved, even for exponentially distributed infectious periods.

The model can be viewed as incorporating local contact tracing, in that housemates of a
removed individual are immediately vaccinated and possibly isolated. This can be extended to
global contacts, for example by assuming that a globally contacted individual is traced (and
vaccinated) with a given probability when their infector is removed; see Becker et al. (2005),
who considered a similar policy for controlling an emerging infectious disease. The analysis of
models incorporating such global contact tracing is more complicated and will be considered
in a separate paper.
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