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FUGLEDE'S COMMUTATIVITY THEOREM AND n R(T - A) 

BY 

ROBERT WHITLEY 

ABSTRACT. Fuglede's commutativity theorem for normal operators is 
an easy consequence of the result that: For T normal, denoting the range 
of T - A by R(T - A), Pi {R(T - A) : all A} = {0}: 

Fuglede's commutativity theorem for normal operators is an easy consequence of 
the elegant intersection of ranges theorem: If T is normal, then the intersection of the 
ranges R(T — A), for all A, is zero 

(1) (1{R(T - A) : all A} = {0} 

Equation (1), with (T — A) replaced by (T — A)2, was established by Johnson in [3]. 
Equation (1) was proved in [5], with reference to Johnson's work, and independently 
in [6]; proofs can also be found in [8, lemma 5.1] and [1, lemma 3.5]. Equation (1) 
can be extended to T hyponormal, for which see [1], by the use of Stampfli's powerful 
local spectral theory [1, 9, 10, 11, 12, 13]. 

Lemma 1 and corollary 2 below give a simple proof of Fuglede's theorem using (1). 
Lemma 3 gives an easy proof of a special case of (1) which is sufficient to establish 
Fuglede's theorem. 

LEMMA 1. Let T be a normal operator. For each A there is a unitary operator VJ\ 
with 

(2) (T - A) = UX(T - XT 

This U\ commutes with both T and T*. 

PROOF. Define UA on the range R(T - A)* of (T - A)* by UX(T - \)*x = (T - X)x. 
Because T is normal, UA is an isometry and so has a unique extension to the closure 
of R(T - A)*. Extend UA to all of the Hilbert space as the identity on [R(T - A)*]1 = 
N(T — A) = N(T — A)*. Equation (2) holds by construction. Since U\ is unitary, 
equation (2) implies that 

(3) U*x(T-\) = (T-\)\ 

Received by the editors February 13, 1989 
AMS (1980) Subject Classification: Primary 47B20. Secondary 47B15. 
© Canadian Mathematical Society 1989. 

331 

https://doi.org/10.4153/CMB-1990-055-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1990-055-9


332 R. WHITLEY [September 

Taking adjoints in (2) shows that U^ commutes with (T — A) and thus UA commutes 
with (T -\)*. Then 

UX(T - A) = U2
X(T - A)* = UX(T - A)*UA = ÇT - A)UA 

and UA commutes with (T — A) and U^ with (T — A)*. • 

COROLLARY 2. Fuglede s Theorem: Let T be normal and suppose that B commutes 
with T. Then B commutes with T*. 

PROOF. Using the lemma, write 

(4) T*B - BT* = (T- \)*B - B(T - A)* = (T - \)(U*XB - BU*X) 

By the intersection of the ranges theorem, T*B — BT*. • 

For a normal operator T, use the spectral theorem to represent T as multiplication on 
L20S, Z, v) by an L°°(S, X, v) function (p. Assume that g belongs to the n R(T — A) 
so that for all A = x + iy 

(5) fix, y) = / , [ y 1 , |2 v{ds) < oo 
Js \(p(s)-X\2 

Define ji{E) — fE \g(s)\2i/(ds), a finite measure, and rewrite equation (5) as 

(6) / ( * , y) = Js [ y > ( f )
1_A | 2 nids) < oo 

Equation (1) will hold if it can be shown that fi(S) = 0. Note that the example of 
constant ip shows that (6) must hold for all A before one can, in general, conclude 
that \i = 0. 

To establish Fuglede's theorem the full strength of (1) is not required. From equation 
(4), if g belongs to the range of T*B -BT\ then g = (T-\)(U*XB -BU*x)g, SO/(JC, y) 
can be chosen to be bounded with 

/ (* , y)=\\(UlB-BUl)g\\2^4\\B\\2\\g\\2 

In this case where / is bounded, the measure /x can be shown to be zero by complex 
variable methods, as in the proof of [1, theorem 3.4]. Lemma 3 gives a simple real 
variable proof. 

LEMMA 3. If the function f (x, v) of equation (5) is bounded then \x — 0. 

PROOF. For z ^ 0, define 

(7) F(x, y, z) = / , / x \ l ? t _7fi(ds) 
1 

|^ ( s )^Â| 2 + z2 ' 
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By the Monotone Convergence Theorem, F(x, j , z) increases to/(x, v) as z tends to 
zero: hence/(x, y) is lower semicontinuous, therefore measurable and so has a finite 
intergral over any compact subset of R2. 

If necessary, change (p on a. set of measure zero so that |< (̂.s)| ^ M for all s in S. 
Set a(s) = Re(f(s)y b{s) = Im^O), À = x + /v, and consider: 

/ / ( * , y)dxdy = / / / 7-— rry dxdy fi(ds) 
-2M J-2M JS J-2M J-2M |<PW ~ M 

ç p2M-a(s) r2M-b(s) j 

= / / / ~TT~i dxdy Vids) 
J S J-2M-a(s) J-2M-b(s) x + J 

= / / / - ^ — Î dxdy M*) = 2 ^ ( ^ ) / (lAMr 
JsJ-MJ-MX2+y2 Jo 

and the last term is infinite unless /i(S) = 0. D 

Lemma 3, or the stronger equation (1), can be extended to more general (p. Note 
that if ip(so) — 00, then \i can be a non-zero point mass at so and still have (6) hold. 
However, one can extend the result to the case where ip is a measurable function 
which is finite /x-almost everywhere as follows: Let Sn — {s : \<p(s)\ ^ n}. Then for 
the measure [in defined by \in(E) — ^(snDE), 

Mx'y) = Is\^s)-X\^n{ds}<0° 
and ip belongs to L 0 0 ^ , X, /xw). By the theorem for essentially bounded <p, /x„ = 0. 
Since this is true for all «, /x = 0. 

I would like to thank M. Schechter for his helpful comments. 
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