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Abstract

The paper [3] proved a necessary algebraic condition for a Banach algebra A with finite-dimensional
radical R to have a unique complete (algebra) norm, and conjectured that this condition is also sufficient.
We extend the above theorem. The conjecture is confirmed in the case where A is separable and A/R is
commutative, but is shown to fail in general. Similar questions for derivations are discussed.
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1. Introduction

This paper is concerned with the question of uniqueness of norm — the question of
when a Banach algebra has a unique complete norm, which means, by definition,
that each complete algebra norm on the algebra is equivalent to the given norm. A
celebrated theorem of Johnson ([6], [2, Chapter 5.1.6]) states that each semisimple
Banach algebra has a unique complete norm. However, it has been known for a long
time that even a commutative Banach algebra with 1-dimensional radical may fail to
have this property; the first such example is due to Feldman (see [2, Chapter 5.4.6]).
There are other conditions that such an algebra needs to satisfy.

The question of uniqueness of norm for algebras with finite-dimensional radical
has been discussed in [11], [12], and also implicitly in [4] (see also [2]). The most
thorough treatment of this problem has been, however, in [3]. There, the authors
propose necessary and sufficient algebraic conditions for a Banach algebra with non-
zero, finite-dimensional radical to have a unique complete norm. They proved the
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following theorem (see [3, Theorem 2.2], or [2, Chapter 5.1.12]). The notation is
given in Section 2.

THEOREM. Let Abe a unital Banach algebra with finite-dimensional radical. Sup-
pose that there exists a minimal radical ideal K such that Kx Kp has infinite codimen-
sion in A. Then A does not have a unique complete norm.

It was conjectured in [3] that the converse of the above theorem holds. This
conjecture was proved under various additional hypotheses, but, in its generality, was
left unresolved.

In Section 3, we give a new proof of the above theorem. Moreover, we extend
the result by proving that the algebra in consideration actually has a discontinuous
automorphism. In Section 4, the conjecture is proved in the case where the algebra A
is separable and the quotient A/(rad A) is commutative. This resolves the question,
left open in [3], of uniqueness of norm for an interesting class of algebras. Finally, in
Section 6, we construct a counter-example to show that the conjecture fails, even in
the case where the algebra is separable and the radical is 2-dimensional.

It should be remarked that, for an algebra A with finite-dimensional radical, if A is
separable with respect to a complete algebra norm, then A is separable with respect
to each complete algebra norm (see [3, Proposition 3.16]).

There is a related question about the automatic continuity of derivations. It is
proved in [8] that derivations on each semisimple Banach algebra are continuous.
We consider two automatic continuity problems; one is for derivations on Banach
algebras with finite-dimensional radical and the other is for derivations from Banach
algebras into finite-dimensional Banach modules. Our results on these problems
are 'in parallel' to those on the uniqueness-of-norm problem. Moreover, the results
on constructing discontinuous automorphisms are all derived from similar results on
constructing discontinuous derivations (see Section 3 and Section 6).

There is another related topic, the Wedderburn decomposition of Banach algebras
with finite-dimensional radical, which was developed in [7]. However, we do not
cover this topic here.

In summary, we prove the following 'characterization' theorems. When A is
non-unital we can always consider A* — the unitization of A.

THEOREM A. Let A be a separable Banach algebra with finite-dimensional radi-
cal R such that A/R is both unital and commutative. Then the following are equiva-
lent:

(a) each derivation on A is continuous;
(b) each derivation D : A —> R with D2 = 0 is continuous;
(c) each automorphism of A is continuous;
(d) each complete algebra norm on A is equivalent to the given norm;
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[3] Automatic continuity and Banach algebras 281

(e) for each minimal radical ideal K in A, the ideal KkKp has finite codimension
in A.

THEOREM B. Let A be a separable, unital Banach algebra, and let X be a finite-
dimensional Banach A-bimodule such that A/X1 is commutative. Then the following
are equivalent:
(a) each derivation from A into X is continuous;
(b) for each minimal sub-bimodule Y in X, the ideal YkYp has finite codimension

in A.

2. Preliminaries

First, we recall some terminology explained in [3]; see also [2]. Let A be an
algebra. For two subspaces E and F in A, we denote by EF the linear span of the set
[ab : a e E, be F).

A minimal radical ideal of A is a minimal non-zero ideal of A that is contained
in rad A, the radical of A. In each non-zero and finite-dimensional ideal contained in
rad A, we can always find a minimal radical ideal.

When rad A = R is finite-dimensional, there exists n e H such that R" = {0} and,
for each minimal radical ideal K, we have RK = KR = {0}.

For a subspace I of A, define the left and right annihilators of / by

Ik = {a e A : al = {0}} and lp = {a e A : la = {0}},

respectively. Define the annihilator of / by I1 = Ik (1 Ip. Similarly, we can define the
left annihilator Xk of a left A-module X and right annihilator Yp of a right A-module
Y; Xk and Yp are ideals in A. For an A-bimodule Z, we also define the annihilator
Z±tobeZkr\Zf>.

For each m e N , let Mm denote the full matrix algebra of m x m-matrices over C.
For each m, n e N, let Mmn denote the space of m x n-matrices over C; the space
Mm,n is naturally considered as an Mm-IMIn-bimodule.

Let A and B be algebras. Recall that an A-B-bimodule X is minimal if X is non-
zero and has no other non-zero submodule, and is simple if, furthermore, AXB ^ 0 .
For a finite-dimensional, simple A-B-bimodule X, there exist /, r € N such that
A/Xx = Mi and B/Xp = Mr and, when considered as an MrMr-bimodule, X is
isomorphic to M,,r; see, for example, [2, page 65]. The module M;,r is the unique
simple M/-Mr-bimodule (up to isomorphism).

Each unital M(-Mr-bimodule can be considered as a unital left M,r-module, and
hence each unital M;-Mr-bimodule is semisimple, so that it is an algebraic direct sum
of its simple submodules, or equivalently, each of its submodules is an algebraic direct
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summand (in Mj-mod-M]r). For the semisimplicity of unital left Mn-modules see, for
example, [9, pages 28, 33].

The following are standard results from automatic continuity theory; for details,
see [2]. Let T : E —> F be a linear operator from a Banach space E into another
Banach space F. The separating space of T, denoted by 6 (T ) , is defined as

{v e F : there exists a sequence (un) c E with un -> 0 and T(un) -*• v}.

The space 6(7") is a closed subspace of F and, by the closed graph theorem, T is
continuous if and only if &(T) = {0}. Let S : F -> G be a bounded linear operator
from F into a Banach space G. Then we have

= S(6(T));

see [2, Theorem 5.2.2 (ii)].
Now let 6 : A —> B be a homomorphism from a Banach algebra A into a Banach

algebra B. Then the separating space ©(#) is a closed ideal in 6(A). Define the left
and right continuity ideals of 0 by

J?k(9) = {a € A : b i->- 0(ab), A —>• fi, is continuous}, and

^ ( 0 ) = {a € A : fo i->- 0(ba), A -> 5 , is continuous},

respectively. By the previous paragraph, we have

A ( 0 ) = [a 6 A : 0 (a )6(0) = {0}} and JP{B) = {a e A : 6(6>)6>(a) = {0}}.

As expected, «/*.(#) and ^p(6) are ideals in A; in general, they are not closed in A.

Let D be a derivation from a Banach algebra A into a Banach A-bimodule X; by
definition, D is a linear map from A into X satisfying

D(ab) = a • Db + (Da) • b (a,beA).

Then the separating space @(D) is a closed submodule of X. The left and right
continuity ideals of D are defined to be

= {a<=A:a- 6 ( D ) = {0}} and SP(D) = {a e A : 6 ( D ) • a = {0}},

respectively. We see that

JX(D) = {a e A : b \-+ D(ab), A ->• X, is continuous}, and

JP(P) = {a 6 A : fc i-> D(ba), A -> X, is continuous}.

In this case, the ideals «/*.(£>) and J'AD) are closed in A.
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3. Construction of discontinuous derivations and automorphisms

In [3, Theorem 2.2], the authors construct directly, on a Banach algebra A, a
complete algebra norm that is not equivalent to the given norm when A satisfies
certain algebraic conditions. Theorem 3.3 below, extends that theorem by providing
a discontinuous automorphism of A (as well as a discontinuous derivation on A). The
method is to construct a discontinuous automorphism out of a certain derivation.

First, we construct a discontinuous derivation from a Banach algebra A into a
finite-dimensional Banach A-bimodule.

LEMMA 3.1. Let A be a Banach algebra, and let Y be a finite-dimensional, simple
Banach A-bimodule. Suppose that A/(YkYp) is unital and has infinite dimension.
Let F be any finite-dimensional subspace ofY1. Then there exists a discontinuous
A-mod-A homomorphism T from YL onto Y such that T is zero on YkYp + F.

PROOF. Since y 1 = Ykn Yp has finite codimension in A, we see that YkYp is of
infinite codimension in Y1. Then

/ = Y,YP + F + AF + FA + AFA

is also an ideal of infinite codimension in Y1. Since A/(YkYp) is unital, the quotient
space YL/I can be considered as a unital A/Yk-A/Yp-bim.o&xi\t. As discussed in
Section 2, we have that both A/Yk and A/Yp are isomorphic to some full matrix
algebras, and that Yx/I is an algebraic direct sum of simple A/ Yk-A/ Yp-s\ibmo<iu\£s.
Since YL/I has infinite dimension, there exist distinct such simple submodules, say En

(n e H). For each n € N, let Tn be an A/Yk-mod-A/Yp homomorphism from YL/I
onto Y such that Tn is an isomorphism from En onto Y and zero on the remaining
submodules. Let n : Y1 —> YL/1 be the quotient map. Then each Tn o n is an
A-mod-A homomorphism onto Y, and Tn o it is zero on / . It is easily seen that

The Baire category theorem applied to the Banach space YL then shows that ker(rnoo7r)
is not closed for some n0 e N. Hence, by setting T = Tno o n, we obtain the desired
map T. •

THEOREM 3.2. Let A be a Banach algebra, and let X be a finite-dimensional Banach
A-bimodule such that A/(XkXp) is unital. Suppose that there exists a minimal sub-
bimodule YofX such that YkYp has infinite codimension in A. Then, for each finite-
dimensional subspace F ofY1, there exists a discontinuous derivation D : A —>• X
such that D(A) = Y and D(F) = {0}.
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PROOF. Let e e A be such that e + XkXp is the identity of A/(XXXP).
Since Y is a minimal A-bimodule, either AY = {0} or AY = Y. Assume towards

a contradiction that AY = {0}. Let a e Yp. Since a — ea e XkXp, we see that

So Yp c YxYp. This contradicts the assumption that YkYp has infinite codimension in
A. Therefore AY = Y and, similarly, we see that YA = Y. Thus Y is indeed a simple
A-bimodule.

Consider the following two cases.
Case 1: YX = YP = YL. Then A/Y1 = Mn for some n e N. Let

be such that {/?,; + Y1 : i, j = 1, . . . , « } corresponds to the standard basis of
Then each element a in A can be expressed uniquely as

(1) a = ̂ T

where atj e C for 1 < i, j < n and u e YL.
Let Ft be the linear span of F U [pijpst — SjSpit : 1 < i, j , s,t < n). Then F\ is

a finite-dimensional subspace of y 1 . Let T : Yx -> y be a discontinuous A-mod-A
homomorphism that is zero on ( y 1 ) 2 + Fu the existence of which is guaranteed by
Lemma 3.1. Define D : A —> Y by Z)(a) = 7(M) for each a e A written in the form
specified in (1). It is routine to check that D is a derivation satisfying the requirement.
Case 2: Yx ^ Yp. Since Yx and Yp are distinct maximal ideals in A (by the sim-
plicity of y again), we have A = Yx + Yp, and so y ^ / y 1 = A/Yx = M, and
Yx/Y

± = A/Yp~ Mr, for some ! , r e N . Choose {p0 : / ,> = 1,.. . , /} C yp and
{̂ ;; : J, 7 = 1, •••, '•} C Yx such that

{pu + YL :i,j = 1, . . . , /} and {qu• + YL : j , j = 1 , . . . , r}

correspond to the standard bases of fVD( and Mr, respectively. Then we see that each
element a in A can be expressed uniquely as

(21 a — V* a D 4- V^ 6 o 4- u

where a,7 e C for 1 < i, j < I, &, € C for 1 < s, t < r, and u e Y1.
Let Fx be the linear span of

F U {puqst :l<i,j< I, a n d 1 < s , t < r}

U [pijPst — SjsPit '• 1 < i, j , S,t<l}

https://doi.org/10.1017/S1446788700015883 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015883


[7] Automatic continuity and Banach algebras 285

Then F\ is a finite-dimensional subspace of YL. By Lemma 3.1, we can find a
discontinuous A-mod-A homomorphism T : YL —> Y that is zero on YXYP + Fx.
Define D : A -> Y by D(a) = T(u) for each a € A written in the form specified in
(2). Again, it can be verified that D satisfies our requirement. •

THEOREM 3.3. Let Abe a Banach algebra with finite-dimensional radical R such
that A/(R + RXRP) is unital. Suppose that there exists a minimal radical ideal K
such that KkKp has infinite codimension in A. Then:

(1) there exists a discontinuous derivation D : A —> R with D2 = 0;
(2) there exists a discontinuous automorphism on A.

In particular, A has a complete algebra norm which is not equivalent to the given
norm.

PROOF, (i) Since AT is a minimal radical ideal, we have RK = KR = {0}. Thus K
can be considered as a minimal A//?-bimodule. We see that A/R and K satisfy the
hypothesis of Theorem 3.2, so there exists a discontinuous derivation DQ : A/R -*• K.
Set D = DQ on, where n : A —> A/R is the quotient map. Then D : A —>• K is a
discontinuous derivation with D(K) = {0}.

(ii) Let D : A —>• A be a discontinuous derivation such that D2 = 0. Denote by idA

the identity map on A. Set 0 = idA + D. Then 9 is a discontinuous automorphism
on A; its inverse map is <p = idA — D.

The map a i->- ||#(a)||, A —>• K+, is an algebra norm on A, easily seen to be
complete, and is not equivalent to the given norm. •

4. Banach algebras having a unique complete norm topology

In this section, we prove the mentioned conjecture for separable Banach algebras
with finite-dimensional radical under some additional hypothesis. In particular, we
prove the conjecture in the case where A is separable and A/(rad A) is commutative.
This case was proved in [3] under the additional hypothesis that either rad A is central
or (rad A)2 = {0}. Part of our argument is an extension of the argument in [3]. Our
approach is to use separating spaces as well as continuity ideals to prove the continuity
of certain homomorphisms.

Let A be an algebra. A composition series of an A-bimodule X is a chain X =
XQ D Xx D X2 D ••• D Xj_i D Xs = {0} of submodules of X such that, for each
1 < i < s, the A-bimodule Xi-i/Xi is minimal. We introduce the following concept.

DEFINITION 4.1. An admissible series for an A-bimodule X is a chain

X = Xo D X, D X2 D • • • D X,-t DXS = {0}
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of submodules of X such that the ideals (X,_i /X,)x(^i- i /X,)p , for 1 < i < s, are
each of finite codimension in A.

LEMMA 4.2. Let A be an algebra, and let X be an A-bimodule. Suppose that X
has a composition series. Then the following are equivalent:

(a) X has an admissible series;
(b) X has an admissible series that is a composition series;
(c) each composition series ofX is an admissible series.

When one of the above three conditions hold then each submodule of X has an
admissible series.

PROOF. That (a) implies (b) follows by 'refining' the given admissible series to
obtain a composition series, which is easily seen to be admissible. That (b) implies
(c) follows from the Jordan-Holder theorem [1, pages 117-120]. The remaining
implication ((c) implies (a)) is obvious. The final assertion then follows from (c). •

A finite-dimensional A-bimodule X always has a composition series.

LEMMA 4.3. Let A and B be commutative algebras, and let X be a finite-dimen-
sional A-B-bimodule. ThenX = ®" = l X, where X, are submodules of X (1 < J < n)
such that, for each 1 < i < n, we have

(1) either A/(X,)A. « radical or both A/(X,)X is local and there exists a € A such
that a • x — x for x e X,, and
(2) either B/(X,)P is radical or both B/{Xi)p is local and there exists b € B such

thatx • b — xforx 6 X,.

PROOF. Since X is finite-dimensional, we can write X = 0 " = 1 X,, where n 6 N
and each X, is an A-B-submodule of X with no non-trivial direct summand (in A-
mod-B). Fix / with 1 < i < n. Then A, = A/(X,)X and B, = B/(X,)P are
finite-dimensional, commutative algebras which act faithfully on the left and right
of X,, respectively. By the Wedderburn structure theorem (see, for example, [2,
Chapter 1.5.8]), there exists an orthogonal set [plt ..., pk} (which may be empty) of
non-zero idempotents in A, such that

A, = ($Cpj 0radA,.

It then follows that
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where pj • X, (I < j < k) and (l — J2j=\ Pj)' %i a r e easily seen to be A-B-bimodules,
and each pj • X, is non-zero. Therefore, by the assumption on X,, we must have that
either k = 0 or k = 1. Thus A, is either radical or local; in the later case we must
have p\ • x = x (x € X).

The assertion (ii) is proved similarly. •

LEMMA 4.4. Let A be an algebra, and let h, I2, J\, J2 be finite codimensional
ideals in A such that there exists m € N with J™ C I\ and J™ c h- Suppose that
JXJ2 has finite codimension in A. Then l\l2 has finite codimension in A.

PROOF. This is [3, Lemma 1.6]. •

PROPOSITION 4.5. Let A be an algebra, and let X be a finite-dimensional A-
bimodule, such that A/Xs- is commutative. Then the following are equivalent:

(a) for each minimal sub-bimodule Y of X, the ideal YxYp has finite codimension
in A;
(b) there are sub-bimodules Xu ..., Xn ofX such that X = ®"_, Xit and such that

(Xi)k(Xi)p has finite codimension in A;
(c) X has an admissible series.

PROOF. That (b) implies (c) is obvious, and that (c) implies (a) follows from
Lemma 4.2. We prove (a) implies (b).

Suppose that (a) holds. Set B = A/X1, so that B is a commutative algebra.
Let X = ®"= 1 Xj be the decomposition as in Lemma 4.3 (working in B-mod-B).
Returning to A-mod-A, we see that the decomposition X = ®"= 1 X, still satisfies the
conditions (i) and (ii) in Lemma 4.3.

Fix 1 < / < n. Let Y be a minimal sub-bimodule of Xt. First, if A/(X,)x is
radical, then so is Yk/(Xj)k. Otherwise, if A / ( X , ) A is local, then, by Lemma 4.3, there
exists a e A such that a • x = x for x € X,, and so a ^ Yx- This implies that Yk is a
proper ideal in A, and therefore, by locality, Yk/(Xj)k is, again, radical. Thus, in both
cases, Yx/(Xj)x is radical and finite-dimensional. It follows that (Y),)' C (X,)x for
some / € N. Similarly, there exists a n r e N such that (Yp)

r C (X,)p. By hypothesis,
we have that YKYP is of finite codimension in A. Hence, by Lemma 4.4, the ideal
(X,)X(X,)P also has finite codimension in A.

This completes our proof. •

DEFINITION 4.6. Let A be an algebra with a finite-dimensional radical R. We say
that A satisfies the A-property if the A-bimodule R D R1 has an admissible series.

That (a) implies (b) from following proposition, in the case where R2 — {0}, was
implicit in the proof of [3, Theorem 3.13] (in fact, the argument there can be modified
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to work in the general case of (a) implies (b); our proof is different but still follows
the idea of [3]).

PROPOSITION 4.7. Let A be an algebra with finite-dimensional radical R such that
A/R is commutative. Then the following are equivalent:

(a) for each minimal radical ideal K in A, the ideal KXKP has finite codimension
in A;
(b) there are ideals Ru ..., Rn in A such that R D RL = 0 " = l /?,-, and such that

(Ri)>,(Ri)p has finite codimension in A;
(c) A satisfies the A-property.

PROOF. This is a corollary of Proposition 4.5, since each minimal radical ideal K
is contained in R D Rx. •

LEMMA 4.8. Let A be a separable Banach algebra, and let E and F be closed

linear subspaces of A with EF having finite codimension in A. Then EF is closed,

and there exist a constant C > 0 and m e N such that, for each a e EF, there exist

(•XiOJLi c & and (vi)r=i C F such that

m

,v,- and / ] II*! IIIIV; II < C\\a\\.

PROOF. This is [3, Lemma 3.1] (see also [2, Chapter 2.2.16] and [10]). •

The next result is an extension of Corollaries 3.7-3.9 in [3]. We cannot use an
induction scheme (like the one provided by [3, Theorem 3.6]) to prove the next
theorem, as was the case for those corollaries.

THEOREM 4.9. Let A be a separable Banach algebra with finite-dimensional radi-
cal. Suppose that A satisfies the A-property. Then each complete algebra norm on A
is equivalent to the given norm.

PROOF. The radical of A is denoted by R. Consider another complete algebra
norm ||| • ||| on A. We need to prove that the identity map i : (A, || • ||) -> (A, ||| • |||) is
continuous. By Johnson's automatic continuity theorem for epimorphisms, we have
S(i ) C R. For each a € R, since i is continuous on R — a finite-dimensional ideal,
we have a G A ( i ) n J?p(\). Thus, indeed <5(i) C RP\ RL.

Assume towards a contradiction that 6 (i) ^ {0}. Then there exists an ideal AT that is
maximal among the ideals properly contained in &(\). Since K is finite-dimensional,
K is closed in both topologies. Consider the map 9 : (A, || • ||) —> {A/K, ||| • |||)
induced by i. Then 6(6) = 6(i)/K, and

Sk(6) = {azA: 9(a)6(6) = {0}} =
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and, similarly, Jp(&) = (6(\)/K)p. So ^(0) and JP(B) are closed (in both topolo-
gies). Then, since the bilinear map

T : (x, y) H> 0(xy), J?x(6) x Jp{6) -> A/K

is separately continuous, it follows that T is bounded.
By the A-property of A and by Lemma 4.2, the ideal ^(0)^(9) is of finite

codimension in A. Then, by Lemma 4.8, we see that 0 is bounded on ^(6)^(6),
which is, by the same lemma, a closed, finite-codimensional subspace of A. Thus 0
is continuous on the whole of A, contradicting the fact that 6(0) = &(i)/K ^ {0}.
Hence, we must have S(i) = {0}, implying the continuity of i. •

The following theorem resolves a question that was left open in [3].

THEOREM 4.10. Let A be a separable Banach algebra with finite-dimensional
radical R such that A/R is commutative. Suppose that KkKp has finite codimension
in A for each minimal radical ideal K in A. Then each complete algebra norm on A
is equivalent to the given norm.

PROOF. This follows from Proposition 4.7, and Theorem 4.9. •

REMARK. Theorem 4.10 and Proposition 4.7 still hold with the much weaker hy-
pothesis that 'A//? + Rx is commutative' instead of the hypothesis that 'A/R is com-
mutative' (with the same proofs). The algebra A/R + RL is 'only' finite-dimensional.

5. The continuity of derivations

Recall that we are interested in two classes of derivations: derivations on algebras
with finite-dimensional radical, and derivations from algebras into finite-dimensional
bimodules. The proofs in this section are similar to those in Section 4.

THEOREM 5.1. Let Dbea derivation from a separable Banach algebra A into a Ba-
nach A-bimodule X. Suppose that &(D) is finite-dimensional and has an admissible
series as an A-bimodule. Then D is continuous.

PROOF. Assume towards a contradiction that &(D) ^ {0}. Then there exists an
A-bimodule Y which is maximal among the proper A-bimodules contained in &(D).
Consider the map D\ : A -> X/Y induced by D. Then D\ is a derivation and
e{D,) = <S(D)/Y. So ^ ( D , ) = {aeA:a- 6(D,) = {0}} = ( S ( D ) / 1 % and,
similarly, JP{DX) = (&(D)/Y)P.

Continuing as in the proof of Theorem 4.9, we obtain a contradiction. Hence
<5(D) = {0}, implying the continuity of D. •
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COROLLARY 5.2. Let A be a separable Banach algebra, and let X be a finite-
dimensional Banach A-bimodule. Suppose that X has an admissible series as an
A-bimodule. Then derivations from A into X are continuous.

PROOF. This follows from Proposition 4.2 and Theorem 5.1. •

COROLLARY 5.3. Let A be a separable Banach algebra, and let X be a finite-
dimensional Banach A-bimodule such that A/X1 is commutative. Suppose that
Y\YP has finite codimension in A for each minimal sub-bimodule Y in X. Then all
derivations from A into X are continuous.

PROOF. This follows from Proposition 4.5 and Corollary 5.2. •

REMARK. In [5], a Banach algebra A is constructed whose square A2 has finite
codimension, but is not closed. Let X = C with trivial A-bimodule actions. Then
A/XL = 0. Thus A and X satisfy the hypothesis of Corollary 5.3 except for the
separability of A. However, any discontinuous linear functional that is zero on A2 is a
discontinuous derivation from A into X. This shows that the separability condition in
the hypothesis of the previous corollary and theorem is necessary. We shall see later
that the commutativity condition is also necessary (Theorem 6.1). (Un)fortunately,
the algebra A is neither commutative nor has finite-dimensional radical. Therefore
we cannot say anything about the separability hypothesis in other results.

Now we consider derivations on Banach algebras. It is proved in [8] that, for a
semisimple Banach algebra A, each derivation D on A is continuous, which means
that &(D) = {0} = rad A. Although it is still open whether 6(£>) C rad A holds for
all Banach algebras A and all derivations D on A, we have the following result.

LEMMA 5.4. Let A be a Banach algebra with radical R such that R2 is closed and
has finite codimension in R. Then, for each derivation D on A, we have &(D) c R.

PROOF. We can assume that A is unital with the identity denoted by e. For each
primitive ideal P in A, define nP to be the natural projection from A onto A/P.

Assume towards a contradiction that &(D) <£. R. Then 6 ( D ) £ Pi for some
primitive ideal Py in A, which is equivalent to the discontinuity of 7i>,D. By [8,
Theorem 3.3], we have nPD is continuous for all except finitely many primitive ideals
P<• (1 < i• < n), and each P, has finite codimension in A (hence is maximal). Now,
let PQ be the intersection of all the primitive ideals P different from P,- (1 < / < n).
Then

https://doi.org/10.1017/S1446788700015883 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015883


[13] Automatic continuity and Banach algebras 291

which is finite-dimensional, and so R2 is closed and has finite codimension in Po. We
have <&(D) c Po, but &(D) <£ Pu so that Po <£_ Pt. Since Pi is a maximal ideal in
A, we see that Po + Pi = A. In particular, we have e = p0 + px, where p0 e Po and
Pi € Pi. Then e = e2 = p + p\, where p = p\ + popt + pxpQ = p0 + pip0 e PQ.
Thus, for each a e A, we have nPlD(a) = nPlD(ea) — nP]D(pa). This implies
that 7rPl D is discontinuous on Po. However, it easily seen that 7tPl D is zero on R2,
a closed subspace of Po of finite codimension, and so nPl D is continuous on Po, a
contradiction. •

COROLLARY 5.5. Let A be a separable Banach algebra with finite-dimensional rad-
ical. Suppose that A satisfies the A-property. Then derivations on A are continuous.

PROOF. The radical of A is denoted by R. Let D : A ->• A be a derivation. By
Lemma 5.4, we have &(D) C R. As in the proof of Theorem 4.9, we see that
&(D) c R n R1. Hence, the result follows from Theorem 5.1. •

COROLLARY 5.6. Let A be a separable Banach algebra with finite-dimensional
radical R such that A/R + R1 is commutative. Suppose that KkKp has finite codi-
mension in A for each minimal radical ideal K in A. Then each derivation on A is
continuous.

REMARK. The results in this section hold without modification for a more general
class of operators, the intertwining operators. Let A be a Banach algebra. A linear
operator T from a Banach A-bimodule X into a Banach A-bimodule Y is said to be
intertwining over A if, for each a e A, the maps

x (->• T(a • x) — a • T(x) and x \-+ T{x • a) — T{x) • a,

both from X to Y, are continuous; see, for instance, [2, Chapter 2.7.1]. Thus each
derivation from A into a Banach A-bimodule is an intertwining operator.

6. The general case of dimension at least two

In this section, we present a counter-example to the main conjecture in [3] men-
tioned in Section 1.

For a separable Banach algebra A with 1-dimensional radical R, the only minimal
radical ideal is R itself. We see that the conjecture holds in this case; A has a unique
complete norm if (and only if) RkRp has finite codimension in A, by Theorem 4.9
(and 3.3) or by [3, Corollary 3.9]. However, for greater dimensions, even for dimen-
sion 2, the problem becomes more complicated. In [3, Example 5.5], a separable,
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unital Banach algebra with 2-dimensional radical was successfully constructed, which
satisfies the hypothesis of the conjecture, but not the hypothesis of any result in [3]
(nor does it satisfy the hypothesis of our results); the construction is rather involved.
Yet it was proved directly that this algebra has a unique complete norm.

Our example will be a separable, unital Banach algebra with 2-dimensional radical
(showing that the conjecture fails for each dimension greater than 1). Following
the approach of our previous construction, we first construct similar examples for the
problem of derivations/rom Banach algebras into 2-dimensional Banach modules, and
then for the problem of derivations on Banach algebras with 2-dimensional radical.

THEOREM 6.1. There exist a separable, semisimple, unital Banach algebra A and a
2-dimensional, unital Banach A-bimodule X such that both the following hold:

(a) for each minimal sub-bimodule Y in X, the ideal Y^ Yp has finite codimension
in A;
(b) there exist a discontinuous derivation D from A into X.

The following provides a counter-example to the conjecture.

COROLLARY 6.2. There exists a separable, unital Banach algebra si with 2-
dimensional radical such that all the following hold:

(a) for each minimal radical ideal K, the ideal KiKp has finite codimension in si;
(b) there exists a discontinuous derivation on si;

(c) there exists a discontinuous automorphism on si.

In particular, there exists a complete algebra norm on si that is not equivalent to the

given norm.

PROOF. Let A, X and D : A -> X be as in Theorem 6.1. Set si = A © X. Then,
with ^'-norm and with product given by

(a © x)(b © y) = ab © (ay + xb) (a,b € A , x , y € M ) ,

si is a separable, unital Banach algebra with rad si = X. We extend D by linearity
to the whole of si by mapping X to 0. Then we obtain a discontinuous derivation
on si. Define

6 : affix i->- a® (Da +x), si ->• si.

Then it is easily seen that 0 is a discontinuous automorphism on si. The map

a@x\-+\\d(a®x)\\, si-^-R+,

gives a complete algebra norm, say ||| • |||, on si, and ||| • ||| is not equivalent to the given
norm || • ||. Finally, condition (a) follows from Theorem 6.1 (a). •
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PROOF OF THEOREM 6.1. Denote by M2 the algebra of upper triangular 2 x 2 -
matrices (over C).

Let B be a separable, commutative, semisimple Banach algebra such that B2 has
infinite codimension in B (many such examples exist, for example, £' with pointwise
product). Denote by M2(B) the Banach algebra of 2 x 2-matrices with coefficients
in B. Then M2(B) is also semisimple and separable. Set A = M"2 © M2(5). A
generic element of A has the form

cc P\ _ /s u
v

where a, f$, y G C and s, t, u, v € B. Then A is an algebra with pointwise addition
and with product being the matrix multiplication, so that M2 and M2(B) can be
naturally identified with subalgebras of A. Further,

Mu
2 • M2(B) C M2(B) and M2(B) • Mu

2 C M2(B).

Giving A the ^'-norm, we obtain a separable, unital Banach algebra (with the identity
given by the identity of M2), and that M2(#) is a closed ideal of A.

We see that A has the following two obvious characters:

We claim that A is semisimple. Indeed, let

Then, since cp(a) = f{a) = 0, we must have a = y = 0. We next see that

/ I 0\ (s 0\ , (0 0\ /0 0\J 0 ) d ( ) {
so the two elements on the right are in M2(B) D rad A = rad M2(B), and so 5 = / =
v = 0. Now, let u; e fi. Multiplying a on the left by (° jj), we obtain

/0 0 \
\0 ^u; + «)«/

which, again, must be in the radical of M2(B), and so fiw + wu = 0 for w € B.
Since B cannot have a right identity, we must have /3 = 0, and then, since B is
semisimple, we see that u = 0. Thus, we have proved that rad A = {0}.
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Next, we claim that M2 has finite codimension in A, where Mv is the kernel of <p.
Indeed, for each s, t, u, v <s B, we have

(
t v) \0 l)\t V V° °A° 0

so that M2(B) c M2,. In fact, we can check that M2 = Mv.
Consider X = C2 as a unital Banach A-bimodule by defining the module multipli-

cations as M2(B)X = XM2(B) = {0} and the multiplications by Mu
2 as

for a, j6, y, ^, rj 6 C. Then X has exactly one minimal A-mod-A submodule, namely

We see that Yk = Yp = Mv, so that YkYp = M2 has codimension 1 in A.
Now, since B2 has infinite codimension in B, there exists a discontinuous linear

functional k on B such that k is zero on B2. Define a discontinuous linear map
D : A - • X by

"••Co IH "
It can be verified that D is a derivation. •

7. Conclusion

It remains open to determine conditions that are both necessary and sufficient
for a (separable) Banach algebra with finite-dimensional radical to have a unique
complete norm. We have seen that the necessary condition (in the unital case) 'for
each minimal radical ideal K, the ideal KkKp has finite codimension' is not sufficient.
Our construction is, however, not 'systematic' enough to provide a clue on finding
and proving additional necessary conditions.
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