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ABSTRACT. A new software to handle the large expressions involved in 
high accuracy analytical theories has been developped by H. Claes, M. 
Moons, J.M. Zune and J. Henrard. The main ideas on which this software 
is based are described here. 

1 . INTRODUCTION 

The algebra involved in the analytical theories for high precision 
Celestial Mechanics is so huge that this kind of work was almost 
completely abandonned after the famous work of Delaunay and Brown on 
Lunar Theory. 

With the advent of computers such work could start again and 
several new very accurate analytical theories have been and are still 
developped. I shall just mention the work done at the Bureau des 
Longitudes on planetary and lunar theories (Chapront-Touze* and Chapront 
1 9 8 3 , G. Francou et al. 1 9 8 3 . P. Bretagnon 1 9 8 * 0 , the work done in 
Leningrad (Tupikova 1 9 8 * 1 , Taracevitch 1 9 7 9 ) and in Namur (Henrard 1 9 7 9 , 
Standaert 1 9 8 0 , Moons 1 9 8 6 ) although many more could be mentioned. 

All these developments have been implemented with special purpose 
softwares which have not been compared or even in most cases been 
described in open litterature. 

As we are testing a new version of our software (written by H. 
Claes, M. Moons, J.M. Zune and the author) which I believe is more 
general and more transportable than earlier versions, I think it is 
worth describing here some of the main ideas on which this software is 
based. 

2. ALGEBRA OF POISSON 1 S SERIES 

Typically, in problems of Celestial Mechanics, one would like to 
represent on the computer and manipulate functions of the type 
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which are called Poisson series. The number of trigonometric variables 
( m ) and the number of polynomial variables ( n ) may vary from one 
problem to the other but are typically between 0 and 20 . The values 
of the exponents ( i l f...,i n) and the multipliers ( j i . . . . , j m ) a r e 

integers and together form what is called the key of a term. The 
maximum absolute value of the components of the key may again vary from 
one problem to the other and even from one component to the other in the 
same problem. The number of terms in a series may reach several 
thousands but some series may have only a few terms. 

It is thus essential to keep these options as open as possible. 
We choose a sheme by which at the beginning of an application, the 
number of variables ( n , m ) and the maximum absolute value for each 
component of the key is declared. This choice can be altered later on. 

Each term can then be represented by its numerical coefficient 
and the value of its key packed within a few words. To this information 
should be added the information about the binary tree structure (see 
next section). A collection of such terms form a series. 

3. BINARY TREE STRUCTURE 

One of the more time consuming operations performed on Poisson 1s series 
is to find out whether a series contains a specific term and in that 
case its location within the series. For a software to be efficient, 
this search should be conducted with an algorithm close to the optimum. 

The balanced tree algorithm (Knuth 1973) is such an algorithm 
which at the same time allows for easy insertion of new terms. To 
implement this algorithm we need to add to each term two pointers (the 
limbs of the tree) and a three-valued flag. 

With the balanced tree algorithm the maximum number of 
comparisons needed to decide whether a given term is already present in 
a series of N terms, and if it is where is it, is close to log 2 N . 

4. SPACE ALLOCATION AND THE BLOCK MANIPULATOR 

Series can be very large and it is not always possible (or convenient) 
to determine a priori how large they will be. We were often led with 
earlier versions of our software to situations where series would be too 
large to reside in the virtual memory. 

To overcome this limitation, we cut the series in a collection of 
pages residing on a disk. When it is needed a page is brough 
dynamically into virtual memory. We create in a sense a super-virtual 
memory. 

To handle this traffic between disk and virtual memory and to 
make it transparent to the user, J.M. Zune implemented a Block (of data) 
Manipulator. 

Each series is considered as a block (of data). Several blocks 
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can be bunched up into a file. A block is identified by an "identifier" 
and can be in one of two states. In the passive state, the block is one 
disk and the identifier contains the information needed to open the disk 
file. In the active state, the identifier contains the address of a 
dictionnary residing in core. The dictionnary itself contains the 
information about the location of each page of the data either in 
virtual memory or on disk. 

When a new page has to be allocated in memory (and no page is 
available) the oldest page in memory is sent back on disk. 

The Block Manipulator has already been used successfully for 
handling sparse matrices (Lescrenier 1985). 

5. SERIES MANIPULATOR 

The operations on series implemented in the series manipulator are the 
usual operations of the Algebra of Poisson Series : addition, 
multiplication, multiplication by a scalar and partial differentiation 
with respect to each variable. It is also possible to "read" or to 
create a series term by term allowing the user to construct its own 
special purpose functions. 

The scheme is quite transparent. The user has only to know the 
identifier of a series to operate upon it. For instance, to perform the 
product of two series A and B and to accumulate the result into the 
series C , the user will write 

CALL PR0D(A,B,C,1.DO) 
(the constant 1.D0 indicates that the product A*B has to be 
multiplied by the scalar 1. ) where A , B , C are FORTRAN variables 
containing the identifiers of the series. 

The Block Manipulator and the Series Manipulator are implemented 
in FORTRAN with the exception of a few subroutines (coding, decoding and 
data transfer) written in machine language. 
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