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ABSTRACT. Glacier change has been recognized as an important climate variable due to its sensitive re-
sponse to climate change. Although there are a large number of glaciers distributed over the south-
eastern Qinghai–Tibetan Plateau, the region is poorly represented in glacier databases due to seasonal
snow cover and frequent cloud cover. Here, we present an improved glacier inventory for this region
by combining Landsat observations acquired over 2011–13 (Landsat 8/OLI and Landsat TM/ETM+), co-
herence images from Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture
Radar images and the Shuttle Radar Topography Mission (SRTM) DEM. We present a semi-automated
scheme for integrating observations from multi-temporal Landsat scenes to mitigate cloud obscuration.
Further, the clean-ice observations, together with coherence information, slope constraints, vegetation
cover and water classification information extracted from the Landsat scenes, are integrated to deter-
mine the debris-covered glacier area. After manual editing, we derive a new glacier inventory containing
6892 glaciers >0.02 km2, covering a total area of 6566 ± 197 km2. This new glacier inventory indicates
gross overestimation in glacier area (over 30%) in previously published glacier inventories, and reveals
various spatial characteristics of glaciers in the region. Our inventory can be used as a baseline dataset
for future studies including glacier change assessment.

KEYWORDS: debris-covered glaciers, glacier delineation, glacier mapping, mountain glaciers, remote
sensing

1. INTRODUCTION

Glaciers react sensitively to climate change (Dyurgerov and
Meier, 2000). A large number of studies have been devoted
to investigation of mountain glacier changes and their
impacts on hydrological cycles and water resource as a
result of anthropogenic warming (e.g. Kaser and others,
2006; Huss, 2011; Gardner and others, 2013; Grinsted,
2013; Ke and others, 2015; Song and others, 2015). These
studies critically depend on a fundamental baseline dataset
in a complete and reliable glacier inventory (e.g. Cogley,
2010; Ohmura, 2010). In general, a glacier inventory pro-
vides essential information about the distribution of glaciers,
and a variety of parameters of glaciers such as the spatial
extents and the topographical features. With the increase of
satellite observations in recent decades, there have been
efforts to inventory glaciers worldwide (e.g. Paul and
Andreassen, 2009; Cogley, 2010; Ohmura, 2010; Pfeffer
and others, 2014; Guo and others, 2015), mostly based on
optical/infrared remote sensing imagery in combination
with a DEM. However, mapping glaciers over areas with
rugged terrain and frequent clouds, and/or with optically
thick debris cover, is still a challenging issue in remote
sensing (Raup and others, 2007; Racoviteanu and others,
2010), which results in the unavailability of reliable

glacier inventories for some regions, particularly over the
mountainous central Asian region including the Qinghai–
Tibet Plateau (QTP).

The southeastern QTP (SE QTP) presents extremely chal-
lenging conditions for mountain glacier mapping. The high-
relief region contains one of the largest pools of monsoonal
temperate glaciers, with ample summer precipitation
brought by the Asian summer monsoons over the extended
high mountains (Liu and others, 2000; Shen, 2004).
Frequent cloud activity due to the influence of summer
monsoons and prevalent orographic clouds can obscure
observations from optical sensors. Digital glacier information
is currently available for the SE QTP, mainly from two
datasets, CGI1 (the first version of China Glacier Inventory)
and CGI2 (the second version of China Glacier Inventory).
These two datasets were incorporated into world glacier
inventories such as Global Land Ice Measurements from
Space (GLIMS) and Randolph Glacier Inventory (RGI).
Although the CGI1 shows serious quality issues due to
problems in source data (Pfeffer and others, 2014), the
CGI2, released in December 2014, represents a great
effort to produce reliable glacier outlines by using recent
satellite images. However, glacier outlines in CGI2
have few updates over the SE QTP, where good quality
remote sensing images are difficult to acquire (Guo and
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others, 2015). The potential errors in the glacier inventory
can result in great uncertainties in determining the regional
glacier changes. Despite the fact that remarkable shrinkage
and mass loss were reported for several glaciers including
glaciers in some small subbasins in the region (Yang and
others, 2010; Yao and others, 2012), estimates and
evaluation of the regional glacier mass loss and its
contribution to local hydrology are seldom documented, or
the results are subject to large uncertainties (Neckel and
others, 2014) due to the unavailability of a reliable glacier
inventory.

Another challenge in glacier mapping over the SE QTP is
the identification of debris-covered glaciers, which show
similar spectral characteristics to the surrounding non-
glacier areas. Debris-covered glaciers have mainly been
mapped by manual delineation, which is often time-consum-
ing, and the results are highly dependent on the researcher’s
skills and expertise. Prior studies have developed semi-auto-
mated methods for retrieving debris-covered ice by combin-
ing multi-spectral data with DEMs (Paul and others, 2004)
and utilizing thermal data (Shukla and others, 2010). These
methods can be effective and accurate at local scales.
However it is difficult to apply them in extensive regions
due to their partial dependence on cloud-free images, up-
to-date high quality DEM and local environmental character-
istics such as snow cover, weather conditions and debris
thickness (Racoviteanu and others, 2008; Veettil, 2012).
Recently, new techniques including use of observations
from Synthetic Aperture Radar (SAR) data have been pro-
posed to improve glacier delineation (Atwood and others,
2010; Strozzi and others, 2010; Frey and others, 2012;
Zhu, 2015). However, automation of the data processing
over an extensive and rugged region still requires further
exploration.

We present a semi-automated approach for generating a
digital glacier inventory based on latest multi-source and
multi-temporal satellite data. Both multi-spectral Landsat
imagery and non-polarimetric SAR data are used in a system-
ic scheme for glacier mapping in the challenging environ-
ment of SE QTP, where there are frequent orographic
clouds, seasonal snow and highly debris-covered glacier
tongues. Results from multi-temporal Landsat scenes are
employed to compensate the effect of clouds. A semi-auto-
mated framework is developed to retrieve debris-covered
glacier tongues based on coherence maps derived from the
Advanced Land Observing Satellite (ALOS) Phased Array
type L-band Synthetic Aperture Radar (PALSAR) sensor and
information from Landsat imagery and DEMs.

2. STUDY REGION AND DATASETS

2.1. Extent of mapped glaciers
The study region is located in the SE QTP and covers an area
of more than 100 000 km2. The region constitutes several
large mountain ranges including the central and eastern
Nyainqentanglha Ranges and the west end of the
Hengduan Mountains (Fig. 1). The northern limit is defined
by the Salween River, and the southern limit by the Yarlung
Tsangpo River. A majority of the region belongs to the
Yarlung Tsangpo basin and some of the glaciers in the east
drain into the Salween River. The SE QTP region is under
the influence of both the continental climate of central Asia
and the Asian summer monsoon systems, and the latter
bring the majority of the annual precipitation during summer
(May–October). The glaciers in these regions are temperate
and are sensitive to temperature and precipitation changes
(Su and Shi, 2002; Yang and others, 2010).

Fig. 1. Overview of the study area and satellite data including Landsat 8/OLI images in false color composite (Band 754 for RGB; only typical
scenes with low cloud cover are shown) and footprints of ALOS PALSAR data (black rectangles). The locations of Figs 2, 4, 5, 11 are
highlighted in colored boxes (legend). The upper right map shows the location of the study area and the lower right map shows the
geographical background of the study region.
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2.2. Landsat imagery
We obtained images acquired from the Landsat sensors in-
cluding Landsat 8/OLI, Landsat 7/ETM+ and Landsat 5 TM,
from the period, 2011 to 2013 (Table 1). Most of the
images were acquired from Landsat 8, which started
normal operations on 30 May 2013. Landsat 8/OLI provides
images with more spectral bands and improved signal to
noise radiometric performance compared with the previous
Landsat sensors, enabling better characterization of land
cover (U.S. Geological Survey, 2013). We inspected all the
available scenes to select suitable images that are cloud-
free over the glaciers and with minimum seasonal snow
cover. However, it is almost impossible to get one image
that is completely free from clouds in the summer season,
due to frequent clouds and the prevalent orographic
clouds. Meanwhile, there is a significant contrast in seasonal
snow/ice coverage between warm and cold seasons. As a
compromise between minimum seasonal snow cover and
cloud cover, all available scenes acquired in August/
September 2011–13 with low cloud coverage (at most
40%) were employed for glacier mapping in a schematic
overlay frame (Section 3 below).

All Landsat images used in this study were available from
the United States Geological Survey (USGS) (http://earth
explorer.usgs.gov/). The images used are standard L1T pro-
ducts performed with systematic radiometric and geometric
correction and in Universal Transverse Mercator (UTM) pro-
jection. Our study area belongs to UTM zone 46N and 47N
and is covered by five scenes with different path/row combi-
nations (Fig. 1; Table 1). For practical purpose, this study
adopted UTM zone 46N as the projection for all mosaicked
images and the final glacier inventory.

2.3. SAR scenes
For mapping debris-covered ice, we employ coherence
images from SAR data. The coherence images are created

from seven ALOS PALSAR image pairs (Section 3). The
ALOS PALSAR sequential scenes were acquired from the
ascending orbit in Fine-Beam Dual mode (FBD-HH/HV)
with perpendicular baselines shorter than 410 m and a time
interval of 46 or 92 d during the summer period of 2009 or
2010 (Fig. 1; Table 1). These PALSAR FBD data have an
off-nadir angle of 34.3°, and the pixel spacing is ∼5 m in
the azimuth direction and 20 m in the range resolution.
The L-band PALSAR data are preferred over the C- or X-
band SAR data because the low-frequency system is less sen-
sitive to decorrelation effects, so that changes in the surface
properties can be easily shown in the coherence map
(Atwood and others, 2010). In order to minimize the effect
of spatial decorrelation, SAR image pairs with small baselines
are preferred. The ALOS PALSAR data cover the majority of
glacierized region (over 95%; Fig. 1).

2.4. DEM data
There are no available local or national DEMs of the study
region with sufficient quality. However, two elevation data-
sets are available with near-global coverage, the DEM from
the Shuttle Radar Topography Mission (SRTM) and the
Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global DEM (GDEM), which are both
accurate enough for compiling topographic glacier inventory
data (Frey and Paul, 2012). A subtraction of the ASTER
GDEM from the SRTM DEM reveals differences of several
hundred meters or up to 1 km in some regions. Visual exam-
inations of hill shade views show some systematic shifts in
the interpolated SRTM mask, indicating that the large bias
is likely caused by erroneous interpolations in the SRTM
data voids. This study replaced the erroneously interpolated
values of SRTM3v4 with the corresponding ASTER GDEM
(smoothed to reduce artificial bumps and holes and
resampled to 90 m resolution before merging). The new
SRTM DEM is void-free and smooth in hill shade view, and

Table 1. List of Landsat satellite images and ALOS PALSAR scenes used in this study

Platform and sensor ID Acquisition date
p= path, R= row, T= track, F= frame, B= baseline

Landsat8/OLI P:134, R:39 13 August 2013
Landsat8/OLI P:134, R:39 14 September 2013
Landsat8/OLI P:135, R:39 04 August 2013
Landsat7/ETM+ P:135, R:39 12 August 2013
Landsat7/ETM+ P:135, R:39 23 August 2011
Landsat5/TM P:135, R:39 31 August 2011
Landsat7/ETM+ P:135, R:39 08 September 2011
Landsat8/OLI P:136, R:39 11 August 2013
Landsat8/OLI P:136, R:39 28 September 2013
Landsat8/OLI P:134, R:40 17 September 2014
Landsat8/OLI P:134, R:40 13 August 2013
Landsat8/OLI P:134, R:40 14 September 2013
Landsat8/OLI P:135, R:40 04 August 2013
Landsat8/OLI P:136, R:40 28 September 2013
ALOS PALSAR T:488, F:570–590, B:83 m 16 June 2009, 16 September 2009
ALOS PALSAR T:489, F:570, B:183 m 21 August 2010, 06 October 2010
ALOS PALSAR T:490, F:580–590, B:17 m 23 July 2010, 07 September 2010
ALOS PALSAR T:491, F:590–600, B:323 m 09 August 2010, 24 September 2010
ALOS PALSAR T:492, F:580–600, B:408 m 11 July 2010, 26 August 2010
ALOS PALSAR T:493, F:590–600, B: 391 m 28 July 2010, 28 October 2010
ALOS PALSAR T:494, F:590–600, B: 234 m 26 June 2009, 26 September 2009

For TM/ETM+ images, Bands 2, 3, 4, 5, 7 are used, while for OLI images, bands 3, 4, 5, 6, 7 are used.
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is used to compile the glacier inventory and to process the
ALOS PALSAR coherence images. The percentage of the
replaced data over the region is <1%, and mainly not
within the glacierized region.

3. METHODOLOGY
Generation of the glacier inventory in SE QTP consists of
three major steps: mapping clean ice with Landsat imagery,
mapping debris-covered ice by combining Landsat, coher-
ence images and DEM, and generation of ice divides and
glacier parameters.

3.1. Mapping of clean ice
We employ a semi-automated method to generate a cloud-
free mask by mosaicking several partly cloud-covered
glacier masks. For clean ice mapping, the key steps include
generation of glacier mask, cloud mask and open water
surface mask from each Landsat scene (Fig. 2).

3.1.1. Preprocessing of Landsat scenes
We use normalized index images of different band combina-
tions to highlight land information such as snow/ice, vegeta-
tion and water bodies. To derive normalized index images,
calibration of Landsat scenes from raw digital numbers

(DN) to Top-of-Atmosphere (TOA) reflectance is a first step
and batch processed in ENVI/IDL platform. For Landsat8/
OLI images, such calibration is done by referring to gain
and offset parameters provided in the metadata files. For
TM/ETM+ images, the calibration needs extra references
to parameters such as mean exoatmospheric solar irradiance
(ESUN) and earth/sun distance summarized by Chander and
others (2009). TOA planetary reflectance is then derived by
dividing TOA by the cosine of the sun elevation angle
of the scene center. We use TOA planetary reflectance
instead of DN, as it is preferable to work with data expressed
in physical units and these calibrations may help standardize
scenes from different dates and/or sensors (Burns and Nolin,
2014). The data gaps in the Landsat 7/ETM+ scenes due to
failure of scan-line corrector are masked out with no-data
filling value.

3.1.2. Generation of clean-ice masks
Clean-ice mask from individual Landsat scenes is generated
by segmenting Normalized Difference Snow Index (NDSI)
images. The NDSI is computed as the normalized difference
between the reflectance of green band and short-wave
infrared band (SWIR) (Landsat 8/OLI: (B3− B6)/(B3+ B6);
Landsat 7/ETM: (B2− B5)/(B2+ B5)). The NDSI-based classi-
fication method is effective in removing some of the

Fig. 2. Schematic workflow for mapping clean ice and debris-covered ice for the study area. Key steps in mapping clean ice include
generation of clean-ice masks, masking of clouds and generation of water masks, while debris-covered glacier tongue mapping mainly
consists of generating coherence maps and segmentation, producing vegetation and slope masks, overlay of all masks (coherence mask,
slope mask, vegetation mask and clean-ice mask), neighborhood analysis and manual editing. The processing step ‘smooth’ represents
spatial filtering of masks with open and close operations.
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illumination differences on glaciers and yields satisfactory
results for shaded ice (Racoviteanu and others, 2008).
Pixels with NDSI≥ 0.4 and NDSI< 0.4 are, respectively,
classified as potential clean-ice glaciers (value 1) and nongla-
ciers (value 255) in the mask, and when there are no data the
value is set to 0. The threshold was developed based on
experiments on glaciers sampled all over the world and has
been proven effective (Hall and others, 1995). Mapping
results are not sensitive to the changes of thresholds
between 0.39 and 0.41.

3.1.3. Generation of cloud masks
As most of the Landsat scenes used are partly covered by
cloud, a prerequisite step before mosaicking is to identify,
which part of the images are contaminated by cloud. Such
cloud-cover identification is implemented with the Fmask
tool, which is available at https://code.google.com/p/fmask/.
The latest Fmask tool, v3.2, is able to process Landsat 4, 5,
7 and 8 images (Zhu and others, 2015). This tool can gener-
ate cloud mask (with a value of 4) with high accuracy by ap-
plying a proper probability threshold (ranging from 0 to 100)
in the input. We have tested a series of thresholds on different
scenes and found that a threshold of 95–100 produced most
accurate results for most scenes. The percentage of cloud
area identified in a scene generally increases with the
applied probability threshold, and stabilized after the thresh-
old of 95. However, for several scenes that have low and
thick cloud cover, such as the LE7/ETM+ image acquired
on 23 August 2013, a high-probability threshold failed to
identify the thick clouds distributed along the mountainsides.
In such cases, a threshold of 50–60 can produce more satis-
factory results. To maintain the highest percentage of clear
pixels while identifying most cloud coverage, we recom-
mend verifying the accuracy of cloud masks by superimpos-
ing them on corresponding Landsat false color composite
images, such as Band 754 (RGB) for OLI images and Band
743 (RGB) for TM/ETM+.

3.1.4. Overlay and mosaic of clean-ice masks
The cloud mask generated by Fmask is used to mask the
cloud-covered pixels by filling value 0 (no information) to

the pixels, and then smoothed with a 3 × 3 kernel-size
median filter to remove isolated pixels and fill small gaps.
All individual masks are then mosaicked and overlaid into
a single raster map within the maximum mosaic scheme.
This scheme means that the non-glacier values (255) have
a higher priority than glacier values (1) over overlapping
areas. The lowest priority (0) denotes filling values and the
cloud-covered pixels. The mosaic can retrieve minimum
clean ice extent from multiple scenes and the cloud-
covered pixels can be automatically removed and substituted
by the clear pixels in other scenes. Figure 3a shows the ori-
ginal NDSI image, the single clean-ice mask by segmenting
NDSI and the mosaic of all cloud-masked clean-ice masks,
over a heavily glacierized subregion in the central study
area (shown in Fig. 1). The example demonstrates that by
overlying multi-temporal masks, glaciers under cloud-
covered regions (highlighted in light grey in Fig. 3a(3)) in a
single scene can be properly mapped from multi-temporal
scenes.

The mosaicked clean-ice mask needs to be smoothed to
fill small holes and to remove small patches that originate
from seasonal snow cover, mosaicking, cloud-detection
and water-mask uncertainties. We apply morphological
operators (open and close operation with disk structural
element of 1-pixel radius) to smooth the final binary mask.
The minimum size of glaciers to be included in the glacier in-
ventory is set as 0.02 km2, equivalent to removal of small
patches <23 pixels. The choice of the minimum glacier
size depends on seasonal snow coverage and the resolution
of the Landsat images, and consistency with other Landsat-
based glacier inventories (Bajracharya and Shrestha, 2011;
Frey and others, 2012). Part of the smoothed clean-ice
mask is shown in Figure 3a(4).

3.1.5. Generation, overlay and mosaic of water masks
It is worth noting that the smoothed clean-ice mask contains
misclassifications caused by water bodies such as lakes, pro-
glacial lakes and wide rivers, as they also show high-NDSI
values. A common solution to this problem is to apply a
threshold to the NIR band reflectance (TM/ETM band 4,
OLI band 5) to eliminate water surfaces that are

Fig. 3. Selected key steps in generating clean-ice mask (a) and water mask (b). Column 1 is ratio images (NDSI/NDWI) of a single scene;
column 2 gives the results of thresholding (binary image in black and dark grey) and then cloud masking (cloud in white); column 3 is the
map of overlay and mosaic of all masks (with light grey indicating glaciers, which are obscured by clouds in a(2)); column 4 is the final
results after spatial filtering (morphological open and close operations), with difference related to a(3) highlighted in light grey.
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characterized by low reflection at the NIR band. This
method, however, can eliminate shadowed or illuminated
ice and humid glacier surfaces due to strong melting at the
same time, resulting in fragmented patches in the classifica-
tion maps.

We thus produce a water mask to remove water bodies,
similar to the generation of a snow/ice mask. The method
mainly includes four steps: (1) generation of ratio index
image for each scene, (2) segmenting ratio images and

masking clouds, (3) mosaicking and overlay of all scenes
and (4) smoothing and post-processing. The Normalized
Difference Water Index (NDWI) image is used as a main
base for identifying water bodies. NDWI is computed as
the normalized difference of the reflectance of green band
and near infrared (NIR) band (TM/ETM+: (B2− B4)/(B2+
B4); OLI: (B3− B5)/(B3+ B5)) (McFeeters, 1996). In the
NDWI image, the unfrozen open water surfaces generally
show high-NDWI values, in contrast to the slightly positive

Fig. 4. A subregion in the central area is selected to show the key steps in debris mapping. a(1): coherence image; a(2): coherence with data
gaps masked out; a(3): resulting binary map of low-coherence areas (black) and others (data gaps and high-coherence areas in grey) after
segmentation; a(4): final binary coherence mask after smoothing. b(1): NDVI image of a single scene; b(2): resulting map after
thresholding and cloud masking (clouds in white, vegetation in grey and non-vegetation in black); b(3): mosaic of all vegetation masks; b
(4): final binary vegetation mask after smoothing. c(1): false-color composite of Landsat 8 image; c(2): slope map of SRTM; c(3): resulting
map after segmenting slope with a threshold of 25°, c(4): overlay of the binary coherence (a(4)), vegetation (b(4)), slope map(c(3)), clean
ice (Fig. 3a(4)) and water (Fig. 3b(4)), showing clean ice in black, debris-covered ice in dark grey, water in light grey.

Fig. 5. Comparison of basins derived from SRTM (red curves), ASTER (white curves) and manually corrected divides (yellow curves). Basins
derived from SRTM and ASTER DEM show large discrepancies along the margins in the upper parts of some of the glaciers (black boxes in
panel (a)). Many glaciers are already separated by ridges and do not need to be divided by drainage divides (black box in panel (b)) or can be
easily isolated by one divide along the ridges (white box in panel (b)).
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or negative NDWI shown by the non-water areas. A thresh-
old of 0.15 is applied to segment the NDWI image into
open water surface (value 1), non-water areas (255) and
filling values (0). A major problem with the water masking
is that shadowed areas are likely to be classified as water
bodies. These misclassifications are removed by thresholding
the mean slope of each water patch. If a polygon represents a
real water surface, the mean slope should be very small.
Referring to the bimodal distribution of mean slope of poten-
tial water polygons, a threshold of 15° is chosen to remove
non-water polygons. This method is more effective than a
pixel × pixel filtering of slope images, as the DEM is not up-
to-date and some lakes may cover areas with large slopes
due to expansion. During post processing, the polygons are
dilated by two pixels, and then used to erase water surfaces
from the clean-ice masks. The key steps in processing
water masks are presented in Figure 3b.

3.2. Mapping of debris-covered glacier tongues
As an alternative to optical imagery, SAR data from active radar
sensors are relatively independent of weather and solar illu-
mination, and have been widely used to monitor surface defor-
mations (e.g. Zhang and others, 2012; Hu and others, 2014).
One important estimate from SAR data is the coherence that
shows the correlation between image pairs used in an interfero-
metric operation. Since coherence is defined by phases and
image intensities related to radar backscattering, themagnitude
of coherence depends on many factors including sensor para-
meters (wavelength, polarization, system noise, slant range
resolution), parameters related to the observation geometry
(baseline, local incidence angle) and the surface properties
(Atwood and others, 2010; Jiang and others, 2015). The influ-
ence of sensor- and geometry-dependent factors can be miti-
gated by appropriate interferometric processing. Volume
decorrelation caused by penetration of the radar signal and
temporal decorrelation caused by changes of target surface
(i.e. motion and change of the scatterers) between image acqui-
sitions are important to characterize properties of the observed
surfaces. In particular, temporal decorrelation over glaciers can
be severe in summer seasons, due to melting and freezing of
ice and significant glacier flow that cause surface scattering
and geometry changes. Thus low coherence can be used as
a proxy for identifying glaciers (Atwood and others, 2010;
Frey and others, 2012).

Onemain problemwith maps based on SAR data, including
the coherencemap, is the geometric distortions such as layover
and shadow that can lead to data gaps over high-relief regions.
Fortunately, the debris-covered glacier tongues, which are
characterized by small slope angles, are in general free from
the layover and shadow problems. Because other factors,
such as melt of seasonal snow and growth of vegetation, can
also lead to low coherence values, we combine multi-source
data, including coherence image and additional information
such as surface slope and land cover classifications (vegetation,
glacier and water bodies) to map the debris-covered glacier
tongues. The use of additional information is similar to the
method proposed in Paul and others (2004). Specifically, the
debris-covered parts are determined by six constraints: (1) co-
herence <0.15, (2) slope in the range 0°–25°, (3) not clean ice
(value= 255 in the clean-ice mask, (4) not vegetation cover
(value= 1 in the vegetation mask, introduced below), (5) not
water bodies (value= 0 in the water mask) and (6) connection

with clean ice. The processing is shown schematically in
Figure 2 and described below.

3.2.1. Generation of coherence maps and
segmentation
We use Gamma Remote Sensing interferometric tools
(GAMMA) (Werner and others, 2000) to derive single look
complex (SLC) image pairs and interferometric coherence
from the Level 1.0 ALOS PALSAR data. First, seven pairs of
SLC images are derived by concatenating scenes along the
track, range and azimuth compression, and by absolute
radiometric calibration. The SLC image pairs are then co-
registered with reference to topographic data. To remove
the phase contribution from topography, a phase screen is
simulated according to SRTM DEM and subtracted from the
interferometric phase. In the interferometric processing,
common band filtering and a multi-look of 6 × 14 in the
range and azimuth direction are performed to reduce phase
noises and reach approximately square pixels on the
ground. An adaptive phase filter based on phase gradient
(Goldstein and Werner, 1998) is applied to maximize the co-
herence difference between the decorrelated and coherent
areas, and an adaptive window size varying between 3 × 3
pixels and 9 × 9 pixels is used in coherence estimation.
After terrain correction and geocoding, the final coherence
images are in the UTM projection and at a spatial resolution
of 30 m.

Glaciers and water bodies show very low coherence
values (dark) in the resulting coherence images (Fig. 4a(1)).
Areas affected by layover and shadow are identified with
reference to the SAR imaging geometry and the topographic
information (Fig. 4a(2); data gaps in white). To extract the
low-coherence areas, a simple method is to apply a threshold
on the coherence image. We determine the threshold empir-
ically based on the distribution of coherence values over
several large debris-covered glaciers that are manually deli-
neated by referring to the false composite of Landsat
images. The average coherence values over the tested gla-
ciers range from 0.04 to 0.07, with standard deviations (σ)
in the range 0.03–0.05. We determined a threshold of 0.15
(the averages of mean value ±2 σ) to extract potential
debris-covered glacier parts.

3.2.2. Generation of vegetation masks and slope mask
The vegetation masks are generated similarly to the water
masks and clean-ice masks. The Normalized Difference
Vegetation Index (NDVI), is used to segment the scenes
into vegetation and non-vegetation areas. NDVI is computed
as the normalized difference of the reflectance of NIR band
and red band (TM/ETM: (B4− B3)/(B4+ B3); OLI: (B5−
B4)/(B5+ B4)). NDVI can highlight the contrast between
vegetation (high NDVI) and other land cover areas (low or
negative NDVI values), and has been widely used to investi-
gate vegetation cover (Tucker and others, 1986). Landsat
images acquired in the summer seasons are suitable to
define the maximum coverage of vegetation. We use a
threshold of 0.2 to segment the scenes into vegetation-
covered areas (NDVI> 0.2: value 255) and non-vegetation
areas (NDSI< 0.2: value 1), according to the bimodal distri-
bution of NDVI values in the scene. The vegetation mask
derived from each scene is cloud masked, smoothed and
then mosaicked to a single mask with the ‘maximum’ rule
setting, which means retrieval of a maximum vegetation
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cover. The main steps in deriving the vegetation mask are
shown in Figure 4b(1–4).

Thresholding on a slope image has proven to be an effect-
ive constraint in extracting areas with glacier tongue-like top-
ography (Paul and others, 2004; Veettil, 2012). Paul and
others (2004) demonstrated that the slope of glacier
tongues in a mountain glacier in the Swiss Alps does not
exceed 24° in the case of complete coverage with debris.
Similarly, this study applies a threshold of 25° to segment
the slope map. The slope mask limits potential debris-
covered areas to the relatively flat terrain.

3.2.3. Overlay of all masks and post processing
By overlaying the coherence mask, clean-ice mask, vegeta-
tion mask and slope mask, a binary mask defining the
debris-covered ice is derived (Fig. 4c(4)). Smoothing of the
mask is performed with a similar morphological operator to
that introduced in Section 3.1. Generally debris-covered gla-
ciers are connected with clean-ice parts. To remove isolated
debris patches, we performed neighborhood analysis pro-
posed by Paul and others (2004). The smoothed clean-ice
mask and potential debris-cover mask are firstly transformed
to vector formats, and then polygons connected with the
clean ice are selected as the final debris-covered glacier
parts.

The post processing step involves editing the clean-ice
and debris-covered polygons to ensure seamless shared
boundaries. The two kinds of polygons are then merged to
form complete glacier outlines. Manual editing was also
required for regions obscured by cloud cover in all images.
In this case, we manually determined glacier outlines by re-
ferring to CGI2 and the PALSAR coherence map, which is
helpful to reshape the glacier outlines. The separate
mapping of clean-ice and debris-covered ice allows a
straightforward distinction of the two types of glaciers and
calculation of the percentage of debris cover for each glacier.

3.3. Delineation of ice divides
The last step in creating the glacier inventory is to separate
individual glaciers along the hydrological divides. This step
can affect the number and area of individual glaciers. To
compile glacier drainage divides, we follow the automated
approach described by Bolch and others (2010) and derive
hydrological basins by watershed analysis with the SRTM
DEM clipped to a buffer of 1 km around the glacier outlines.
The automatically derived drainage divides can contain
errors due to inaccurate values in the DEM, particularly in
the accumulation area and along the glacier margins
(Fig. 5). The errors are inspected and manually improved
with the help of the DEM in hill shade view, elevation con-
tours and Landsat scenes. The individual glacier polygons
are then derived by intersecting the original glacier polygons
with drainage divides. Small polygons with area <0.02 km2

are omitted in the final glacier inventory. With reference to
the DEM, glacier-specific parameters, including topographic
information (minimum, maximum, mean and median eleva-
tion, mean slope and mean aspect in degree and mean
aspect sector) are calculated for each glacier. In addition,
an internal ID and the percentage of debris cover are
assigned to each glacier.

3.4. Creation of manual digitized outlines
Outlines of 55 glaciers (∼170 km2) are manually digitized to
test the accuracy of our mapping method. The digitization is
based on Landsat imagery in a GIS and modified with refer-
ence to a slope map. We use the same ice divides to separate
the glacierized area. The manually digitized outlines fall
within different Landsat Path-Row combinations and cover
clean-ice and debris-covered glaciers with a wide range of
size classes (0.03–66 km2). Although a manually digitized
dataset is considered highly precise, there is inherent error
in any GIS-based manual digitization (e.g. Paul and others,
2013) and determination of debris-covered glaciers is par-
ticularly difficult. We use surface features such as pro-
glacial ponds and deposits in the glacier forefield as a sign
of glacier termination when digitizing glacier outlines.

4. RESULTS
The 2013 glacier inventory of the SE QTP includes 6892 gla-
ciers larger than 0.02 km2, covering a total area of 6566 km2.
The distribution of the glaciers by number and by area per
size class (Fig. 6a) and per mean aspect sector (Fig. 6b)
shows typical patterns of mountain glaciers (e.g.
Andreassen and others, 2008; Frey and others, 2012). In
this region, glaciers smaller than 1 km2 accounted for 84%
of the total number, but they share only 20% of the total
area. On the other hand, the 10 largest glaciers (>50 km2)
cover ∼13% of the glacierized area (853 km2). The mean ele-
vation of different glaciers indicates that small glaciers (<1
km2) are distributed at higher elevations (99 m higher) than
large glaciers. Analyzing the distribution of glaciers versus
aspect sector reveals that with the SE–NW direction as a
divide, the number and area of glaciers facing NE aspects
(N, NE and E) notably exceeds those with SW aspects (S,
SW and W) (Fig. 8b). About 56% of the total glacierized
area has a northeast aspect. On the other hand, the mean ele-
vation of glaciers with northeast aspects (5195 m) is 69 m
lower than those with southwest aspects (5264 m).

The spatial distribution of clean-ice and debris-covered
ice is shown in Figure 7. About 8% (531.5 km2) of the glacier-
ized area is covered by debris, with a mean elevation of
4337 m a.s.l. and mean slope of 12.1°. In contrast, the
clean-ice glacier area (92% of total area) lies at higher eleva-
tions (5234 m a.s.l. on average) and on relatively rugged
terrain with mean slope of 23.3°. A total of 338 glaciers
have partly covered tongues, and these glaciers account for
∼47% (3080 km2) of the total glacierized area. All glaciers
>50 km2 and 84% of the glaciers >10 km2 have debris
cover on their tongues, indicating large glaciers have a
higher probability for debris cover on their tongues. The
results from this study are consistent with previous observa-
tions that debris-covered glaciers tend to be the low-lying
and low-slope tongues of large valley glaciers (Paul and
others, 2004; Frey and others, 2012). The hypsometry of all
analyzed glaciers in the study region is shown in Figure 8.
While almost 92% of the total glacierized area is debris
free, the amount of debris-covered ice is more dominant in
areas below 4100 m.

Mean elevation is often used as a good approximation for
the ELA and thus is a suitable parameter to analyze the gov-
erning climatic conditions. Figure 9 shows the distribution of
mean elevation of individual glaciers. For clarity, only gla-
ciers >1 km2 are shown. The spatial distribution of glacier
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mean elevations reflects such climate dependence in the SE
QTP. Following the Yarlung Tsangpo great canyon from
south to north, the Indian summer monsoon brings moisture
inward, which results in a relatively maritime climate on the
southern slope and eastern facets of the mountain ranges,
and the lowest mean elevation of glaciers (below 4500 m)
around the Great Bend of Yarlung Tsangpo (Fig. 9). From
there, the mean elevation increases in SE–NW and SW–NE
directions (indicated by white arrows in Fig. 9), with the
highest mean elevations (above 5500 m a.s.l.) in the north-
western and southeastern margins of the study region. The

two gradients reflect change in the climate conditions asso-
ciated with both the extension of large canyons, which
serve as an important moisture transportation path, and
high-mountain ranges, which block water vapor to the
leeward side and inner highlands. It is interesting to note
that with the pattern of variability in mean glacier elevation,
the debris coverage decreases from ∼28% in the SE (mean
elevation<4500 m a.s.l.) to only 3% in the NW (mean eleva-
tion> 5500 m a.s.l.) (Fig. 9). This phenomenon is similar to
that found over the Bhutan Himalaya (Kääb, 2005) and the
western Himalayas (Frey and others, 2012). The suggested

Fig. 7. Spatial distribution of inventoried glaciers (including the debris-covered parts and clean-ice parts) and data gaps where images are
always cloud covered.

Fig. 6. Distribution of the number of glaciers (yellow), glacier area (green) and mean glacier elevations (circles), (a) per size class, (b) per
aspect sector.
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possible explanations, intensive debris supply from the steep
rock walls in the south, different geology from the southern
edges of plateau to the inner area, and auto-correlation
effects between debris cover and low-elevation glacier
parts, may also apply here.

The water vapor transportation paths along with the
topographic variations result in regional differences in
glacier distributions. The study region can be divided into
six subregions, roughly along the major canyons, which act
as natural divides of different mountain ranges and climate
patterns (Fig. 9). Table 2 gives a summary of some selected
glacier parameters for each subregion. Sub-region A in the
NW represents the high-inner plateau, where the climate is
relatively dry and cold and is less influenced by the mon-
soons. Glaciers in these regions are characterized by high
elevation, low debris cover and small area (mean area<
0.5 km2). Sub-regions C, D and F in the south and east
have a relatively maritime climate due to influences from
the summer monsoon, resulting in lower mean elevation,
higher percentage of debris cover and large glacier area
(dominated by size class between 10 and 50 km2). Glaciers
in sub-region D have the highest rate of debris cover
(16.3%). About 48, 22 and 12% of the total debris-covered
area are distributed in sub-region C, F and D, respectively.
It is interesting to note that the glaciers in sub-region F in
the southern bank of Parlung Tsangpo have the lowest
mean elevation (<5000 m), 400 m lower on average than
those in sub-region E in the northern bank, which reflects
the maritime (dry) climate in the southern (northern) side of
the mountain ranges. Sub-region B represents a medium

Fig. 9. Outlines of all inventoried glaciers in this study and mean elevation of individual glaciers with size>1 km2 (represented by color-filled
circles). The Great Bend of Yarlung Tsangpo region has the most humid climate and the mean elevation increases in both the NW and SE
directions (indicated by the white dashed curves). The debris coverage (indicated by the number in brackets in the legend) decreases with
increasing elevation.

Table 2. Glacier parameters for each subregion of the SE QTP

Subregions Glacier count Glacier area Mean size Mean elevation Median elevation Mean slope Debris coverage
km2 km2 m a.s.l. m a.s.l. ° %

A 731 332.0 0.45 5483 5457 21.9 3.2
B 1945 1454.7 0.75 5372 5420 26.0 4.7
C 1169 1904.9 1.63 5096 5153 21.8 13.3
D 330 382.5 1.16 5056 5003 29.9 16.3
E 1380 752.5 0.55 5316 5344 16.9 2.8
F 1337 1739.5 1.30 4951 4935 21.0 6.7
All 6892 6566.1 0.95 5161 5219 22.4 8.1

Fig. 8. Hypsometry of glacierized region in the study area, with
elevation varying in the range 2522–7203 m.
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state between the maritime SE (sub-region D and C) and the
dry NW (sub-region A).

5. DISCUSSION

5.1. Glacier inventory data and accuracy
The manually digitized glacier outlines (as control dataset)
are distributed over four heavily glacierized subregions
(Fig. 10). There is good agreement between our glacier inven-
tory and the control dataset, despite that the former exhibits
noise edges (Fig. 10). The 55 control glaciers have a total
area of 176.3 km2 in the control dataset, compared with
171.4 km2 in our generated glacier inventory. This is equal

to an overall −2.9% percentage difference (total areal differ-
ence divided by the total glacier area). The 30 median-to-
large glaciers (>0.2 km2), covering 95% of total area, show
stable extents in the two datasets, with areal percentage dif-
ference varying between −7 and 3% (−2.5% on average);
while 10 smallest glaciers (<0.1 km2) tend to be 10%
smaller on average in our generated glacier inventory than
in the control dataset. This is reasonable as our retrieved out-
lines represent conserved glacier extents by mapping
minimal area with multi-temporal Landsat scenes, whereas
the manual digitized dataset is referred to a single Landsat
scene. This effect can be particularly obvious for small gla-
ciers, which tend to show fast temporal variations
(Dyurgerov and Meier, 2000). Although the number of

Fig. 10. The 2013 glacier inventory generated in this study (yellow) compared with a couple of manually digitized glacier outlines (black) and
the second CGI (CGI2). Overall there is good coherence between the 2013 glacier inventory and the manual dataset. The CGI2 shows
inconsistent qualities across the study region, with overestimation in the heavily glacierized central area (e.g. (a) and (b)), acceptable
quality in the northeastern area (e.g. (c)) and problematic inner glacier boundaries in the southeastern area (e.g. (d)).
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digitized glaciers may be not enough, we consider the valid-
ation as roughly representative and estimate an uncertainty of
3% for the total mapped glacier area (6566 km2).

The total number of mapped glaciers (6892) depends on
the minimum size threshold (here, 0.02 km2). If this value is
set to 0.05 km2, the number reduces to 5783, covering a
total area of 6529 km2. In the CGI2, the total number of gla-
ciers >0.05 km2 is 6122 and the total area is 9744.6 km2.
The considerable difference in the glacier area (>3000
km2) may partly be explained by glacier changes (retreat).
However, it is more likely that the glacierized area in the
CGI2 was overestimated due to errors such as misclassifica-
tion of proglacial lakes, seasonal snow cover and inaccurate
inner ice boundaries (Fig. 10). The quality of CGI2 is incon-
sistent across the study area, with remarkable overestimation
in the heavily glacierized region in the central and south-
eastern part, yet acceptable quality in the northeastern part
(Fig. 10). We speculate that the inconsistent quality is prob-
ably associated with different qualities of reference data for
updating CGI2, despite that it is unclear, which images
were used for different parts.

Under cloud-free conditions, automated clean ice
mapping methods may have an uncertainty of ±1 pixel
(30 m) in an outline position, as shown in previous research
(e.g. Paul and others, 2002; Andreassen and others, 2008).

The main uncertainties of our method lie in the use of
partly cloud-covered images, which demands high accuracy
of cloud mask generation and geometric accuracy of the
images. Failure in identifying clouds over a glacierized area
may lead to erroneous classification of glaciers. We recom-
mend checking the accuracy of the produced cloud mask
and dilating it with 1–3 pixels to ensure complete mask out
of a cloud-affected region. The Landsat 1T products, particu-
larly the Landsat 8 scenes, have a high-geometric accuracy
within 13 m (less than on-pixel resolution) (Storey and
others, 2014), which ensures reliable overlay of multiple
scenes. Note that data gaps may still exist due to persistent
orographic cloud cover (Fig. 7). However, the always
cloud-covered areas only account for a small percentage of
the total study area (6%), and they are not heavily glacier-
ized, with total glacier area ∼77 km2 (1.2% of the total gla-
cierized area).

The accuracy of the DEM affects the glacier inventory,
mainly in two ways: the generation of glacier divides and
the derived topographic parameters of glaciers. There may
be local shifts between the Landsat imagery and SRTM, as
revealed by the differences between drainage divides
derived from SRTM and interpreted from Landsat imagery
(Fig. 5). The uncertainties in the glacier divides, however,
have no impact on the total mapped glacier area.

Fig. 11. An illustration of challenging conditions for identifying debris-covered ice over the SE QTP. Some areas (black rectangle in (a)) with
glacier tongue-like topography and connected with a clean-ice glacier turns out not to be debris-covered glacier, as (b) shows relatively high-
coherence values compared with the surrounding non-glacier region. The shaded green areas in (c) highlight tongue-like topography
determined by overlaying non-clean-ice, low slope, non-water and non-vegetation masks. (d) Close-up detail about the black rectangle
area based on high-resolution images (acquired on 8 November 2014) from Google Earth.
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5.2. Semi-automated mapping of debris-covered ice
with coherence
Due to the presence of data voids in the coherence images
over rugged mountainous areas, automated glacier
mapping based solely on SAR data is difficult. This study
demonstrates the potential of semi-automated mapping of
debris-covered glacier tongues that have low slopes and
are almost free from data voids in the coherence images. A
threshold of 0.1–0.15 on the coherence image and overlay
of multi-source data are straightforward and efficient for
extracting potential debris-covered glacier tongues. It is
worth noting that manual interpretation of debris-covered
parts based solely on slope information and Landsat images
can be misleading, as there are many glacier-tongue
shapes, which turn out to be nonglaciers (Fig. 11). This
shows the necessity of employing coherence information in
debris-covered ice mapping. With constraint of low coher-
ence and gentle slope, potential rock glaciers and non-
moving dead ice are not included in this glacier inventory.
To map these glaciers, a combined analysis with coherence,
time series and high-resolution data need to be conducted.

6. CONCLUSIONS
With a combination of multi-source information from the
latest Landsat observations, SRTM DEM and SAR data, this
study presents a semi-automated approach for generating a
glacier inventory for the SE QTP under challenging
mapping conditions (significant terrain relief, debris cover
and serious effects from clouds). To reduce the influences
of cloud cover, the use of multi-temporal Landsat observa-
tions was suggested in previous glacier inventory mapping;
however the method for doing this usually involves manual
editing and is time- and labor- consuming for a large
region. We propose a semi-automated scheme to combine
the multi-temporal and multi-source data, based on simple
rules of data selection and processing. Most thresholds
used for map segmentations are based on distribution of
image values (e.g. NDSI, NDVI and NDWI) and most pro-
cessing steps are semi-automated and pixel-based, signifi-
cantly reducing the requirement of manual editing and
improving the accuracy of glacier mapping. To map debris-
covered glacier tongues, we extended the multi-source
method proposed by Paul and others (2004) by adding
coherence images from SAR data. Including such informa-
tion is essential and necessary as many glacier-tongue
shapes turn out to be nonglaciers in this region. The proposed
method can potentially be used for glacier mapping in similar
regions including the Himalaya.

The new glacier inventory for the SE QTP is the most com-
prehensive to date for the region. The study has also revealed
that the glacierized area in CGI2 was significantly overesti-
mated (>30%) probably due to the use of cloud-free
images that may contain large seasonal snow cover. The
new glacier inventory identifies 6892 glaciers >0.02 km2,
covering a total area of 6566 ± 197 km2 (3% uncertainty).
The debris-covered glacierized areas account for ∼8% of
the total area (532 km2), and they are restricted to lower ele-
vations (mostly below 4600 m) with moderate terrain gradi-
ents. From the eastern and southern end of the
Nyainqentanglha ranges to the inner plateau in the NW,
there is an increase in the mean glacier elevation of 2000
m and a general decreasing trend of debris coverage,

reflecting different climatic, topographic and geological con-
ditions. We have classified the region into six subregions,
roughly along the major canyons that act as natural divides
of the different mountain ranges and climate conditions.
The new glacier inventory will benefit future glacier studies
including assessment and modeling of glacier changes and
the impacts on runoff, projecting glacier developments and
glacier lake hazards.
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