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A number of classical theorems of ring theory deal with nilness and nilpotency of the
Jacobson radical of various ring constructions (see [10], [18]). Several interesting results of
this sort have appeared in the literature recently. In particular, it was proved in [1] that
the Jacobson radical of every finitely generated Pi-ring is nilpotent. For every commuta-
tive semigroup ring RS, it was shown in [11] that if/(/?) is nil then J(RS) is nil. This result
was generalized to all semigroup algebras satisfying polynomial identities in [15] (see [16,
Chapter 21]). Further, it was proved in [12] that, for every normal band B, if J(R) is
nilpotent, then J(RB) is nilpotent. A similar result for special band-graded rings was
established in [13, Section 6]. Analogous theorems concerning nilpotency and local
nilpotency were proved in [2] for rings graded by finite and locally finite semigroups.

This paper is devoted to the radicals of group graded rings, which have been actively
investigated by many authors (see [10], [14]). Let G be a group. An associative ring
R = 0 ^g is said to be G-graded {strongly G-graded) if RgRh c R h (respectively,

geG

RgRh = Rgh) for al\g,h e G.
First, we consider algebras over a field of characteristic zero. In this case our result

will be also of interest in connection with the well-known problem of finding necessary
and sufficient conditions for the Jacobson radical to be homogeneous. An ideal / of
R = 0 Rg is said to be homogeneous if / = 0 IC\Rg. This problem has not been solved

geG gsG

even for u.p.-groups (see [7], [8], [10]). Polynomial identities give what appears to be the
first natural sufficient condition which is applicable to the case of arbitrary groups.

THEOREM 1. Let G be a group with identity e, and let R = 0 Rg be a G-graded
geC

Pi-algebra over a field of characteristic zero. If the Jacobson radical J(Re) is nil, then J(R)
is a homogeneous nil ideal of R.

The following corollary to the main theorem is worth mentioning.

COROLLARY 2. Let G be a group with identity e, and let R = 0 Rg be a strongly
g &G

G-graded Pi-algebra over a field of characteristic zero. IfJ(Re) is nilpotent, then J(R) is
nilpotent.

It is impossible to replace strongly graded algebras by ordinary group graded algebras
in Corollary 2. Indeed, let A be the free commutative algebra with free generators
au a2, Denote by / the ideal of A generated by au a\, a\, Then All is positively
graded, and so All = 0 Az where Z is the infinite cyclic group. Although Ao = 0, it is

zeZ

clear that J(A/I) = A/1 is not nilpotent.
One cannot omit the restriction on the characteristic of the field neither in Theorem
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1 nor in Corollary 2, as the results on the Jacobson radical of group algebras show (see
[10, Section 44]). However, the conclusion of Theorem 1 concerning nilness holds for
arbitrary Pi-rings. Namely, the following graded analogue of the celebrated Braun's
Nullstellensatz for Pi-rings (see [1], [18]) is valid.

THEOREM 3. Let G be a group with identity e, and let R = 0 Rg be a G-graded
PI-ring. IfJ(Re) is nil, then J(R) is nil, too. g e G

Throughout R = 0 Rg will be a G-graded ring, G a group with identity e. Let T be
geG

a subset of G. Put RT = 0 R,. For any r e R, say r = £ rg where rg e Rg, we put

rT= 2 rt. If / c R and g e G , then we put L = / D Rg and IT = If\ RT. Further, for r ̂  0,
teT

denote the set of all non-zero homogeneous summands rg of r by H(r), and put
supp(r) = {g e G | rg ̂  0}. Put //(0) = 0, supp(0) = 0 . Clearly, //(r) and supp(r) are finite
sets. Let H(I) = [J H(r). Then H(R) is the set of all homogeneous elements of R.

rt=I

Evidently, H(R) is a multiplicative subsemigroup of R. By the length of r we mean
|supp(r)|. Recall that a semigroup S is said to be permutational if there exists n > 1 such
that, for any n elements * i , . . . ,x n of 5, their product can be rearranged as xx... xn =
xai ... xm for a non-trivial permutation o\ Every Pi-ring (or Pi-algebra) satisfies a
multilinear identity, i.e. an identity of the form

X}...Xn+ 2 ^ai ...Xm=0, (1)

where Sn is the symmetric group, ka are integers (elements of the field in the case of
algebras, see [17]). Let us begin with a known lemma (see [10, Proposition 6.18]), which
will be used repeatedly.

LEMMA 4. Let R be a G-graded ring, Ha subgroup of G. Then J(RH)2/!wn J(R).

LEMMA 5. Let R be a G-graded Pi-ring, I a homogeneous ideal of R contained in
J(R). If Ie is nil, then I is nil.

Proof. Take any element r in //(/). Since / is homogeneous, r e / . Let r e I(R) H Rg,
where geG. If g is a periodic element, then there exists a positive integer n such that
r" e If\Re = Ie, and so r is nilpotent. Further, assume that g is not periodic. Denote by T
the infinite cyclic group generated in G by g. Lemma 4 shows that r e J(RT), and
therefore r is nilpotent again in view of [10, Theorem 32.5]. Thus //(/) is a multiplicative
nil subsemigroup of R. Since R satisfies a polynomial identity, it follows from [17,
Theorem 1.6.36], that / is nil, as required.

LEMMA 6. Let G be a permutational group, R a G-graded Pi-ring. If J{Re) is nil, then
J(R) is nil.

Proof. By [16, Theorem 19.8], G is finite-by-abelian-by-finite. Take any r e J(Rc)-
Denote by S the subgroup generated in G by the support of r. It is easily seen that 5 is
also finite-by-abelian-by-finite. Lemma 4 implies r e J(Rs), and so without loss of
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generality we may assume that G is finitely generated itself. Then assertion (2.2) of [4]
tells us that G is abelian-by-finite, i.e. G has an abelian normal subgroup A of finite
index. Then A is finitely generated, too (see [9]). Therefore G contains a torsion-free
abelian subgroup T of finite index. By [10, Corollary 22.8], R is graded by the finite group
G / r with the identity component RT. Therefore [15, Lemma 1.1(1)], shows that it suffices
to prove that J(RT) is nil. However, J(RT) is homogeneous by [10, Theorem 30.28],
because T is torsion-free abelian. Lemma 5 completes the proof.

LEMMA 7. Let G be a permutational group, R a G-graded PI-algebra over a field of
characteristic zero. IfJ(Re) is nil, then J(R) is homogeneous.

Proof. We shall verify that H(J(R)) consists of nilpotent elements. Then [17,
Theorem 1.6.36], will show that H(J(R)) generates a homogeneous nil ideal / in R, and so
J(R) = / is homogeneous.

Pick any r e J(R) and g e supp(r). We claim that rg is nilpotent. As in the beginning
of the proof of Lemma 6, we may assume that G has a torsion-free abelian subgroup T of
finite index. If we look at the natural G/T-gradation of R and apply [10, Theorem 30.28
(b)], and the fact that our field has characteristic zero, then we conclude that J(R) is
G/T-homogeneous. We may assume that the whole supp(r) is contained in one 7-coset
of G (otherwise we would pass to the G/7-homogeneous summand of r corresponding to
the coset containing g). Since GIT is finite, there exists a positive integer n such that
rrg e RT. Given that J(Re) is nil, [10, Theorem 32.5], implies that all the homogeneous
summands of rrg are nilpotent. Therefore rg is nilpotent, as required.

Proof of Theorem 1. By Lemma 5 the largest homogeneous ideal I of R contained in
J(R) is nil. Obviously, R/I is a G-graded ring, and J(R/I) = J(R)/I. Therefore it suffices
to prove Theorem 1 for R/I. To simplify the notation we may assume that from the very
beginning 7 = 0.

Suppose that J(R) #0 . Choose a non-zero element r with a minimal length in J(R).
Denote by T and 5 the subgroup and, respectively, subsemigroup generated in G by
supp(r). Let M = M{r) be the multiplicative subsemigroup generated in R by H(r). We
claim that H(r) consists of nilpotent elements.

If S is permutational, then the group T is permutational too, by [16, Theorem 19.8],
and so all elements in H(r) are nilpotent in view of Lemmas 6 and 7.

Further, consider the case where 5 is not permutational. Let n be the degree of a
multilinear identity (1) of 7?. There exist elements su... ,sn in S such that S i . . . sn ¥=
Vi • • • •SOT. for all o- s Sn such that a7^1. Clearly, there exist xu... ,xn e M such that
Xj e Rs. for all / = 1, . . . ,n. Applying (1) to the elements xu... ,xn we get

whence x : . . . xn = 0. It follows that yY... ym = 0 for some yu... ,yme H(r). Then we can
choose m and the y\,...,ym such that y t . . .Vm-i^O. Now look at the product
yx... ym-ir. It also belongs to /(7?) but has fewer homogeneous summands than r. Hence
yx... ym-jr = 0 by the choice of r. Since G is a group, we get yr... ym^H{r) = 0. Further,
we can look at ^ . . . ym-2rH{r) = 0 and infer y1... ym_2(7/(r)2) = 0. Reasoning like this m
times, we conclude (H{r))m = 0. In particular, all elements in H(r) are nilpotent, again.
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Denote by L the ideal generated in 7/(7?) by H(r). Each non-zero element of L is a
homogeneous summand of a certain element of positive minimal length in 7(7?). It follows
from what we have proved that L is a nil ideal of 7/(7?). Hence L is locally nilpotent by
[17, Theorem 1.6.36]. Therefore L generates a nil subalgebra K in R. Evidently, K is a
homogeneous ideal of 7?, and so K <=I, contradicting the fact that 7 = 0. Thus 7(7?) = 7,
and so 7(7?) is a homogeneous nil ideal of R.

Proof of Corollary 2. By Theorem 1 we get 7(7?) = 0 Ig, where Ig = ID Rg. Denote

by n the nilpotency index of J(Re). Lemma 4 implies Ie <= 7 (/?,,), and so (Ie)
n = 0. We

claim that 7(7?)2" = 0.
To this end we need only to verify that xx ... x2n = 0 for arbitrary homogeneous

elements xu...,x-^ e7(7?). Let xt e Igi, where i = 1,... ,2n. Given that x2 e 7?g2 =
RsriRe,g,, we can find yl1' e 7?»-i and zl1} e /?_ „ such that x2 = £ yl1^/,1'. Then Xiyl0 e Ie

h

for all y'i. Further, suppose that for some i = 2,...,n elements y}/_~^ and Zjl~1^ have been
introduced such that * 2 , -2 = 2 y j ^ z j ^ 1 * and all C ' ' s ^.-ss-2- T n e n ^2 / e 7?gi. =
R(isi -gv-iV^gi-«a' anc^ s 0 t n e r e e x i s t homogeneous elements yj^ e T?^,...^.,)"1 anc^ )̂< e

RgJ...gli such that 2̂l- = 2 yj^zj;0 and all z)lL7I)^2,-iy}/) belong to /e. Therefore

which completes the proof.

Proof of Theorem 3. We shall prove that 7(7?) = B(R), where B(7?) denotes the Baer
radical of 7?. To this end we show that R/B(R) is semisimple. Suppose to the contrary
that 7(7?/7i(7?))#0. Since R/B(R) is a subdirect product of prime Pi-rings, there exists a
prime Pi-ring 7? and a homomorphism / of 7? onto 7? such that /(7(7?)) ¥= 0. By Posner's
theorem (see [17]) 7? is contained in a matrix ring Dm, where D is a division ring. For any
r £ 7? and T g 7?, put r=f(r), f =f(T).

Consider the set L of all x e 7/(7?) such that either f = 0 or f has the smallest
non-zero rank in Dm. By [16, Theorem 1.6], all non-zero elements of L lie in the same
completely 0-simple factor F of the multiplicative semigroup Dm. Obviously, L is a
multiplicative ideal of 7/(7?), and so L is a multiplicative ideal of 7/(7?).

Put M = LJ{R)L = {xay \ a e J(R),x,y e L}. Clearly, M is a multiplicative subsemi-
group of 7?, because 7(7?) is an ideal of 7?. Denote by 7 the subring generated in 7? by L. It
follows that 7 is an ideal of 7? and 7is an ideal of 7?. Since 7 # 0 and 7? is prime, we get
77(7?) #0 , and so IJ(R)I^0. Since / consists_of all finite sums of elements of L, we get
M ¥= 0. We shall show that every element in M is nilpotent.

Fix any non-zero w e M. There exists w=axb, such that a,bmL, xeJ(R),
s _

x = 2 xk, and all xk are homogeneous. Elements a and b belong to the same

completely 0-simple factor F of Dm. By [16, Theorem 1.3], we can represent F as a Rees
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matrix semigroup F = M(G°; I, A; P). (The definitions and standard properties of compl-
etely 0-simple semigroups and Rees matrix semigroups can be also found in each of the
following monographs [3], [5], [6].) Let a = (i,g, A) and b = (j,h, /JL), where i,jsl,
A, fx E A, g, h e G. It is routine to verify that axkb e (/, G°, /i) for every k = 1 , . . . , s.

If p M i ^ 0 , then (i,G°, n)2 = 0 in F, and therefore (axb)2 = 0_in_ K_Hence every
element (axkb)(ax,b) has a smaller rank in Dm than a. Therefore (axkb)(axib) = 0 where
1 < k, I ̂  s. Thus w2 = 0, as required.

Further, consider the case where p^-^O. By [16, Lemma 1.4], P = (/, G,/x) is a
multiplicative subgroup of Dm. Put T = {g s G \Rgf)P7^0}. Clearly, Tis a subsemigroup
of G. Let n be the degree of a multilinear identity (1) satisfied in R. For any
g , , . . . , g n e T, we can choose rk e /?gt such that TksP, where A: = 1 , . . . ,« . Applying (1)
we get (2), which implies that T is permutational. By [16, Theorem 19.8], T generates a
permutational subgroup Q in G. Lemma 6 shows that J(RQ) is nil.

Since all non-zero summands axkb belong to P, where k = l,... ,s, we get
axkb E RQ, and so axb e / ( / ? Q ) by Lemma 4. Therefore w = axi>_is a nilpotent element.

Thus M is a multiplicative nil subsemigroup of Dm. Hence Mq = 0 for some q > 1 by
[18, Proposition 2.6.30]. Since M is, evidently, closed under multiplication by elements of
H(R), it follows that M generates a nilpotent ideal in R. This contradicts the primeness of
R and completes the proof.

REFERENCES

1. A. Braun, The nilpotency of the radical in a finitely generated Pi-ring, /. Algebra 89 (1984),
375-396.

2. M. V. Clase and E. Jespers, On the Jacobson radical of semigroup graded rings, J. Algebra
169 (1994), 79-97.

3. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, vol. 1 (American
Mathematical Society, 1961).

4. M. Curzio, P. Longobardi, M. Maj and D. J. S. Robinson, A permutational property of
groups, Arch. Math. {Basel) 44 (1985), 385-389.

5. P. M. Higgins, Techniques of semigroup theory (Oxford University Press, 1992).
6. J. M. Howie, An introduction to semigroup theory, London Mathematical Society

Monographs No. 7 (Academic Press, 1976).
7. E. Jespers, Radicals of graded rings, Theory of radicals, Szekszard, 1991, Colloq. Math.

Soc. Janos Bolyai 61 (North Holland, 1993), 109-130.
8. E. Jespers, J. Krempa and E. R. Puczyiowski, On radicals of graded rings, Comm. Algebra

10 (1982), 1849-1854.
9. M. I. Kargapolov and Ju. I. Merzljakov, Fundamentals of the Theory of Groups (Springer,

1979).
10. G. Karpilovsky, The Jacobson radical of classical rings, Pitman Monographs

(Longman/John Wiley, 1991).
11. W. D. Munn, The algebra of a commutative semigroup over a commutative ring with unity,

Proc. Roy. Soc. Edinburgh Sect. A 99 (1985), 387-398.
12. W. D. Munn, The Jacobson radical of a band ring, Math. Proc. Cambridge Philos. Soc. 105

(1989), 277-283.
13. W. D. Munn, A class of band-graded rings, J. London Math. Soc. 45 (1992), 1-16.
14. C. N3stasescu and F. Van Oystaeyen, Graded ring theory (North Holland, 1982).
15. J. Okniriski, On the radical of semigroup algebras satisfying polynomial identities, Math.

Proc. Cambridge Philos. Soc. 99 (1986), 45-50.

https://doi.org/10.1017/S0017089500031104 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031104


210 A. V. KELAREV AND J. OKNINSKI

16. J. Okniriski, Semigroup algebras (Marcel Dekker, 1991).
17. L. H. Rowen, Polynomial identities in ring theory (Academic Press, 1980).
18. L. H. Rowen, Ring theory (Academic Press, 1988).

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS

UNIVERSITY OF TASMANIA UNIVERSITY OF WARSAW

HOBART, GPO Box 252C BANACHA 2
TASMANIA 7001 02-097 WARSAW

AUSTRALIA POLAND

https://doi.org/10.1017/S0017089500031104 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031104

