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Abstract Let f be meromorphic of finite order in the plane, such that f (k) has finitely many zeros, for
some k > 2. The author has conjectured that f then has finitely many poles. In this paper, we strengthen
a previous estimate for the frequency of distinct poles of f . Further, we show that the conjecture is true
if either

(i) f has order less than 1 + ε, for some positive absolute constant ε, or

(ii) f (m), for some 0 6 m < k, has few zeros away from the real axis.
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1. Introduction

Suppose that f is a function transcendental and meromorphic in the plane. By a theorem
of Pólya [9, 26], if f has at least two poles, then for each sufficiently large k the kth
derivative f (k) has at least one zero. The following theorem confirmed a conjecture of
Hayman [8] from 1959.

Theorem 1.1 (see [5, 7, 18]). Suppose that m > 0 and k > 2 and that f is mero-
morphic in the plane such that f (m) and f (m+k) each have finitely many zeros. Then
f (m+1)/f (m) is a rational function. In particular, f has finite order and finitely many
poles.

We refer the reader to [2, 6, 13, 19, 23] for related results. Now, Gol’dberg has con-
jectured that the frequency of distinct poles of f is controlled by the frequency of zeros
of a single derivative f (k), provided k > 2, and the author made the following, related
conjecture in [21].

Conjecture 1.2. Suppose that k > 2 and f is meromorphic of finite order in the
plane and that f (k) has finitely many zeros. Then f has finitely many poles.

Obviously, if Conjecture 1.2 is true for k = 2, then it is true for k > 2. On the other
hand, Conjecture 1.2 is false for functions of infinite order, as shown in [21] by examples
of the form f ′′/f ′ = ehg−1 with g, h entire, for which both f ′ and f ′′ are zero-free. The
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following theorem, in which the notation is that of [9], summarizes some results in the
direction of Conjecture 1.2.

Theorem 1.3 (see [22,23]). Suppose that f is meromorphic of finite order ρ in the
plane and that f ′′ has finitely many zeros. Then

N̄(r, f) = O(log r)3, r →∞. (1.1)

If, in addition, f satisfies any one of the following, then f has finitely many poles:

(i) N(r, 1/f ′) = o(r1/2) as r →∞;

(ii) T (r, f) = O(r(log r)δ) as r →∞, with δ a constant satisfying 0 < 3200e16δ < 1;

(iii) there exists ε > 0 such that all but finitely many poles w of f have multiplicity
µ(w) 6 |w|ρ−ε.

The main results of this paper are substantial improvements of (1.1) and of part (ii)
of Theorem 1.3. First we have the following theorem.

Theorem 1.4. Suppose that f is meromorphic of finite order ρ in the plane, and that
f ′′ has finitely many zeros. Then

N̄(r, f) 6 κ(log r)2, r →∞, (1.2)

in which κ is a positive constant depending only on the asymptotic values of f ′.

The key to the proof of Theorem 1.4 is a new way, described in § 4, of estimating f on
regions where f ′ is close to its finite asymptotic values. Theorem 1.4 leads to the next
result, establishing Conjecture 1.2 for functions of order not much greater than 1.

Theorem 1.5. There exists a constant ε with 0 < ε < 1
2 such that if f is meromorphic

of order less than 1 + ε in the plane and f ′′ has finitely many zeros, then f has finitely
many poles.

Our last result proves Conjecture 1.2 for functions for which some derivative f (m),
with 0 6 m < k, has relatively few zeros away from the real axis.

Theorem 1.6. Suppose that 0 6 m < k and k > 2 and that φ(r) is a positive function
tending to 0 as r → ∞. Suppose further that f is meromorphic of finite order ρ in the
plane, and that f (k) has finitely many zeros. Finally, suppose that

lim sup
r→∞

log+N∗(r, 1/f (m))
log r

< ρ0 <
1

2− 1/ρ
, (1.3)

in which N∗(r, 1/f (m)) counts the zeros of f (m) which lie outside the set {z : |arg z2| 6
φ(|z|)}. Then f has finitely many poles.
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Note that by part (ii) of Theorem 1.3 we may assume that ρ > 1 in Theorem 1.6.
Functions satisfying the hypotheses of Theorem 1.6 abound: for example f(z) = 1− eiz.
There is a substantial literature dealing with entire and meromorphic functions f , some
of whose derivatives have only real zeros [15,16,29]. Theorem 1.6 does not really belong
to this strand: rather, in addition to improving part (i) of Theorem 1.3, it shows that
some extra geometric information on the distribution of zeros of f (m) suffices to prove
Conjecture 1.2.

2. Lemmas needed for the theorems

Throughout this paper we denote by B(z0, r) the Euclidean disc {z : |z − z0| < r}, by
S(z0, r) the circle {z : |z − z0| = r}, and by A(z0, R, S) the open annulus {z : R <

|z − z0| < S}.
Lemma 2.1 (see [17, 22]). Suppose that h(z) =

∑∞
j=1 ajz

j maps the disc B(0, s)
conformally onto a simply connected domain D of finite area A. Then, for real θ and
0 < r < s, the length L(r, θ) of the image under h of the line segment z = teiθ, 0 6 t 6 r,
satisfies

L(r, θ)2 6 A

π
log
(

1
1− r2s−2

)
.

Lemma 2.2 (see [24]). Suppose that d > 1 and that F is transcendental and mero-
morphic in the plane with T (r, f) = O(rd) as r → ∞. Then there exist arbitrarily
small positive R such that F (z) has no multiple points with |F (z)| = R and the length
L(r,R, F ) of the level curves |F (z)| = R lying in |z| 6 r satisfies L(r,R, F ) = O(r(3+d)/2)
as r →∞.

Next we require Tsuji’s well-known estimate for harmonic measure [30, p. 116].

Lemma 2.3 (see [30]). Let D be a simply connected domain not containing the
origin, and let z0 lie in D. Let r 6= |z0|. Let θ(t) denote the angular measure of D∩S(0, t),
and let Dr be the component of D\S(0, r) which contains z0. Then the harmonic measure
of S(0, r) with respect to the domain Dr, evaluated at z0, satisfies

ω(z0, S(0, r), Dr) 6 C exp
(
−π
∫
I

dt
tθ(t)

)
, (2.1)

in which C is an absolute constant, and I = [2|z0|, r/2] if r > 4|z0|, with I = [2r, |z0|/2]
if 4r < |z0|.

Note that (2.1) for 4r < |z0| is obtained from the same estimate for the case r > 4|z0|
by the substitution ζ = 1/z.

Lemma 2.4. Let 0 < ρ < 10−3 and let Ω = {z : ρ < |z| < 1, Im(z) > 0}. Let
F0 = {eit : π/3 6 t 6 2π/3}. Let z1 lie in Ω with 200ρ 6 |z1|. Then

ω(z1, F0, Ω) > cρ2(|z1|−1 − |z1|) sin(arg z1), (2.2)

in which c is a positive constant, independent of ρ and z1.
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Proof. Let dj denote positive constants, independent of ρ and z1, and set w = φ(z) =
2ρ(z + 1/z). Then |z| = ρ gives |w| > 3/2, so that φ(Ω) contains the semi-disc D1 =
{w : |w| < 1, Im(w) < 0}. Also φ(F0) = G0 is a subset of [−4ρ, 4ρ] of measure d1ρ, and
w1 = φ(z1) has |w1| 6 1/50.

Let ψ map D1 to the unit disc, with ψ(−i/2) = 0. Then the Schwarz reflection principle
(or elementary calculation) gives d2 6 |ψ′(w)| 6 1/d2 for w in D1 ∩B(0, 1

4 ), and so
Poisson’s formula leads to (2.2), since

ω(z1, F0, Ω) > ω(w1, G0, D1) > d3ρ dist{w1, ∂D1} = d3ρ|Im(w1)|.

�

Next we recall that for 0 < L < ∞ and a subset E of (0,∞) the upper logarithmic
density of E satisfies

logdens E = lim sup
r→∞

∫
[1,r]∩E dt/t

log r
= logdens {t : Lt ∈ E}. (2.3)

Lemma 2.5. Let S(r) be an unbounded positive non-decreasing function on [r0,∞),
continuous from the right, of finite order ρ. Let A > 1, B > 1. Then

logdens G 6 ρ
(

logA
logB

)
, G = {r > r0 : S(Ar) > BS(r)}.

Lemma 2.5 is stated in [10] for a characteristic function T (r, F ), but the proof goes
through for S(r). Finally, we require some standard facts from the Wiman–Valiron theory
[11,31]. Let F be a transcendental entire function. Provided r is normal for F , that is
provided r lies outside an exceptional set E of finite logarithmic measure, we have, for
z0 with |z0| = r and |F (z0)| > (1− o(1))M(r, F ),

F ′(z0)
F (z0)

= ν(r)z−1
0 (1 + o(1)), (2.4)

in which ν(r) = ν(r, F ) is the non-decreasing central index of F . Suppose now that
G is transcendental and meromorphic in the plane, with finitely many poles b1, . . . , bq,
repeated according to multiplicity. Then F (z) = G(z)

∏q
j=1(z − bj) is entire and the

estimate (2.4) holds with F replaced by G. Thus, with a slight abuse of notation, we may
regard ν(r, F ) as the central index of G.

3. Preliminaries

Suppose that h is transcendental and meromorphic in the plane, and that h(z) tends
to the finite complex number a as z tends to infinity along a path γ. Then the inverse
function h−1 is said to have a transcendental singularity over a [3,25]. For each positive
t, a domain C(t) is uniquely determined as that component of the set C ′(t) = {z :
|h(z)−a| < t} which contains an unbounded component of the intersection of C ′(t) with
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the path γ. Here C(t) ⊆ C(s) if 0 < t < s, and the intersection of all the C(t), t > 0, is
empty.

The singularity of h−1 over a corresponding to γ is said to be direct if C(t), for some
positive t, contains finitely many zeros of h(z)−a, and indirect otherwise. If the singularity
is direct, then C(t), for sufficiently small t, contains no zeros of h(z) − a. Singularities
over ∞ are classified analogously.

Theorem 3.1 (see [3]). If the transcendental meromorphic function h has finite or-
der and the inverse function h−1 has an indirect transcendental singularity over a, then
a is a limit point of critical values of h, that is, values taken by h at multiple points of h.

Consequently, if h is meromorphic of finite order in the plane with finitely many crit-
ical values, then all transcendental singularities of h−1 are direct and, by the Denjoy–
Carleman–Ahlfors Theorem [3,25], the number of direct transcendental singularities of
h−1 is at most 2ρ(h).

Next we need a modification of some standard facts discussed in [25]. Suppose that
F is a transcendental meromorphic function with finitely many asymptotic values an,
and with finitely many critical values bn. Suppose that F has no asymptotic values in
c0 6 |w| < ∞ and no critical values in c1 6 |w| < ∞, where c0 6 c1. Let V0 be the
domain obtained by deleting from the annulus A(0, c0,∞), the half-open line segment

w = ρei arg bn , c0 < ρ 6 c1,

for each finite non-zero critical value bn of F .
Consider a component C0 of the set F−1(V0), and choose z0 ∈ C0 and v0 such that

ev0 = w0 = F (z0). Then
φ(v) = ψ(ev) = F−1(ev),

with ψ = F−1 the branch of the inverse function mapping w0 to z0, extends by continu-
ation to an analytic function on the simply connected domain U0 = {v : ev ∈ V0}.

Further, φ maps U0 into C0. Indeed, φ(U0) = C0, for if z∗ ∈ C0 we may join z0 to z∗

by a path γ1 in C0 and choose a path γ2 in U0 starting at v0 such that eγ2 = F (γ1). Then
F (φ(γ2)) = F (γ1) and so φ(γ2) = γ1 by uniqueness of lifts, since both paths start at z0.

There are now two possibilities. The first is that the function φ is univalent on C0,
so that the image under φ of Re(v) = 1 + log c1 is a simple curve tending to infinity in
both directions. Thus, by a standard argument, such as the Phragmén–Lindelöf principle,
φ(u)→∞ as u→∞ with Re(u) > 1 + log c1, and C0 is an unbounded simply connected
domain containing a path tending to infinity on which F (z)→∞.

On the other hand, if φ is not univalent in U0, then the open mapping theorem shows
that φ has period k2πi, for some minimal positive integer k. In this case ψ1(ζ) = ψ(ζk) =
φ(k log ζ) extends to be analytic in W0 = {ζ : ζk ∈ V0}, mapping W0 univalently onto
C0. Also, ψ1(ζ) has a limit as ζ →∞, which must be finite, and so a pole z1 of F , since
F is transcendental, and F 1/k : C0 ∪ {z1} →W0 ∪ {∞} is univalent.

The same two possibilities occur for any component C1 of the set {z : c0 < |F (z)| <∞}
such that C1 contains no critical point of F .
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4. An estimate on components where the derivative is small

Lemma 4.1. Suppose that G is a transcendental meromorphic function of finite order
ρ and that G′ has no asymptotic values in 0 < |w| 6 d1 < ∞, and no critical values in
0 < |w| 6 d2 6 d1, and that G′ has finitely many critical points z with |G′(z)| 6 d1.

Form the domain V0 by deleting from the annulus A(0, 0, d1) the half-open line segment

w = sei arg bn , d2 6 s < d1,

for each non-zero finite critical value bn of G′. Let D be a component of the set (G′)−1(V0)
containing a path γ on which G′(z)→ 0 as z →∞.

Let N be an integer with N > 2+ρ. Choose d3 with 0 < d3 < d2 such that |G′(z)| > d3

on some circle S(0, σ) with 1 6 σ 6 2, and let D1 = {z ∈ D : |z| > σ, |G′(z)| < d3}.
Choose d as in Lemma 2.2, with 0 < d < d3, such that the length of the level curves
|zNG′(z)| = d lying in |z| 6 r is O(r2+ρ) for all sufficiently large r. Define

u(z) =

log+
∣∣∣∣ d

zNG′(z)

∣∣∣∣, if z ∈ D1;

0, otherwise.

Then u(z) is subharmonic in the plane, and D contains finitely many components Wj of
the set {z : u(z) > 0}, and these are simply connected. Let z∗ ∈ Wj . Then there exists
M∗ > 0 such that to each z ∈Wj corresponds a path γz from z∗ to z, lying in the closure
of Wj , with ∫

γz

|tµG′(t)| |dt| 6M∗ (4.1)

for each non-negative integer µ with N − µ > 2 + ρ.
Finally, there exist positive constants S0, S1 depending on D such that for z in D with
|z| > S0 and |G′(z)| < e−1d1 we have

|G(z)| 6 S1 +
C|zG′(z)|

log |d1/G′(z)| , (4.2)

in which C is a positive absolute constant, in particular not depending on d1, d2, G or D.

Proof. The Wj are simply connected by the maximum principle, since zNG′(z) 6=
0,∞ on D1, by the discussion in § 3. Since G′ has finite order and

B0(r, u) 6 3m(2r, u) 6 3m(2r, 1/G′) +O(log r), r →∞,
in which B0(r, u) = sup{u(reit) : 0 6 t 6 2π}, the number of Wj is finite [12, Chapter 8].

Next, if z is in Wj , then we join z∗ to z by a path γz in the closure of Wj consisting of
part of the ray arg t = arg z∗, part of the circle |t| = |z|, and part of the boundary ∂Wj

of Wj . Dividing ∂Wj into its intersections with annuli {z : 2q−1 < |t| 6 2q} we have∫
∂Wj

|tµG′(t)| |dt| 6
∞∑
q=q0

d2(µ−N)(q−1)O(2q(2+ρ)) +O(1) 6M∗µ,
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and ∫
γz

|tµG′(t)| |dt| 6M∗µ +
∫ ∞
|z∗|

dtµ−N dt+ 2πd|z|1+µ−N = O(1),

which proves (4.1).
To prove (4.2), fix z0 ∈ D. Let g = G′ and let ψ = g−1 be that branch of the inverse

function mapping w0 = g(z0) to z0. Choose v0 such that e−v0 = w0 and set

φ(v) = ψ(e−v) = g−1(e−v), H = {v : e−v ∈ V0}.
Then H is the half-plane {v : Re(v) > log(1/d1)} with the half-open line segments

Ln,q = {s+ q2πi− i arg bn : log(1/d1) < s 6 log(1/d2)}, q ∈ Z,
deleted. Further, as in § 3, φ is analytic and univalent on H and φ(H) = D, and D is
simply connected.

Now suppose that we attempt to analytically continue φ along one of the line segments
Ln,q. This continuation can only fail if φ(v) hits a critical point of g and, since φ is
univalent on H, this can only happen for finitely many Ln,q. Hence there exists a constant
R0 > 0 (depending on D) such that φ extends analytically and univalently to the set

H1 = {v : Re(v) > c0, |v − c0| > R0}, c0 = log(1/d1),

with φ(v) 6= 0 on H1. Set

H2 = {v : Re(v) > c0, |v − c0| > 100R0}.
Then φ(H \H2) is bounded, since G′ has no asymptotic value in 0 < |w| 6 d1. Further,
for v1 in H2, φ is univalent on the disc B(v1,

1
2 (Re(v1)− c0)).

We apply a logarithmic change of variables as used in [1, 2, 4] and elsewhere. Since
φ 6= 0 on H1, we may define an analytic and univalent branch of ζ = log φ(v) on H2. By
Koebe’s one-quarter theorem [27], we thus have∣∣∣∣dζdv

∣∣∣∣ =
∣∣∣∣φ′(v)
φ(v)

∣∣∣∣ 6 8π
Re(v)− c0 <

32
Re(v)− c0 (4.3)

for v in H2. Let v1 be in H2 with

z1 = φ(v1), v1 = Q+ iy, Q = log
∣∣∣∣ 1
G′(z1)

∣∣∣∣ > c0 + 1. (4.4)

Let L be the line given by v = s+ iy, s > Q. For s > Q, by (4.3),∣∣∣∣φ′(s+ iy)
φ(s+ iy)

∣∣∣∣ 6 32
s− c0 ,

and so

|φ(s+iy)| 6 |φ(Q+iy)| exp
(∫ s

Q

32(t−c0)−1 dt
)

= |φ(Q+iy)|(s−c0)32(Q−c0)−32, (4.5)
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and, recalling (4.3) and (4.4),

|φ′(s+ iy)| 6 |z1|32(s− c0)31(Q− c0)−32. (4.6)

Now φ(L) is unbounded, and we have∫
φ(L)
|G′(z)| |dz| =

∫
L

exp(−Re(v))|φ′(v)| |dv| =
∫ ∞
Q

e−s|φ′(s+ iy)|ds.

Thus, (4.6) and integration by parts give∫
φ(L)
|G′(z)| |dz| 6 |z1|

∫ ∞
Q

e−s32(s− c0)31(Q− c0)−32 ds 6 C1|z1|e−Q(Q− c0)−1, (4.7)

in which C1 is a positive absolute constant.
Now we assert that for large s we have z = φ(s + iy) ∈ Wj , for some j. By (4.4) and

(4.5),
|z| 6 |z1|(s− c0)32(Q− c0)−32

and so

s = log
∣∣∣∣ 1
G′(z)

∣∣∣∣ > c0 + (Q− c0)
∣∣∣∣ zz1

∣∣∣∣1/32

so that

log |z| = o

(
log
∣∣∣∣ 1
G′(z)

∣∣∣∣)
as s → +∞. It follows that a sub-path of φ(L) joins z1 to a point in one of the finitely
many Wj . But G(z) = O(1) on Wj , so that using (4.7) we deduce (4.2), and Lemma 4.1
is proved. �

5. Critical points and asymptotic values

Suppose now that F is meromorphic of finite order in the plane, such that F has infinitely
many poles, but F ′ has finitely many zeros. Then, by Theorem 3.1, F has finitely many
asymptotic values, and each corresponds to finitely many direct transcendental singular-
ities [3,25] of the inverse function.

Let J be a circle or a simple closed polygonal path, such that every finite asymptotic
value of F lies on J , but is not a vertex of J . Then J divides its complement in C∗ =
C ∪{∞} into two simply connected domains B1 and B2, such that B1 is bounded, while
∞ ∈ B2. Fix conformal mappings

hm : Bm → ∆ = B(0, 1), m = 1, 2, h2(∞) = 0.

By the Schwarz reflection principle, if I is a line segment contained in J and not meeting
any vertex of J , then for m = 1, 2 there are positive constants dm such that

dm 6 |h′m(w)| 6 1
dm

, w ∈ I. (5.1)
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Let J ′ be the set of vertices of J and asymptotic values of F , and let J ′′ = J \ J ′. For
each component J∗ of J ′′ we choose an arc Iq of J∗ whose closure does not meet J ′, and
for each such Iq there are constants dm as in (5.1).

We consider the components of the sets F−1(Bm). This is more complicated than
in [22] because of the different way that J was chosen. It is convenient to take a quasi-
conformal homeomorphism ψ1 of the extended plane onto itself such that ψ1(∞) = ∞
and ψ1(B1) = ∆. There exist a function g meromorphic in the plane and a quasiconformal
mapping ψ such that

ψ(∞) =∞, ψ1 ◦ F = g ◦ ψ.
This g has finitely many asymptotic values, all of modulus 1, and g′ has finitely many
zeros. By choosing ψ1 appropriately, we may assume that 0 is not a critical value of g and
that the distinct finite asymptotic and critical values of g have pairwise distinct principal
arguments.

Since g may have finite critical values off the unit circle, we choose c1 ∈ (0, 1) and
c2 > 1 such that g has no critical values in |w| 6 c1 nor in c2 6 |w| <∞. Let M be the
union of the line segments

w = sei arg ζn , c1 6 s 6 c2,

in which the ζn are the finite critical values of g, and let

A1 = B(0, 1) \M, A2 = {w : 1 < |w| 6∞} \M.

Then, as in § 3, all components of the sets g−1(Aj) are simply connected. Further, for each
component T of g−1(A2), either T contains just one pole of g, or T contains no pole of g,
but instead a path tending to infinity on which g(z) tends to infinity. Because the inverse
function g−1 has finitely many singularities, there are only finitely many components T
of this second type.

Consider now a pole z1 of g. Then z1 lies in a component T1 of the set g−1(A2). We
assert first that if z1 is large enough, then T1 is unbounded, and to prove this we assume
the contrary. Since g′ has finitely many zeros the closure T2 of T1 is a bounded component
of the set {z : |g(z)| > 1} and, by analytic continuation, T1 is a subset of a bounded
component T3 of the set {z : g(z) ∈ C∗ \ A1}, such that g′(z) 6= 0 on T3. Hence the set
g−1(A1) has a multiply connected component, which is impossible.

Consider next an unbounded component S of {z : |g(z)| < 1} having no zero of g′ in
its closure in the finite plane. By § 3, S is simply connected and conformally equivalent
under g to the unit disc. There must be at least one path tending to infinity in S on
which g(z) tends to one of its finitely many asymptotic values: we call S type I if there
is only one such asymptotic value of g approached along a path tending to infinity in S,
and type II if there are at least two distinct such values. Clearly a type I component S
with no zero of g′ on its boundary ∂S is such that ∂S consists of just one simple analytic
curve going to infinity in both directions, and such an S cannot separate the plane. We
shall call an unbounded component S′ of the set F−1(B1) type I or II if S = ψ(S′) is a
type I or II component of {z : |g(z)| < 1}.
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We return now to a pole z1 of g, of multiplicity p, with |z1| large, lying in a component
T1 of g−1(A2). Then T1 is unbounded and cannot share a finite boundary point with
another component of g−1(A2). Thus T1 is a subset of a component T4 of {z : |g(z)| > 1},
such that ∂T4 ⊆ ∂T1 and such that g′ has no zeros in the closure of T4 in the finite plane.
By § 3, T4 is simply connected and v(z) = g(z)−1/p is conformal on T4. Each boundary
point of T4 is a boundary point of a component of g−1(A1). Indeed, the boundary of T4

consists of finitely many simple level curves L∗ of g on which arg g(z) is monotone, each
mapped by g onto an open arc of |w| = 1. Each such arc must form a boundary curve of
a type I or type II component of the set {z : |g(z)| < 1}, with type II for at least one L∗.
In particular, g must have at least two distinct finite asymptotic values and so must F .

Lemma 5.1. Let M1 > 0 and let φ : [0,∞) → [0,∞) be such that φ(r) → ∞ as
r →∞, and let

A(k) = {z : r1/k 6 |z| 6 rk} (5.2)

for large r and for positive integer k. Suppose that A(2) contains N1 distinct poles
z1, . . . , zN1 of F , with N1 > φ(r). Then provided r is large enough, there exist N > c0N1

distinct type II components Ej of the set F−1(B1), each with the property that

Lj = {z ∈ Ej : |V (z)| < 1− r−M1} ⊆ A(8), V = h1 ◦ F. (5.3)

Here c0 is a positive constant depending only on the finite asymptotic values of F .

Proof. Let Dj be the component of F−1(B2) in which zj lies, and denote by θj(t)
the angular measure of the intersection of Dj with the circle S(0, t). Since r is assumed
large the Dj are simply connected.

We shall use in this proof c to denote positive constants, not necessarily the same at
each occurrence, but depending only on the asymptotic values of F , and in particular
not on r or N1. By the discussion above, we may assume that at least 256N of these Dj ,
say D1, . . . , D256N , with N an integer satisfying

N > cN1 > cφ(r), (5.4)

are such that the following is true. There are distinct finite asymptotic values a1, a2 of F
such that to each Dj corresponds a type II component Ej of F−1(B1), the boundaries of
Dj and Ej sharing a component Kj . Here Kj is a simple piecewise smooth curve going
to infinity in both directions and mapped by F onto a fixed sub-path J1 of the curve J ,
the closure of J1 joining a1 to a2. Since F is univalent on each Ej , we have Ej 6= Ek for
1 6 j < k 6 256N .

Now each Dj meets |z| > S1, and at least 64N of the Dj , 1 6 j 6 256N , are such that

∫ (1/2)r4

2r2

dt
tθj(t)

> cN log r, (5.5)
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since if (5.5) fails for D1, . . . , DM we have

M2 6
( M∑
j=1

θj(t)
)( M∑

j=1

1/θj(t)
)
,

cNM log r >
M∑
j=1

∫ (1/2)r4

2r2

dt
tθj(t)

> M2

π
log(r/2).

Of these 64N domains Dj , at least 16N of them, say D1, . . . , D16N , have∫ (1/2)r1/2

2r1/4

dt
tθj(t)

> cN log r. (5.6)

If the closures of at least 16N of the Dj satisfying (5.5) fail to meet {z : |z| 6 2r1/4},
then we choose 16N of these domains, and (5.6) is obvious, while otherwise we use the
same argument as in (5.5).

We now fix a sub-arc J0 of J1, one of the arcs Iq chosen following (5.1). We write pj for
the multiplicity of the pole of F at zj , and for 1 6 j 6 16N we define vj = (h2◦F )1/pj , so
that vj maps Dj conformally onto ∆, with vj(zj) = 0. The path Kj forming the boundary
between Dj and Ej has a sub-path λj mapped onto J0 by F . As z describes the arc λj ,
the image (h2 ◦ F )(z) describes an arc of the unit circle of length at least c, using (5.1),
so that vj(z) describes an arc of the unit circle of length at least c/pj > cr−ρ(F )−1. This
gives

ω(zj , λj , Dj) > c/pj > cr−ρ(F )−1. (5.7)

Set σj = λj \A(4). Since zj lies in A(2), Lemma 2.3, (5.5) and (5.6) imply that

ω(zj , σj , Dj) 6 c exp
(
−π
∫ (1/2)r4

2r2

dt
tθj(t)

)
+ c exp

(
−π
∫ (1/2)r1/2

2r1/4

dt
tθj(t)

)
6 c exp(−cN log r).

Thus (5.4) and (5.7) give, provided r is large enough,

ω(zj , λ∗j , Dj) > c/pj > cr−ρ(F )−1, λ∗j = λj ∩A(4). (5.8)

By (5.8), λ∗j is mapped by vj into a finite union of sub-arcs of the unit circle of total
length at least c/pj and so is mapped by F into a union of sub-arcs of J0 of total length
at least c, using (5.1) again. Let φj(t) be the angular measure of the intersection of Ej
with the circle S(0, t). The above reasoning gives at least N of the Ej , say E1, . . . , EN ,
each having ∫ (1/2)r8

2r4

dt
tφj(t)

> cN log r,
∫ (1/2)r1/4

2r1/8

dt
tφj(t)

> cN log r. (5.9)

We know that V maps Ej univalently onto ∆, with λ∗j mapped onto a union µj of sub-arcs
of the unit circle of total length at least c. Hence

ω(w, µj , ∆) > c(1− |w|) (5.10)
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for |w| < 1. If z lies in Ej \ A(8), then, because λ∗j lies in A(4), Lemma 2.3 and (5.9)
imply that

ω(V (z), µj , ∆) = ω(z, λ∗j , Ej)

6 c exp
(
−π
∫ (1/2)r8

2r4

dt
tφj(t)

)
+ c exp

(
−π
∫ (1/2)r1/4

2r1/8

dt
tφj(t)

)
6 c exp(−cN log r).

(5.3) now follows using (5.10). �

6. Proof of Theorem 1.4

We assume that f is meromorphic of finite order ρ(f), and that f has infinitely many
poles, while f ′′ has finitely many zeros. We apply the reasoning of § 5, with F = f ′, and
retain the notation there. Let the finite asymptotic values of f ′ be an, repeated according
to how often they occur as direct transcendental singularities of (f ′)−1. Choose a path
Γ , starting at 0 and tending to infinity, such that f ′(z) → an0 as z tends to infinity on
Γ . Next choose d1, d2 with 0 < d2 6 d1 such that:

(i) for each n, there are no asymptotic values of f ′ in 0 < |w − an| 6 d1; and

(ii) for each n, there are no critical values of f ′ in 0 < |w − an| 6 d2.

Obviously, d1 depends only on the an, while d2 depends also on f .
For each n, define a domain Vn as follows. From the annulus A(an, 0, d1) delete, for

each finite critical value bm 6= an of f ′, the half-open line segment

w = an + sei arg(bm−an), d2 6 s < d1.

The following lemma is an immediate consequence of Lemma 4.1 and the discussion
preceding it.

Lemma 6.1. Choose ε0 > 0 such that |an − am| > 4ε0 for an 6= am. There exist
a positive constant ε1 and, for each n, an unbounded simply connected domain Un, a
component of the set (f ′)−1(Vn), such that Un contains a path tending to infinity on
which f ′(z) tends to an. Further, f ′(z) 6= an on Un and |f(z)− anz| < ε0|z| for all large
z in Un with |f ′(z) − an| < ε1. The constant ε1 depends only on the asymptotic values
of f ′.

Now let ε2 be such that, for each n, if |h1(w) − h1(an)| 6 ε2, then |w − an| < ε1,
in which ε1 is as determined in Lemma 6.1. Next, let ε3 be positive but so small that
|w − an| < ε3 implies that |h1(w)− h1(an)| < 1

4ε2, for n = 1, 2. Both ε2 and ε3 depend
only on the an. Let p, q be such that ap 6= aq and, for n = p, q, let Wn be a component
of the set {z ∈ Un : |f ′(z)− an| < ε3}. For r > r0, with r0 large, let ψ(r) be the angular
measure of the intersection of S(0, r) with the complement of Wp ∪Wq.

https://doi.org/10.1017/S0013091599001029 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599001029


The second derivative of a meromorphic function 467

Lemma 6.2. There exists a positive constant C, depending only on the asymptotic
values of f ′, such that for large r the number of distinct poles of f in the annulus A(2),
as defined by (5.2), is at most

C + C

∫ r8

r0

ψ(t)
t

dt.

Proof. Suppose that r is large and that A(2) contains N1 distinct poles of f , where

1 +
∫ r8

r0

ψ(t)
t

dt = o(N1). (6.1)

Applying Lemma 5.1 we obtain N > c0N1 distinct type II components Ej of the set
(f ′)−1(B1), each satisfying (5.3). Since there are finitely many an, we may assume that
a1 6= a2 and that a1, a2 are each asymptotic values of f ′ in each Ej . For n = 1, 2, as w
tends to an along a path in B1, the pre-image in Ej tends to infinity in Un. Provided r

is large enough, (5.3) shows that A(8) contains the pre-image Hj under V = h1 ◦ f ′ of
the disc B(0, 1− 1

2ε2), for 1 6 j 6 N .
We may also assume that r is so large that none of the Hj meet the path Γ chosen

prior to Lemma 6.1, on which f ′(z)→ an0 as z →∞. Defining an analytic and univalent
branch of ζ = log z on the complement of the path Γ , the regions ζ(Hj) are disjoint and,
since the Hj all lie in the intersection of A(8) with the complement of Wp ∪Wq, (6.1)
shows that at least one of the ζ(Hj), say ζ(H1), has area o(1). Using Lemma 2.1, the
pre-image in ζ(H1) under V ◦ exp of the line segment w = th1(an), 0 6 t 6 1− 3

4ε2, has
length o(1). This allows us to choose a path γ∗ in ζ(H1), of length o(1), such that the
path γ = exp(γ∗) in H1 joins η1 to η2, and such that

|V (ηn)− h1(an)| 6 3
4ε2, n = 1, 2.

By the choice of ε2, there are points η∗n arbitrarily close to ηn, with f ′(η∗n) ∈ Vn. By the
choice of J and Vn, there exists a path σ0 in Vn ∩B1 which starts at f ′(η∗n) and tends to
an. Thus η∗n ∈ Un, and Lemma 6.1 gives

|f(ηn)− anηn| 6 ε0|ηn|, n = 1, 2. (6.2)

We estimate the length of γ. Since γ∗ has length o(1), we have z = (1 + o(1))η1 for all z
on γ and ∫

γ

|dz| =
∫
γ∗
|z| |dζ| = o(|η1|).

But f ′ maps γ into the bounded domain B1, and so

f(η2)− f(η1) =
∫
γ

f ′(z) dz = o(|η1|).

Since a1 6= a2, this contradicts (6.2), and Lemma 6.2 is proved. �
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We now complete the proof of Theorem 1.4. By Lemma 6.2 and the fact that ψ(t) 6 2π,
there exist positive Cj depending only on the an such that, for all large r,

n̄(r2, f)− n̄(r1/2, f) 6 C1 + C1

∫ r8

r0

ψ(t)
t

dt 6 C2 log r 6 C3(log r2 − log r1/2).

Thus n̄(r, f) 6 C4 log r, and Theorem 1.4 is proved. �

7. Proof of Theorem 1.5

We assume that f is meromorphic in the plane of order less than 1 + ε, where 0 < ε < 1
2 ,

and that f ′′ has finitely many zeros but f has infinitely many poles. We retain the
notation of the previous section. By the discussion in § 5, f ′ has at least two distinct finite
asymptotic values a1, a2. By the Denjoy–Carleman–Ahlfors Theorem [3, 25], these are
the only asymptotic values of f ′. Hence we may assume that ap = a1 = 1, aq = a2 = −1.

Lemma 7.1. We have∫ r

r0

ψ(t)
t

dt 6 2πε log r, n̄(r, f) 6 Cε log r, r →∞, (7.1)

in which C is a positive absolute constant, in particular not depending on ε.

Proof. For n = 1, 2, define the following. For r > r0, let ψn(r) be the angular measure
of the intersection of Wn with the circle |z| = r. Let un(z) be defined by un(z) =
log |ε3/(f ′(z) − an)| for z in Wn, with un(z) = 0 for z outside Wn. Then u1 and u2 are
subharmonic in the plane and Lemma 2.3 gives∫ r

r0

π

tψn(t)
dt 6 logB0(2r, un) +O(1) 6 (1 + ε) log r,

as r →∞, for n = 1, 2. But, for t > r0,

π

ψ1(t)
+

π

ψ2(t)
> 4π
ψ1(t) + ψ2(t)

=
4π

2π − ψ(t)
> 2 +

ψ(t)
π

.

This proves the first assertion of Lemma 7.1, and the second follows as in the previous
section. The following is a simple consequence of Lemma 2.3. �

Lemma 7.2. There exists L0 > 1 such that the following is true. Let r > 0, L > 1
and let γr be a simple piecewise smooth path which, apart from its endpoints, lies in
r < |z| < Lr and which joins |z| = r to |z| = Lr. Let Ur = {z : r < |z| < Lr, z 6∈ γr}.
Then if L > L0 we have

ω(z, S(0, r), Ur) + ω(z, S(0, Lr), Ur) < 1
2 , z ∈ Ur, |z| = L1/2r.
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Let L > L0, with L0 as in Lemma 7.2. By (2.3) and (7.1), the sets

K1 = {r > r0 : ψ(r) > ε1/2}, K2 = {r > r0 : ψ(Lr) > ε1/2} (7.2)

each have upper logarithmic density at most 2πε1/2. Next we note that by Lemma 2.5
the set

K3 = {r > 1 : T (L2r, f ′′) > L6T (r, f ′′)} (7.3)

has upper logarithmic density at most 2
3 . Further, (7.1) gives

h(r) = exp(n̄(r, f)) = O(rCε), r →∞,
and so by Lemma 2.5 again and (2.3) the set

K4 = {r > 1 : n̄(L2r, f) > n̄(r/L, f)} = {r > 1 : h(L2r) > eh(r/L)} (7.4)

has upper logarithmic density at most 3Cε logL.
Provided ε is small enough we may choose arbitrarily large r, not in any of the excep-

tional sets K1, K2, K3, K4, and such that∣∣∣∣ f ′′(z)
f ′(z)− a1

∣∣∣∣+
∣∣∣∣ f ′′(z)
f ′(z)− a2

∣∣∣∣ 6 rc0 , |z| = r, Lr, (7.5)

denoting by cj positive constants which do not depend on ε. By (7.4), f has no poles
in r/L < |z| < L2r. Hence, by (7.3) and a standard application of the Poisson–Jensen
formula we have

log |f ′′(z)| < c1T (r, f ′′), r 6 |z| 6 Lr, (7.6)

since L does not depend on ε. Further, by (7.2) and (7.5), we have

log |f ′′(z)| < c2 log r, z ∈ (S(0, r) \ Tr) ∪ (S(0, Lr) \ TLr), (7.7)

in which Tr ⊆ S(0, r) and TLr ⊆ S(0, Lr), each having angular measure at most ε1/2.
Choose a simple piecewise smooth curve γr on which

log |f ′′(z)| < −( 1
2 )T (r, f ′′), (7.8)

such that γr joins |z| = r to |z| = Lr and, apart from its endpoints, lies in r < |z| < Lr.
Such a curve exists by the maximum principle applied to 1/f ′′. Define Ur as in Lemma 7.2,
so that

ω(z, γr, Ur) > 1
2 , z ∈ Ur, |z| = L1/2r. (7.9)

For z in Ur with |z| = L1/2r,

ω(z, TLr, Ur) 6 ω(z, TLr, B(0, Lr)) < c3ε
1/2,

and the change of variables ζ = 1/z shows that the same estimate holds for ω(z, Tr, Ur).
Hence, (7.6), (7.7), (7.8) and (7.9) give

log |f ′′(z)| < (− 1
4 + c4ε

1/2)T (r, f ′′),

so that f ′′(z) is small on the whole circle |z| = L1/2r, provided ε is small enough. This
contradicts the existence of the distinct asymptotic values ±1 of f ′ and Theorem 1.5 is
proved. �

https://doi.org/10.1017/S0013091599001029 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599001029


470 J. K. Langley

8. Proof of Theorem 1.6

Assume that f satisfies the hypotheses of Theorem 1.6, but has infinitely many poles.
By Theorem 1.4 we have (1.2). Let the finite asymptotic values of f (k−1) be an, repeated
according to how often they occur as direct transcendental singularities of the inverse
function of f (k−1). By § 5 there are at least two distinct an. If the positive constant ε0

is small enough, then to each an corresponds, as in § 4, an unbounded simply connected
component Un of the set {z : |f (k−1)(z)− an| < ε0}, lying in {z : |z| > 2}, such that
f (k−1)(z) 6= an on Un and

|f (k−2)(z)− anz| 6 C1|z| |f (k−1)(z)− an|+O(1), z ∈ Un, (8.1)

in which C1 is a positive constant not depending on an or f .

Lemma 8.1. Choose a large positive integer N and for each n let the subharmonic
function un be defined as in Lemma 4.1 by un(z) = log+ |dn/(zN (f (k−1)(z)− an))| for z
in Un, with un(z) = 0 otherwise, and with dn a small positive constant.

Then Un contains finitely many components Wj,n of the set {z : un(z) > 0}, each
simply connected, and we have

f (ν)(z) = O(|z|k−ν−1), z ∈Wj,n, ν = 0, . . . , k − 2. (8.2)

Each un has lower order at least 1/(2− 1/ρ).

Proof. The estimate (8.2) will be proved by applying (4.1) to f (k−2)(z)− anz. Fixing
z∗ in Wj,n, choose a polynomial Pn of degree at most k − 1 such that

f (ν)(z) = P (ν)
n (z) +

∫ z

z∗

(z − t)k−ν−2

(k − ν − 2)!
(f (k−1)(t)− an) dt, z ∈Wj,n, 0 6 ν 6 k − 2.

(8.3)
Expanding out the (z − t)k−ν−2 term in (8.3), and using (4.1), we obtain (8.2).

To prove that each un has lower order at least 1/(2 − 1/ρ), assume without loss of
generality that a1 6= a2 and, for n = 1, 2 and t > 0, let θ∗n(t) be the angular measure
of the intersection of Un with the circle S(0, t). Proceeding as in [28, Lemma 3], the
Cauchy–Schwarz inequality gives(∫ r

1

π

tθ∗n(t)
dt
)(∫ r

1

θ∗n(t)
tπ

dt
)
> (log r)2, r →∞, n = 1, 2.

But, by Lemma 2.3, for large r,

(ρ+ o(1)) log r > logB0(2r, u2) +O(1) >
∫ r

1

π

tθ∗2(t)
dt.

Thus ∫ r

1

θ∗2(t)
tπ

dt > (ρ+ o(1))−1 log r,
∫ r

1

θ∗1(t)
tπ

dt 6 (2− (ρ+ o(1))−1) log r,
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so that

logB0(2r, u1) +O(1) >
∫ r

1

π

tθ∗1(t)
dt >

(
1

2− 1/ρ
− o(1)

)
log r.

�

Lemma 8.2. Choose ρj with ρ0 < ρ1 < · · · < ρ9 < 1/(2 − 1/ρ), and let δ1 be a
small positive constant. Then there exists δ2 > 0 such that the following is true. If H0

is a subset of [1,∞) of finite measure, then for each sufficiently large r and each n there
exists s 6∈ H0 such that

r1+δ1 6 s 6 r1+2δ1 , un(z) > rρ8 , z ∈ Hn(r), (8.4)

in which Hn(r) is a subset of the circle |z| = s, of angular measure at least δ2.

Proof. Using Lemma 8.1, take ζ0 with |ζ0| = r and un(ζ0) > rρ9 , and let D0 be the
component of the set {z ∈ Un : un(z) > rρ8} in which ζ0 lies. Let θ(t) be the angular
measure of the intersection of D0 with the circle |z| = t. Since un has order at most ρ,
Lemma 2.3 gives

rρ9 6 un(ζ0) 6 rρ8 + r(1+ρ)(1+2δ1) exp
(
−π
∫ (1/2)r1+2δ1

2r1+δ1

dt
tθ(t)

)
,

and Lemma 8.2 follows. �

Lemma 8.3. Let an 6= 0 and let K be a large positive constant. Let the positive
function η(r) tend to 0 slowly as r →∞. Then for all sufficiently large r, at least one of
the sets

Ω+
r = {z : r/K 6 |z| 6 Kr, η(r) 6 arg z 6 π − η(r)},

Ω−r = {z : r/K 6 |z| 6 Kr, π + η(r) 6 arg z 6 2π − η(r)}

is a subset of one of the Wj,n.

Proof. Using (1.2) and (1.3), write

f (k)(z)
f (m)(z)

=
h1(z)
h2(z)

, (8.5)

in which h1 is analytic outside the region |arg z2| 6 φ(|z|), and h2 is entire of order less
than ρ0. Choose a family of discs Bν , with finite sum of radii, and a positive constant
M1, such that for all z not in the union H∗ of the Bν we have∣∣∣∣f (m)(z)

f(z)

∣∣∣∣+
∣∣∣∣f (k−1)(z)
f (m)(z)

∣∣∣∣+
∣∣∣∣ f (k)(z)
f (m)(z)

∣∣∣∣+
∣∣∣∣ f (k)(z)
f (k−1)(z)− an

∣∣∣∣ 6 |z|M1 ,

| log |h2(z)|| 6 |z|ρ0 .

 (8.6)
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Further, choose a small positive δ1 and s = sn satisfying (8.4). We may assume without
loss of generality that the part H∗n(r) of Hn(r) lying in {z : η(r) 6 arg z 6 π− η(r)} has
angular measure at least δ3 > δ2/4, in which δ2 is as in Lemma 8.2. We may choose s,
as well as r1 and λ with

K−6r 6 r1 6 K−4r, η(r)/8 < λ < η(r)/4,

such that

∂Ω(s, 4s, λ) ∩H∗ = ∂Ω(r1, 2s, 2λ) ∩H∗ = ∂Ω(K2r1, s, 4λ) ∩H∗ = ∅,

in which
Ω(t1, t2, t3) = {z : t1 < |z| < t2, t3 < arg z < π − t3}.

Since δ1 is small, we have, by (8.5) and (8.6),

log |h1(z)| 6 rρ1 , z ∈ ∂Ω(s, 4s, λ) ∪ ∂Ω(r1, 2s, 2λ). (8.7)

We apply the two-constants theorem to log |h1(z)| on the region Ω(s, 4s, λ). Since

f (k)

f (m) =
(

f (k)

f (k−1) − an

)(
f (k−1) − an
f (k−1)

)(
f (k−1)

f (m)

)
,

(8.4) and (8.6) give
log |h1(z)| < −rρ7 , z ∈ H∗n(r).

Thus, (8.7) and a standard estimate for harmonic measure lead to

log |h1(z)| < −rρ6 , z ∈ E0 = {z : |z| = 2s, π/8 6 arg z 6 7π/8}. (8.8)

By Lemma 2.4 and a simple change of variables,

ω(z, E0, Ω(r1, 2s, 2λ)) > r−6δ1 , z ∈ ∂Ω(K2r1, s, 4λ).

Hence, using (8.6), (8.7) and (8.8) we have

log |h1(z)| < −rρ5 ,

∣∣∣∣ f (k)(z)
f (m)(z)

∣∣∣∣ 6 exp(−rρ4), z ∈ ∂Ω(K2r1, s, 4λ). (8.9)

We estimate f on ∂Ω(K2r1, s, 4λ). Choose z1 inH∗n(r) and so in ∂Ω(K2r1, s, 4λ)∩Wj,n,
and a polynomial P1 such that P (ν)

1 (z1) = f (ν)(z1) for 0 6 ν 6 k−1. Then we may write

f(z) = P1(z) +
∫ z

z1

(z − t)k−1

(k − 1)!
f (k)(t) dt = P1(z) +

∫ z

z1

η(t)f(t) dt,

in which, using (8.2), (8.6) and (8.9), for some M2 > 0 independent of r and K,

|P1(z)| 6 rM2 , |η(t)| 6 exp(−rρ3), z ∈ ∂Ω(K2r1, s, 4λ).

https://doi.org/10.1017/S0013091599001029 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599001029


The second derivative of a meromorphic function 473

A standard application of Gronwall’s Lemma [14] and (8.6) and (8.9) give

log+ |f(z)| = O(log r),

log+ |f (m)(z)| = O(log r),

}
|f (k)(z)| 6 exp(−rρ2), for z ∈ ∂Ω(K2r1, s, 4λ).

Since z1 is in Hn(r), a further integration shows that ∂Ω(K2r1, s, 4λ) is a subset of Wj,n,
and so is Ω(K2r1, s, 4λ), since Wj,n is simply connected. This proves Lemma 8.3. �

Lemma 8.4. We have N̄(r, f) 6= o(log r)2 as r →∞.

Proof. Suppose on the contrary that N̄(r, f) = o(log r)2 as r →∞. Then

T (r, f (k+1)/f (k)) 6 N̄(r, f) +O(log r) = o(log r)2.

It follows from Lemma 2 of [20] that there exist sequences Rµ → ∞ and Sµ → ∞ such
that

f (k+1)(z)
f (k)(z)

= βµz
τµ(1 + o(1)), S−2

µ Rµ 6 |z| 6 S2
µRµ, (8.10)

in which each τµ is an integer and each βµ is a non-zero complex number. There is no
loss of generality in assuming that both Rµ and 2Rµ are normal for the Wiman–Valiron
theory [11,31] applied to 1/f (k), for otherwise we may adjust Rµ and make Sµ slightly
smaller. Since the central index σ(r) of 1/f (k) is non-decreasing, (2.4) gives τµ > −1 for
each µ. We may also assume that

f (k)(z)
f (k−1)(z)− an = O(RMµ ), |z| = Rµ, (8.11)

for all finite asymptotic values an of f (k−1) and for some fixed M , independent of µ.

Case 1. Suppose that τµ = −1.

In this case, (2.4) shows that we may assume without loss of generality that βµ =
−N1 = −σ(Rµ). Integration of (8.10) gives, with C a non-zero constant,

1/f (k)(z) = C(z/Rµ)N1eo(N1), 2Rµ 6 |z| 6 3Rµ.

Since M(2Rµ, 1/f (k)) is large, this implies that C(5
2 )N1 must be large. Thus f (k)(z) =

O(R−2
µ ) on |z| = 3Rµ and a further integration leads to a contradiction to the established

fact that f (k−1) has at least two asymptotic values.

Case 2. Suppose that τµ > 0.

Choose z1, z2 with

|z1| = Rµ, |z2| = RµS
−1
µ , |1/f (k)(zj)| = M(|zj |, 1/f (k)).

Next, choose a branch of log f (k)(z) with

|Im(log f (k)(z2))| 6 π. (8.12)
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For z with
RµS

−1
µ 6 |z| 6 RµSµ, −π < arg(z/z1) 6 π, (8.13)

we integrate by parts along the straight line from z2 to z2|z/z2| and then around an arc
of the circle |ζ| = |z| to obtain

log f (k)(z) = log f (k)(z2) +
βµz

τµ+1

τµ + 1
(1 + o(1))

− βµz
τµ+1
2

τµ + 1
(1 + o(1)) +

∫ z

z2

βµζ
τµ+1

τµ + 1
o(|ζ−1|) dζ.

Thus, for z satisfying (8.13),

log f (k)(z) = D +AzN (1 + o(1)), (8.14)

in which

D = log f (k)(z2)− βµz
τµ+1
2

τµ + 1
, A =

βµ
τµ + 1

, N = τµ + 1. (8.15)

We set Tµ = RµS
−3/4
µ and distinguish two subcases.

Case 2(a). Suppose that |ATNµ | < | log f (k)(z2)|.
Then using (8.12) and the fact that τµ > 0,

log f (k)(z) = D(1+o(1)) = (1+o(1)) log |f (k)(z2)|, |z| = RµS
−1
µ , −π < arg(z/z1) 6 π,

and f (k)(z) = O(|z|−2) on |z| = RµS
−1
µ , a contradiction arising as in Case 1.

Case 2(b). Suppose that |ATNµ | > | log f (k)(z2)|.
Then |ATNµ | is large and (8.14) becomes

log f (k)(z) = AzN (1 + o(1)), RµS
−1/2
µ 6 |z| 6 RµS1/2

µ , −π < arg(z/z1) 6 π. (8.16)

But f (k)(z) is small on an arc of |z| = Rµ of angular measure at least π − o(1), by
Lemma 8.3 and (8.11), so that (8.16) gives N = 1. However,

−(1 + o(1))
σ(Rµ)
z1

=
f (k+1)(z1)
f (k)(z1)

= A(1 + o(1)),

by (8.10) and (8.15), since Rµ is normal for the Wiman–Valiron theory applied to 1/f (k).
Thus

argAz1 = π + o(1). (8.17)

Writing (8.16) in the form

u = − log f (k)(z) = −Az1(z/z1)(1 + o(1)), (8.18)
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it follows that u is univalent with

du
dz

= −A(1 + o(1)) (8.19)

on
Ω = {z : Rµ/16 6 |z| 6 16Rµ, |arg(z/z1)| 6 5π/8},

and u(Ω) contains the region

Ω1 = {u : |A|Rµ/8 6 |u| 6 8|A|Rµ, |arg u| 6 9π/16}.

Let

Ω2 = {z : Rµ/4 6 |z| 6 4Rµ, log |f (k)(z)| < −2M logRµ}.

Then (8.17) and (8.18) imply that Ω2 is a subset of Ω, and

u(Ω2) ⊆ Ω3 = {u : |A|Rµ/8 6 |u| 6 8|A|Rµ, Re(u) > 2M logRµ} ⊆ Ω1.

Using Lemma 8.1, choose distinct asymptotic values a1, a2 of f (k−1), and ψ1 and ψ2 with

|ψn| = Rµ, log |f (k−1)(ψn)− an| < −4M logRµ, n = 1, 2.

Then ψ1, ψ2 lie in Ω2 by (8.11), and their images under u lie in Ω3. Thus u(ψ1) and u(ψ2)
may be joined by a path λ in Ω3, of length O(|A|Rµ). Now the pre-image Λ = u−1(λ)
joining ψ1 to ψ2 has length O(Rµ), by (8.19), and is such that

log |f (k)(z)| < −2M logRµ, z ∈ Λ.

Thus f (k−1)(ψ1)− f (k−1)(ψ2) = o(1), which contradicts the choice of the ψn. Lemma 8.4
is proved. �

As in § 5, choose a closed path J on which each finite asymptotic value an of f (k−1)

lies. If there are just two distinct an, say a1, a2, then J is the circle of centre (a1 + a2)/2
and diameter |a1− a2|. Let B1 be the interior domain of J , and let B2, h1, h2 be defined
as in § 5. In particular, if J is a circle, then h1 is simply a linear transformation.

Lemma 8.5. For each type II component Ej of the set {z : f (k−1)(z) ∈ B1}, choose
ζj ∈ Ej such that h1(f (k−1)(ζj)) = 0. Let n0(r) be the number of ζj in |z| 6 r. Then
n0(r) 6= o(log r) as r →∞.

This follows at once from Lemmas 5.1 and 8.4.
Choose a large positive L such that for arbitrarily large r there are at least 64 distinct

ζj in A(0, r/L, Lr). Since w = h1(f (k−1)(z)) maps Ej univalently onto B(0, 1), we may
choose Gj to be the inverse function mapping B(0, 1) onto Ej .

Lemma 8.6. Denote by cj positive constants independent of r and L. Then

c1r 6 |G′j(0)| 6 c2r. (8.20)
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Proof. The right-hand estimate of (8.20) follows from the Koebe one-quarter theorem,
since 0 is not in Ej . To prove the left-hand estimate, suppose that G′j(0) = o(r). Let a1,
a2 be distinct finite asymptotic values of f (k−1) in Ej . Koebe’s distortion theorem gives
a path γ, of length o(r), joining zp ∈ Up to zq ∈ Uq, with ap 6= aq and∫

γ

f (k−1)(z) dz = o(r),

which contradicts (8.1) if ε0 was chosen small enough.

Lemma 8.7. f (k−1) has precisely one finite non-zero asymptotic value.

Proof. Suppose that f (k−1) has more than one finite non-zero asymptotic value. Then
Lemma 8.3 and the Koebe one-quarter theorem applied to Gj on B(0, 1

2 ) give G′j(0) =
o(r). On the other hand, f (k−1) has at least two finite asymptotic values, and this proves
Lemma 8.7. �

We may assume henceforth that the finite asymptotic values of f (k−1) are 0 and 1.
Thus J is the circle S( 1

2 ,
1
2 ), while B1 is the disc B( 1

2 ,
1
2 ), and h1(w) = 2(w − 1

2 ). Set

g(z) = 2(f (k−1)(z)− 1
2 ) = h1(f (k−1)(z)).

Let θj(t) be the angular measure of the intersection of Ej with the circle S(0, t). Recall
that w = g(z) maps Ej univalently onto B(0, 1), with g(ζj) = 0 and inverse function
z = Gj(w). Since there are 64 of the Ej , at least one of them must be such that∫ L2r

Lr

dt
tθj(t)

> 4 logL,
∫ r/L

r/L2

dt
tθj(t)

> 4 logL. (8.21)

Suppose that Z ∈ Ej \A(0, r/L2, L2r) and W = g(Z). Then

log
(

1 + |W |
1− |W |

)
= 2

∫
[0,W ]

|dw|
1− |w|2 = 2

∫
Gj([0,W ])

|dz|
(1− |w|2)|G′j(w)|

and so Koebe’s one-quarter theorem and (8.21) give

log
(

1 + |W |
1− |W |

)
> 1

2

∫
Gj([0,W ])

|dz|
dist{z, ∂Ej} >

∫
Gj([0,W ])

|dz|
|z|θj(|z|) > 4 logL, (8.22)

since ζj = Gj(0) ∈ A(0, r/L, Lr). Define v1, v2 by

vµ = Gj(tµ), t1 = −1 + L−3, t2 = 1− L−3. (8.23)

Then (8.22) gives
H0 = Gj([t1, t2]) ⊆ A(0, r/L2, L2r). (8.24)

Let
h(z) = 2f (k−2)(z)− z, h′(z) = g(z).
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Using Lemma 4.1, we obtain

|h(v1) + v1| 6 c3|v1|L−3, |h(v2)− v2| 6 c3|v2|L−3. (8.25)

Integration by parts gives

h(v2)− h(v1) =
∫
H0

g(z) dz = v2g(v2)− v1g(v1)−
∫
H0

zg′(z) dz.

Thus, using (8.23), (8.24) and (8.25),∣∣∣∣∫
[t1,t2]

z dw
∣∣∣∣ =

∣∣∣∣∫
H0

zg′(z) dz
∣∣∣∣ 6 |h(v1)− v1g(v1)|+ |h(v2)− v2g(v2)| 6 c4rL−1. (8.26)

But Lemmas 8.3 and 8.6 and the Koebe Theorems give, without loss of generality,
Im(ζj) > c5r, and Im(Gj(t)) > c6r for −c7 6 t 6 c7, while Im(Gj(t)) > −o(r) for
t1 6 t 6 t2. This contradicts (8.26) and Theorem 1.6 is proved. �
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