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Some proponents of niche construction challenge the validity of optimality models for investigating agricultural origins,
but offer no alternative strategy for understanding the economic context of human foraging decisions. They refer to the
Eastern Agricultural Complex as an example of how seed cultivation can result from resource enhancement rather than
population-induced resource depression, contradicting a prediction inferred from the prey choice model. Low-return seed
cultigens were harvested in environments offering more highly ranked hickory nuts in abundance, apparently supporting their
interpretation. A marginal value model demonstrates that in years of low mast yield, foragers could more profitably fill food
stores from nearby seed plots than from distant hickory trees. Cultivating seeds would have been economically worthwhile
when population circumscription constrained mobility, consistent with trends indicating regional population growth. Surges
in walnut shell relative to small seeds are also consistent with the model, suggesting that foragers intensified their use of
local, anthropogenic vegetation communities as populations grew, stimulating development of horticultural economies. This
illustrates the value of foraging models used in conjunction with niche construction for investigating agricultural origins,
particularly when model predictions initially fail to accord with archaeological evidence.

Algunos defensores del modelo de construcción de nicho disputan la validez de los modelos de estado óptimo en la investigación
de los orígenes de la agricultura; sin embargo, no ofrecen una estrategia alternativa para comprender el contexto económico
de las decisiones de forrajeo humanas. Estos investigadores utilizan el Complejo Agrícola Oriental como ejemplo de la
posibilidad de que el cultivo de semillas pudo haber resultado de la mejora de recursos en lugar de la depresión de
recursos inducida por el crecimiento poblacional, lo cual contradice una predicción inferida del modelo de elección de
presas. Las semillas de bajo retorno fueron cosechadas en ambientes que ofrecían fuentes de nutrición preferenciales tales
como las nueces de nogal en abundancia, aparentemente apoyando estas interpretaciones. Un modelo de valor marginal
demuestra que en años de bajo rendimiento de nueces, los recolectores pudieron haber llenado sus depósitos de los semilleros
cercanos con más facilidad que si hubieran aprovechado los nogales lejanos. En consistencia con tendencias que indican un
crecimiento demográfico regional, el cultivo de semillas habría adquirido valor económico cuando la circunscripción limitaba
la movilidad. Los aumentos repentinos de cáscaras de nuez en relación a las semillas pequeñas también son consistentes
con este modelo, el cual indica que los recolectores intensificaron la utilización de comunidades vegetales antropogénicas
mientras crecía la población, estimulando así el desarrollo de economías hortícolas. Esto ilustra el valor de los modelos de
forrajeo utilizados en combinación con la construcción de nicho en la investigación de los orígenes agrícolas, sobre todo
cuando las predicciones del modelo no concuerdan con la evidencia arqueológica.

The Eastern Agricultural Complex (EAC)
emerged as an independent center of
plant domestication in an interior river-

ine region of the United States that offered
abundant natural resources (Figure 1). Indige-
nous annual grasses and forbs domesticated
before maize became the dominant crop about
1,100 years ago included squash (Cucurbita
pepo ssp. ovifera), sunflower (Helianthus annuus
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var. macrocarpus), marshelder (Iva annua var.
macrocarpa), and chenopod (Chenopodium
berlandieri) (Smith 1989, 2006, 2011; Smith
and Yarnell 2009). Giant ragweed (Ambrosia
trifida), little barley (Hordeum pusillum), may-
grass (Phalaris caroliniana), and knotweed
(Polygonum erectum) were probably also culti-
vated (Gremillion 2004:216; Smith and Yarnell
2009:6562).
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Figure 1. Map of the eastern United States showing Eastern Agricultural Complex limits after (Smith 1987b), modern
distribution of walnuts, and archaeological sites/regions mentioned in the text: (1) Riverton, (2) Florence Street,
(3) Phipps Bend, (4) Iddins, (5) Russell Cave, (6) Davisson Farm, (7) Cloudsplitter Rock Shelter, (8) Highland Creek;
(a) American Bottom, (b) Little Tennessee River valley, (c) Tombigbee River valley, (d) Duck valley.

Applications of microeconomic logic to
understanding the cost-benefits of foraging
and farming in eastern woodlands span several
decades (Brown and Vierra 1983; Christenson
1980, 1986; Gremillion 1998, 2006; Keegan and
Butler 1987; Reidhead 1981; Stafford 1994).
Winterhalder and Goland (1997) proposed a
research strategy, formally grounded in human
behavioral ecology that used foraging models to
pose various testable scenarios by which agricul-
ture developed in the eastern United States. One
based on the prey choice or diet breadth model
(Charnov and Orians 1973; Schoener 1971)
suggested that population pressure depressed
the abundance of higher-ranked resources,
triggering small seed cultivation as diet expanded
to include very low-ranked resources. However,
co-occurrence of nut and acorn shell with
seed cultigens in archaeobotanical assemblages
seems inconsistent with a key prediction of the

prey choice model: that costly resources are
added to the optimal diet only when higher-
ranked alternatives are sufficiently rare. Small
seed grains probably offered only between 300
and 1,000 kcal/hr (Gremillion 2004), whereas
hickory nuts (Carya spp.), hazelnuts (Corylus
spp.), walnuts (Juglans spp.), and acorns
(Quercus spp.), yielded between 250 and 3,500
kcal/hr (Gremillion 2002b; Petruso and Wickens
1984; Talalay et al. 1984; Thomas 2008) in
an autumn collecting window that overlapped
most seed harvests. Gremillion (2002a, 2002b,
2004, 2006) demonstrated that the EAC cannot
be understood simply as an expansion of diet
breadth because of the abundance of mast, and
proposed that seed cultivation buffered risk
resulting from inter-annual variability in mast
yields. Archaeologists working in the behavioral
ecology paradigm have since emphasized the
storability of seeds by modeling central place
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foraging, risk, and transport costs (Carmody
2010, 2014; Gremillion 2002b, 2004; Thomas
2008).

Smith (2015) recently advocated niche con-
struction as a superior evolutionary framework
for investigating the EAC. Niche Construction
Theory argues that organisms modify the eco-
logical context of natural selection, and that
subsistence adaptations arise from feedbacks
between organisms and their environment rather
than from one-way adjustments of foraging
behavior to shifting resource configurations, as
implicitly assumed in optimality models. As
paramount niche constructors, humans apply
cultural knowledge to enhance foraging produc-
tivity, leading, in some instances, to domestica-
tion. Under this framework of Cultural Niche
Construction (CNC), Smith (2015:250) argues
that the EAC is better understood as resource
enhancement under conditions of plenty than a
response to resource shortfalls induced by popu-
lation growth. His reasoning harkens back to his-
torical disputes over whether population pressure
(Binford 1968) or cultural change (Braidwood
1960) stimulated the development of broad-
spectrum foraging and Neolithic economies
(Miller 2014; Zeder 2012). It challenges for-
aging theory only to the extent that the prey
choice model formalizes long-held expectations
about the effects of demographic pressure on
resource selection (Cohen 1977; Flannery 1969)
in a testable manner (Winterhalder and Kennett
2006). Nonetheless, Smith (2015) claims that
lack of archaeological evidence for population
pressure prior to the earliest evidence of seed
domestication not only falsifies this resource
depression hypothesis for the origin of the EAC,
but also calls into question fundamental premises
underlying optimality models altogether.

In this paper, I critique Smith’s application
of CNC and contend that, lacking means of
modeling human foraging choices, CNC relies
instead on economically naive assessments of
resource abundance. I apply the marginal value
theorem to EAC food storage strategies to model
circumstances in which seed harvest and cul-
tivation were economically worthwhile when
reduced mobility and high travel costs restricted
access to higher-ranked hickory nuts. I test a
hypothesis that a shift from hickory to walnut

occurred prior to the intensification of seed crops
because it offers higher harvest rates than small
seeds. Contrary to Smith’s critique, I find that
a research strategy based on foraging models
is essential for understanding the EAC in the
context of niche construction.

Prey Choice Model Predictions for Hickory
and Chenopod Seed

The explanatory dilemma posed for the resource
depression hypothesis is exemplified by compar-
ing post-encounter return rates (calories acquired
per time spent pursuing and processing a
resource) of hickory nuts and chenopod seed.
These are often the most abundant and ubiquitous
macrofossils in respective nut and seed culti-
gen categories in archaeobotanical assemblages
(Gremillion 2003; Scarry 2003; Simon 2009), but
they differ significantly in their caloric returns.
When processed for oil, hickory nuts were prob-
ably the highest ranked mast crop. Thomas’s
(2008) experiments demonstrated that pignut
hickory (Carya glabra) could yield in excess of
2,000 kcal/hr, which is a conservative estimate
for hickory oil (Gremillion 2002a; Talalay et al.
1984). In contrast, chenopod probably offered
only about 600 kcal/hr (Gremillion 2004), as
inferred from ethnographic handling times for
an Australian chenopod (Cane 1987). Although
not based on experimentation with Chenopodium
berlandieri, this estimate is consistent with vari-
ous ethnographic and experimental sources for
small-grain seeds (Seeman and Wilson 1984;
Simms 1987; Zeanah et al. 2015), and proba-
bly accurately ranks chenopod seed as offering
significantly lower caloric returns than hickory
oil, unless further actualistic evidence demon-
strates substantially more effective traditional
harvest and processing techniques (López et al.
2011).

Although skepticism of the precision of these
return rates is warranted, using them to alge-
braically solve for search time (Bettinger 2009)
suitably illustrates the problem they pose for
the resource depression hypothesis. A hypo-
thetical forager seeking to optimize energetic
return rate should bypass a stand of chenopod
unless it takes more than eight hours to find
the next productive hickory tree: an unrealistic
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assessment given the abundance of hickory, as
well as alternative highly ranked species of oak,
in eastern woodlands (Keller 1987; Zawacki
and Hausfater 1969). Although nut yields vary
annually, locations of productive crops can be
anticipated in advance of harvest (Gardner 1997;
Nixon et al. 1980), and prehistoric foragers likely
enhanced mast yields by controlled burning and
silviculture (Abrams and Nowacki 2008; Gard-
ner 1997; Smith 2009a; Wagner 2003). The prey
choice model thus reveals little incentive for
prehistoric foragers to harvest seeds if they were
free to move where they knew nuts and acorns to
be accessible.

Niche Construction Theory and the EAC

Smith’s (1987a, 1995) Floodplain Weed hypoth-
esis describes the domestication of small seeds as
a sequence of niche construction processes. As
Middle Holocene climate stabilized fluvial depo-
sitional systems, regular flooding opened sandy
habitats that fostered annual weeds, including
chenopod. Smith (1995:202–203, 2011:S477)
expects that foragers residing nearby would
have harvested these grasses because of their
natural abundance and yield. Seeds also thrived
in anthropogenically disturbed habitats near
riverine base camps, initiating coevolutionary
relationships with human foraging activity as
early as the Middle Archaic (8900–5800 cal
B.P.).1 Domestication resulted from intention-
ally replanting seed stock on recently exposed
floodplains. Although morphological indicators
of domestication, such as seed coat reduction in
chenopod, appear by the Late Archaic (5800–
3200 cal B.P.), cultivated seeds remain minor
components of archaeobotanical assemblages
until the Woodland period (3200–1000 cal B.P.),
when more intensive horticultural subsistence
economies emerge. Smith (2001:18) character-
izes the preceding adaptation as low-level food
production in which cultivated seeds made only
minor contributions to otherwise broad-spectrum
foraging economies. Although he recognizes
that population pressure may have played a
role in the Woodland horticultural intensification
(Smith 1987a:25), he challenges any notion that
it triggered the earlier Archaic domestication of
seeds (Smith 1995:211–212, 2015 249–250).

Smith (2011) uses the Late Archaic Riverton
site in Illinois to support this interpretation. He
understands Riverton as a base camp for a multi-
family group based on various residential, stor-
age, and midden features exposed in excavation
(Smith and Yarnell 2009; Winters 1969; Yarnell
2004). At least three species of annuals in the
archaeobotanical assemblage were domesticated
by 3800 B.P., but foragers at Riverton also
harvested diverse terrestrial and riparian game,
a variety of nuts, and seeds of at least five non-
domesticated plants, most indicating autumn
occupation (Yarnell 2004). Smith (2011:S482)
argues that appearance of domesticated seed
morphologies at Riverton is evidence that the
EAC emerged in resource-rich, riverine environ-
ments free from resource depression.

Other than this, Smith (2015:240) relies
heavily on “absence of evidence” for resource
depression and population growth in archaeolog-
ical contexts. For example, Smith (2011:S482)
argues that demographic pressure did not pre-
cede seed domestication because the three Late
Archaic residential sites located by Winters
(1969) along the Wabash River, including River-
ton, are spaced 16 km apart and buffered by
ample upland catchments. Yet it is unclear to
what degree this site density simply reflects
preservation and sampling biases in fluvial set-
tings (Stafford 1994). Further, it is not self-
evident that contemporaneous occupation of the
three sites would be insufficient to depress high-
ranked resources locally. One could argue to the
contrary that the number of residential structures
and investment in their construction, the extent
of refuse disposal in middens, and the diversity
of subsistence resources at Riverton are direct
evidence of tethered residential mobility and
broad spectrum foraging, consistent with local
demographic packing and resource depression.
Smith poses no further criteria by which resource
depression or enhancement can be distinguished
or measured at Riverton.

It is unclear why foragers would cultivate seed
plots in environments already prolific in wild
seeds and mast. Smith (1987a:27–29) suggests
that sedentary occupation of riverine locations,
like Riverton, was prerequisite for domestica-
tion, and that spring replanting of seed stock
ensured household security and social affluence
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Table 1. Estimates of Resource Productivity.

Hickory Chenopod Walnut

Energy kcal/kg 7,000a 3,200–4,000b 6,070c

Harvest Rate (kg/hr.) 57.04 (nuts)a 1–1.5 (achenes)d 5.2–9.5 (nuts)e

% Edible 12a 72c 19f

Harvest Return Rate (kcal/hr.) 47,900 2,300–4,300 6,000–11,000 kcal/hr.
Yield (kg/ha) 12c 1,300d 1.1c

Yield (kcal/ha) 84,000 5,200,000 6,677
Hectares/Caloric Requirement (8,400,000)d 100.0 1.6 1,258.1

aThomas 2008:Table 8.1.
bAsch and Asch 1978:Table 1; Smith 1992:198).
cGremillion 2002b:Table 1.
dSmith 1987a, 1992:Table 3.
eTalalay et al. 1984:Table 3.
fTalalay et al. 1984:Table 1.

(Smith 1995:211–212). But these explanations
merely raise the question of why households
resided year-round in locations where their secu-
rity and affluence were uncertain. As currently
constructed, CNC offers no archaeologically
testable hypotheses for why the EAC emerged as
a successful and sustained subsistence strategy
when and where it did. Without a theoretical
framework that generates expectations about
human behavior, niche construction falls back
on economically naive descriptions of resource
abundance.

To illustrate, Smith’s (1992:198) estimates of
field productivity suggest that a plot of chenopod
16,900 m2 in area could supply an extended
family of 10 with their entire annual caloric
needs (Figure 2; Table 1), presumably motivat-
ing that family to cultivate chenopod. But that
same caloric target could be more easily met by
harvesting a productive hickory grove measuring
only 1.2 km in diameter, using common esti-
mates of mast yields (Gardner 1997; Gremillion
2002b). Either scenario unrealistically assumes
that hickory and chenopod yields were consistent
from year to year, and that humans could harvest
100 percent of either crop. Various species of
hickory are found in both lowland and upland
climax forests (Talalay et al. 1984) and mast
every few years with crops as much as 14 times
the yields of intervening years (Nixon et al.
1975:Table 11). Hickory, walnut, and oak trees
tend to synchronize mast regionally both in
response to climate, and as an adaptive strategy to
periodically starve, and then overwhelm, nuciv-
orous birds and mammals (Koenig and Knops

2005; Nixon et al. 1975; Nixon et al. 1980; Smith
and Scarlett 1987). As a result, prehistoric human
foragers faced cycles of bumper crops separated
by years of relatively poor harvest, when they
competed with a variety of other animals to
collect nuts before they spoiled (Gardner 1997;
Hollenbach 2009; Keller 1987; Neumann 2002).
The prime window for collecting hickory was
thus restricted to three or four weeks following
the first autumn frost (Petruso and Wickens
1984; Talalay et al. 1984). Chenopod seeds can
be harvested at the same time as hickory, but
linger on stalks after the autumn mast harvest
(Hollenbach 2009; Seeman and Wilson 1984).
This suggests that one advantage for chenopod
cultivation may have been to supplement nut and
acorn shortfalls in poor years (Gremillion 2004).

Yet short of a catastrophic regional mast
failure, mobile foragers should have been able
to satisfy their caloric requirement with hick-
ory nuts within the catchment that Smith
(2011:S482) proposes for Riverton. For example,
Figure 3 illustrates 10-km catchment radii of
three Archaic to Late Woodland sites in west-
central Alabama (Caddell 1981). Boundaries and
tree composition of four vegetation zones were
estimated from nineteenth-century General Land
Office Survey records. Table 2 depicts percent
composition of hickory trees in each community,
estimating the number of hickory trees within the
catchment of each site. Assuming 50 trees of all
types per acre (Keller 1987), if only half of the
hickory trees produced nuts each year (Gremil-
lion 2002) and a poor production year yielded
only 5 percent of a bumper crop (Nixon et al.
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Figure 2. Catchments of chenopod and hickory needed to fulfill annual household caloric requirement (Gremillion
2002b; Smith 1992). (Color online)

Table 2. Hickory Nut Yields for 10-km Catchment Basins of Three Sites.

Vegetation Zone % Hickory Catchment A Catchment B Catchment C Totala

Floodplain Forest (km2) 16.4 65 135 111 217
Slope Forest (km2) 13.9 114 83 88 321
Upland Forest (km2) 8.8 83 67 65 229
Grassland (km2) 0 28 16 16 72
Total # Hickory Treesb 417,554 488,727 446,527 1,239,434
Total Productive Treesc 208,777 244,363 223,263 619,717
Edible Nuts (kcals)d 104,388,375 122,181,638 111,631,650 309,858,413
Total Harvest (kcals)e 10,438,838 12,218,164 11,163,165 30,985,841
Households Supportedf 1.2 1.5 1.3 3.6

Note: From Caddell (1981:53-57) unless noted.
a(A+C)+((A+C)-B).
bKeller 1987:179.
cGremillion 2002b:Table 1.
dNixon et al. 1975:Table 11; Nixon et al. 1980:535–536.
eKeller 1987:181.
fSmith 1992:198.

1975:Table 11), of which only 10 percent was
harvestable (Keller 1987), the 10-km catchment
surrounding the three sites should, nonetheless,
have yielded enough nuts to sustain nearly four of
Smith’s (1992:198) extended families. Given that
prehistoric foragers could have supplemented
hickory nut shortfalls with acorns higher-ranked
than seeds (Gremillion 2002b; Thomas 2008),
it is difficult to envision niche construction
scenarios, lacking population-induced resource

depression, where cultivating chenopod proved
economical.

Smith’s (2015:250) resource enhancement
hypothesis clearly faces the same explana-
tory quandary as does the resource depression
hypothesis in that it fails to pose any specific
advantage for enhancing the abundance of an
expensive resource in an environment where
better resources were already predictable and
abundant. What economic incentive foragers had
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Figure 3. GLO vegetation zone reconstruction of 10-km catchment radii of three base camps in the central Tombigbee
River valley of Alabama (after Caddell 1981:Figure 1).

to use, much less to cultivate, small seeds in
environments rich in mast remains ambiguous.
Instead, cultivation is contradictorily asserted to
be a means of enhancing the abundance of nat-
urally abundant seed grasses (Smith 1995:211–
212, 2011:S477). CNC is then assumed con-
firmed, simply by virtue of observing evidence
of seed domestication and anthropogenic habitat
modification in circumstances judged, based on

the absence of evidence, as lacking resource
depression (Smith 2015:240).

Foraging Models as an Archaeological
Research Strategy

Archaeologists face serious challenges in apply-
ing optimal foraging models, which are designed
to predict individual foraging choices contingent
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on short-term resource fluctuations, to long-term
subsistence changes in the archaeological record.
They must be wary of site formation biases
and take care that proxy measures of foraging
efficiency accurately monitor prehistoric forag-
ing choices. Nonetheless, when employed in the
framework of behavioral ecology, archaeological
applications draw from an impressive body of
hunter-gatherer research, bolstered by careful
attention to ethnoarchaeology and middle-range
theory (see Bird and O’Connell [2012], Codding
and Bird [2015] for recent overviews of the
approach).

Smith (2015:38–39) questions the validity
of optimality models as evolutionary theory
because they draw from microeconomic think-
ing and assume that foragers make rational
choices. His critique reflects a misunderstanding
that optimality models are empirical generaliza-
tions, rather than heuristic devices that gener-
ate testable hypotheses about foraging behavior
(Gremillion et al. 2014). The prey choice model,
for example, assumes that foragers randomly
encounter resources in proportion to their abun-
dance in the environment, and that search and
handling costs are mutually exclusive; time spent
pursuing and processing one resource cannot be
spent searching for another (Charnov and Orians
1973). Simplifying foraging complexity in this
manner allows one to pose trade-offs between
search and handling costs, predicting the best
choice of resources that a forager should take
to optimize their caloric return rate. Whether or
not a forager should consume an encountered
resource depends on the scarcity of higher-
ranked prey, and low-ranked resources fall in
or out of the best choice set as the abundance
of higher-ranked resources fluctuates. Thus, the
abundance of low-ranked seeds alone could
not have offered sufficient incentive for hunter-
gatherers to harvest, much less cultivate, them if
immediate caloric foraging efficiency was their
goal.

This is not a law-like generalization but a
prediction that will be supported only if the
assumptions of the model adequately reflect the
foraging options of a test case. The hypothesis
that the EAC was triggered by depression of
higher-ranked resources resulting from climate-
mediated population growth was informed by

this prediction (Winterhalder and Goland 1997).
If archaeological research has successfully fal-
sified this hypothesis by demonstrating that
resource depression did not occur, then it has
been a successful application of the prey choice
model. The next step, in an effective research
strategy based on optimal foraging models, is to
consider whether assumptions about the spatial
structure of foraging (random encounters with
simultaneously available resources), constraints
(conflicts between search and handling costs),
and goals (momentary optimization of energetic
return rates), accurately track EAC foraging
options. In this sense, Smith’s (2009b:533–
534) claim that the prey choice model fails
to realistically capture economic choices when
hunter-gatherers construct niches is closer to the
mark. Seeds and mast occur in spatially discrete
patches during overlapping, but not concurrent,
seasonal harvest windows. Central place foragers
choose which patch to harvest rather than ran-
domly encountering them, and their goals include
food storage rather than immediate consumption
alone. Failure of prey choice model predic-
tions to accord with archaeological evidence
should, therefore, highlight these other forag-
ing constraints and goals as potentially critical
and generate further test implications against
archaeological, ethnographic, and actualistic
evidence.

Following this research strategy requires
modeling alternative foraging constraints that
convincingly capture the foraging choices that
stimulated the EAC. Bird and O’Connell
(2012:47) point out that successful elucidation of
broad-spectrum transitions using foraging theory
depend on a clear statement of the question,
selection of an appropriate model, and actualistic
work that supplies information about how to
measure the model’s variables. I follow that
approach here by using the marginal value
theorem and central place foraging to assess
the cost/benefits of prehistoric foraging deci-
sions related to the storability and transporta-
bility of chenopod and hickory. I then discuss
implications of the marginal value theorem for
investigating economic contexts under which
seeds were collected and cultivated, and cast a
hypothesis about a previously poorly understood
trend in walnut use that corresponds with the
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emergence of horticultural economies based on
the cultivation of annual seeds.

The Marginal Value Theorem, Central Place
Foraging, and Food Storage in the EAC

I make several assumptions about foraging
choices in the eastern woodlands. Prehistoric
foragers choose whether to harvest hickory or
chenopod from a central place rather than search
for them on a foraging trip. This means that
round-trip travel time, a cost not monitored in
the prey choice model, must factor into mod-
eling their best choice (Carmody 2014; Gard-
ner 1997:167; Hollenbach 2009; Purtill 2008).
Since foragers could either intentionally cultivate
chenopod or harvest it wild from anthropogenic
disturbances, I assume that the chenopod plot is
always close to home, whereas hickory trees are
ubiquitously scattered throughout the environ-
ment. The objective is to harvest food for storage
within a limited span of time so that prehis-
toric foragers could postpone further processing
to avoid forfeiting further harvesting opportu-
nities. Therefore, harvesting time is the only
pertinent handling cost for this specific model
(Gremillion 2004; Tushingham and Bettinger
2013), although full processing costs should
influence longer-term foraging decisions. This
approach differs from some previous attempts to
reckon travel and transport costs that assumed
higher levels of processing prior to transport
(Carmody 2014; Hollenbach 2009; e.g., Zeanah
2002).2

In years of poor hickory yield, foragers needed
to travel farther to harvest more diffuse hickory
nuts and return them to storage locations. For-
agers should prefer efficiently handled hickory
crops over seeds only when willing to pay
additional harvest, travel, and transport costs
necessary to gather more widely dispersed nuts.
The foraging question then is simple: how distant
must the next productive hickory tree be before a
forager finds it more efficient to harvest a nearby
patch of chenopod? To model this tradeoff, I use
Bettinger and Grote’s (2016) formulation of the
marginal value theorem incorporating harvesting
time as a variable.

There are robust actualistic estimates of col-
lection rates for both chenopod and hickory.

Thomas (2008) reports a harvest rate for hickory
nuts of 57.04-kg/hr (yielding 48,000 kcal/hr
without reckoning the costs of shelling the nuts)
based on multiple collecting experiments. A
marginal return curve for harvesting 4 kg (10,000
kcals) of hickory nuts from a single productive
hickory tree is presented in Figure 4. Smith
(1987b) reports rates for harvesting uncleaned
chenopod seed ranging from 1 kg/hr (2,240
kcal/hr at 3,200 kcal/kg of clean seed) to 1.5 kg/hr
(4,400 kcal/hr at 4,000 kcal/kg of clean seed).
Chenopod seed can occur in greater densities
than hickory nuts (Table 1), but our hypothetical
forager should nonetheless prefer hickory to
seeds, because the former can be harvested at
a significantly higher rate as long as the next
productive hickory tree is not too far away. The
threshold at which harvesting chenopod becomes
economical is predicted in Figure 4 by plotting
lines at the upper and lower rates of chenopod
harvest, and tangent to the hickory curve. Using
Smith’s (1987b) lowest chenopod harvest rate as
a conservative estimate of what was feasible in
wild, low-density seed stands, the intercept of
the line with the x-axis (about 180 minutes) is
the predicted point at which harvesting nearby
chenopod becomes worthwhile. At a walking
speed of 3 km/hr, chenopod begins to look good
if the next productive hickory tree is more than
4.4 km away. At distances less than 4.4 km, our
forager can walk to the hickory, harvest, and
return with a load of nuts at a rate greater than
that obtained from a local harvest of chenopod.
When hickory trees are more than 4.4 km away,
food stores are more effectively filled with cheno-
pod. Phrased another way: foragers attempting
to efficiently fill winter larders in a limited
time should collect hickory exclusively until the
overall harvest rate (including round-trip travel
time) in the surrounding catchment drops below
the 2,300–4,300 kcal/hr rate obtainable from
nearby seed stands. This prediction is realistic
for the scale of human foraging in eastern forests
and suggests that human foragers could have
economically switched from harvesting hickory
to wild chenopod seeds in years of a poor hickory
yield after depleting nearby hickory stands well
within the 8- to 10-km foraging radius Smith
proposes for sites along the Wabash or illustrated
in Figure 3.
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Figure 4. Marginal value model for hickory harvests. In-patch harvest time and yield to the right of the axis and
round-trip travel time between a central place and hickory patch to the left. The curve for hickory (solid line) is
calculated assuming a search area of 1000 m2 and yield of 10,000 kcal allocated in 100,100 kcal lots per hickory tree
(cf. Gremillion 2002b). It takes about 17 minutes to fully search the patch, and nuts can be harvested at a maximum
rate of 8 units per minute (Thomas 2008). Dashed lines show travel thresholds below which it becomes economical
for a forager to harvest a nearby walnut tree or chenopod patch rather than travel to the next hickory tree. At travel
times less than these thresholds, foragers should harvest only hickory nuts to maximize their harvest rate.

Smith’s (1992:198) higher harvest rate of
1.5 kg/hr is a better approximation of the rate at
which foragers could harvest cultivated cheno-
pod because of the greater density of plants that
could result in planted and tended plots. If this is
correct, the effective foraging radius for hickory
trees from cultivated plots is merely 74 minutes
or a little over 1.8 km away (Figure 4), suggesting
that one economic benefit of cultivation was to
enhance the harvest rate of local but more costly
resources, in order to minimize transport of more
distant alternatives for storage. Constraints on
mobility seem to be a likely cause, and foraging
theory can be used to envision testable scenarios
in which foragers would have found that choice
economical.

Implications for Anthropogenic Niche
Construction and Small Seed Cultivation in

Southeast Prehistory

Travel and transport costs were demonstrably
long-standing constraints on hickory nut storage

strategies. Prehistoric foragers began intensively
storing and bulk processing hickory nuts for oil
by the Middle Archaic (Homsey et al. 2010;
Moore and Dekle 2010; Munson 1986; Stafford
1991). With rare exceptions thereafter, hickory
is the dominant nutshell in Archaic macro-
fossil assemblages (Scarry 2003; Simon 2009;
Yarnell and Black 1985), consistent with the
prey choice model prediction that high-return
resources should always be taken (Carmody
2010). Archaic autumn hickory nut procure-
ment strategies were organized logistically and
included residential moves to productive upland
hickory woodlands (Carmody 2010; Gardner
1997; Jenkens 1974; Stafford 1991). Archaic
foragers thus had the option to either residentially
map onto the most productive hickory groves or
temporarily cache hickory at field camps and
delay logistic transport until after the harvest
season.

Riparian shell middens also first appear in
the Middle Archaic, suggesting spring-summer
occupation near productive shellfish beds,
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waterfowl hunting, and fishing locations (Ander-
son et al. 2007). Annual weeds would have been
abundant in naturally disturbed floodplains near
these sites, as well as in open habitats left by
fire (Smith 1987a, 1995). Pollen records show
increases in fire-tolerant trees, the emergence
of patchworks of open areas, and successional
stages of forest cover from about 5000 to 3500
B.P., reflecting the impact of human-set fires
(Delcourt et al. 1998; Gremillion 2015; Jefferson
et al. 1982; Wagner 2003; Whitehead and Shee-
han 1985). The marginal value model for hick-
ory transport developed in this paper (Figure 4)
suggests that wild seed patches fostered by
both natural and anthropogenic processes may
have been economical to harvest for storage in
years of low mast yields, even in circumstances
lacking population-induced resource depression.
Nonetheless, the advantages of harvesting wild
seeds had to outweigh the benefits of simply
moving to locations where higher mast yields
were obtainable. Since the time necessary to
fully process stored seeds for consumption surely
detracted from the time available for alternative
winter economic, social, and ritual activities, the
significantly higher return rates offered by stored
hickory nuts must have strongly favored mast
over seed harvest. Minor occurrences of annual
seeds in Archaic archaeobotanical assemblages
(Simon 2009) suggest that foragers of the Middle
Archaic, living at lower population densities
than their Late Archaic successors, often found
mobility to harvest nuts the preferable option.

Miller (2014) and Weitzel and Codding
(2016) have challenged Smith’s (2011) inference
that population growth did not depress resources
during the Middle Archaic, and it seems unlikely
that seed cultivation was common in Mid-
dle Archaic contexts lacking demographically
induced constraints on mobility. Morphological
indicators of domestication, such as reduced
testa thickness in chenopod, are the primary
evidence for seed cultivation in Archaic contexts.
Smith (1987a:35) suggests that deliberate culti-
vation of seeds may have begun in the Middle
Archaic by sowing leftover food stores onto
recently flooded riparian sand banks and point
bars. This would have minimized cultivation
costs, but the benefit of planting in riparian
contexts where seed-yielding grasses and forbs

were naturally abundant is unclear. Although the
emergence of anthropogenic fire regimes roughly
corresponds with the earliest domesticates, seed
stands were probably inadvertent or secondary
consequences of fires set to improve mast yields
and hunting returns (Gremillion 2015; Gremil-
lion et al. 2008). Possibly, seed domestication
resulted from increased plant competition in
anthropogenically exposed seedbeds rather than
intentional planting (Smith 1987a:34).

Nonetheless, the model of marginal returns of
hickory transport (Figure 4) suggests scenarios
in which the cultivation of seeds may have proven
adaptive in contexts lacking population pressure.
Archaic foragers may have cultivated seeds if
their access to higher-ranked resources (i.e., fish,
waterfowl, and terrestrial game) or their social
activities (Claassen 2010; Moore and Dekle
2010) limited feasible overwinter bases to loca-
tions that were anticipated to yield meager mast
crops. Such measures may have been undertaken
in riparian locations, as Smith and others (Brown
and Vierra 1983) suggest, inviting comparison
of riparian occupation sites yielding evidence of
Archaic seed domestication (Smith 2011) with
those where such evidence is scant (Marquardt
and Watson 2005). Residential constraints would
also have been important in uplands, where car-
rying burden baskets in wooded, rugged terrain
imposed additional costs on hickory transport
(Carmody 2014; Hollenbach 2009). This would
have required caching and replanting seeds in
habitats outside their natural range, facilitating
domestication. This scenario is consistent with
caches of domesticated seeds in upland rock-
shelters of the Ozark and Appalachian highlands,
supporting an upland, rather than riverine genesis
of the EAC (Fritz 1997; Gremillion 2004; Watson
1985). Framing hypotheses in terms of how
the cost-benefits of foraging vary in different
ecological settings offers a productive strategy
for investigating the macro-regional forest-type
associations that Smith (2011:S473, 2015:248–
249) describes for Archaic seed cultivation.

Evidence of population growth, including
greater site densities, radiocarbon dates, regional
trade networks, interpersonal violence, and
sedentism (Anderson et al. 2007; Jefferies
2009; Weitzel and Codding 2016) suggests that
demographic pressures on resources increased
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from the Middle Archaic onward. Horticultural
economies clearly drawing significant dietary
contributions from seed cultivation emerged dur-
ing the Woodland period (Gremillion 2002a;
Smith 1989), and evidence of population growth
and sedentism is strongly correlated with seed
horticulture intensification (Buikstra et al. 1986;
O’Brien et al. 1987). Seed macrofossils are most
common in regions with at least 60 days of freez-
ing temperatures per year, suggesting that food
storage played a strong role in the development
of horticultural economies (Gremillion 2002a,
2004). Demographic pressures on resources crit-
ical for food storage likely factored strongly in
the intensification, if not inception, of EAC seed
cultivation.

The marginal value theorem suggests that, as
population grew, constrictions on mobility would
have encouraged foragers to supplement low
hickory yields with alternative storable resources
that could be accrued locally (Bettinger and
Grote 2016). Cultivation to increase the har-
vest rate and yield of nearby seed patches is a
predictable response, but foragers should have
preferred alternative nuts and acorns that could
be harvested at higher rates than seeds and at
lower travel costs than hickory nuts. Late Archaic
through Middle Woodland food storage strate-
gies often included a broader array of mast than
Middle Archaic strategies (Gremillion 2002a,
2002b; Scarry 2003; Simon and Parker 2006),
but overlapping return rates, biases in the preser-
vation and identifiability of shell, and differences
in the habitat and geographic distribution of
different species obscure clear relationships with
evidence of population growth. Black walnuts
(Juglans nigra) appear to be an exception and,
as will become evident, use of walnut relative to
the development of the EAC is understandable as
a form of niche construction under the marginal
value model presented in this paper.

Black Walnuts and the Eastern Agricultural
Complex

In addition to evidence of early seed domes-
tication, Yarnell (2004) observed unusually
abundant walnut remains in almost 70 percent
of the features in the Riverton archaeobotan-
ical assemblage, making up over 80 percent

of total nutshell weight. Riverton is near the
geographic center of distribution of the two
species that occur in archaeological contexts:
black walnut and butternut (J. cinerea). And,
according to Yarnell (2004:128), Riverton is also
near a major center of walnut lumber produc-
tion today (Figure 1). Despite the widespread
distribution of walnut trees, walnut shell is
rarely a significant element of archaeobotanical
assemblages. However, Yarnell (2004:128) noted
that walnut is often found in Late Archaic and
Early Woodland contexts, and that walnut use
declined as cultivation of indigenous seed crops
intensified. Elsewhere he suggests that there
are clearer regional, temporal trends in walnut
use than other mast crops (Yarnell and Black
1985; see also Christenson 1986). Although
Yarnell (2004: 128) cautioned his observation
was tentative, and that Late Archaic and Early
Woodland archaeobotanical assemblages do not
always contain walnut, he cited several examples
of components that contain high proportions
of walnut relative to hickory shell (Figure 1),
including the Phipps Bend (Knott 1981) and
Iddins sites in Tennessee (Chapman and Shea
1981), and the Florence Street site in Illinois
(Johannessen 1983). Cloudsplitter Rockshelter
(Cowan et al. 1981), the Davisson Farm site
(Purtill 2008), the Highland Creek site (Rossen
2006), and Russell Cave (Carmody 2014) are
additional examples where walnut remains occur
in unusual abundance or ubiquity in Late Archaic
or Early Woodland contexts.

Other archaeobotanists have suggested vari-
ous explanations for unusual amounts of walnut
in these components, including human food
preferences (Caddell 1981; Cridlebaugh 1984;
Johannessen 1983, 1984), environmental change
(Cridlebaugh 1984), sampling error (Caddell
1981; Crites 1978; Johannessen 1983), and pro-
duction of fish poisons from juglone, a toxic
compound that is abundant in black walnut
shell (Johannessen 1983, 1984). Smith notes
walnut at Riverton, but sees it as evidence that
seeds only supplemented harvest of nuts from a
variety of trees (Smith and Yarnell 2009:6563).
None of these explanations verify, refute, or
account for the temporal correlation between
walnut and small seed remains posed by Yarnell
(2004).

https://doi.org/10.1017/aaq.2016.30 Published online by Cambridge University Press

https://doi.org/10.1017/aaq.2016.30


David W. Zeanah] 15FORAGING MODELS AND EASTERN AGRICULTURAL COMPLEX

Walnuts are an alternative to hickory nuts for
storage, but offer much lower caloric returns. The
outer husk adheres tightly to the ridged inner
shell and must be removed manually. Unlike
hickory nuts, walnuts cannot be bulk processed
by water flotation and boiling techniques because
meats sink with the shell, contaminating the
solution with juglone. Thus, the hard, inner shell
must be broken and separated from the nut by
hand. A small number of experiments indicate
that the return rate for black walnut is no more
than about 600 kcal/hr (Talalay et al. 1984), about
the same caloric return rate as chenopod seeds.
However, walnuts can be harvested at a higher
rate than chenopod (5.2–9.5 kg/hr or about 6,000
to 11,000 kcal/hr of unshelled walnuts), so the
travel time-distance thresholds at which foragers
should switch from harvesting hickory nuts (0.3–
1.1 km) are lower than those for chenopod seed
(Figure 4). Walnut shell preserves well and is
relatively easily distinguished from hickory shell
whenever it is present in archaeological assem-
blages.3 This fact suggests that the presence of
walnut shell in archaeobotanical assemblages is
sensitive to depression of local hickory crops
and signals intensification of mast harvests and
storage.

Walnut trees grow best on well-drained, but
moist and deep, bottomland soils that are also
fertile for small seeds. Black walnut trees are
relatively resistant to fire and younger trees
(< 30 years) often re-sprout after a burn. They
do well on disturbed sites but not in closed
forest canopies. They usually occur as dis-
persed stems rather than groves because juglone
in walnut roots inhibit growth of competing
trees and shrubs. Most grasses and herbaceous
plants, however, are juglone tolerant. Trees yield
walnuts in as few as four years but do not
reach full production until 30 years (Schlesinger
and Funk 1977; U.S. Department of Agricul-
ture 2015). Walnut is abundant near histori-
cally recorded Native American villages (Black
and Abrams 2001; Wykoff 1991), suggesting
that they do well in anthropogenic landscapes.
In short, black walnut trees are late succes-
sional components of anthropogenic niches cre-
ated by burning (Wagner 2005), likely found
near early successional seed stands and central
places.

The marginal value model for hickory trans-
port in Figure 4, in the context of niche con-
struction, presents a hypothesis for the tempo-
ral correlation between walnut usage and seed
cultivation proposed by Yarnell (2004). Wal-
nuts represent an alternative costly but local,
storable resource that low-mobility foragers may
have chosen to harvest in lieu of more dis-
tant hickory stands (Purtill 2008). Facing low
hickory yields and constricted mobility, Late
Archaic/Early Woodland foragers should have
preferred walnuts to seeds because they could
harvest the former at a higher rate at low travel
costs. Like seeds, the abundance of walnuts
would have benefited from anthropogenic niche
construction, but walnut trees would have been
poor candidates for further intensification and
domestication because of their low densities
and yield (Table 1), longer time to maturation,
and strong preexisting coevolutionary relation-
ships with tree squirrels (Stapanian and Smith
1978).

Test of Regional Archaeobotanical
Assemblages

Foragers initially facing constraints on mobil-
ity induced by population growth should have
intensified their harvest of walnut, prior to or
simultaneously with their harvest of wild seeds.
Domesticated annual seeds should have later
replaced walnuts as a storable food as seed horti-
culture intensified, either because of enhanced
yields from cultivated seed plots or clearance
of late successional communities to put more
land into cultivation. This should be a recurrent
temporal pattern in the development of the EAC,
because of the preservability and identifiability
of walnut shell in archaeobotanical assemblages.
Four large, multiple-component, regional sam-
ples spanning Archaic through Mississippian
contexts serve here to track fluctuations in walnut
relative to small seed usage: American Bot-
tom, Little Tennessee River valley, Duck and
Elk valleys, and lower Tombigbee River valley
(Table 3). Each is discussed individually below,
excluding Mississippian components because
the abundance of maize in these assemblages
makes them difficult to compare to earlier com-
ponents in which maize was absent or rare.
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Table 3. Summary of Pre-Mississippian Regional Archaeobotanical Databases.

Sites Flotation Carbonized
Sample (Ct.) Samples (Ct.) Volume (l) Weight (kg) Reference

American Bottom 63 3,655 59,199 No data Simon and Parker 2006
Little Tennessee River 8 281 5,463 10,139 Chapman and Shea 1981
Duck River 7 660 659 16,678 Crites 1978, 1985; McMahan 1983
Tombigbee River 7 96 2,005 3,262 Caddell 1981, 1982

Figure 5. Temporal trends in American Bottom archaeobotanical assemblages.

American Bottom

Figure 5 illustrates trends in the American Bot-
tom spanning local Late Archaic through Ter-
minal Late Woodland phases (Simon and Parker
2006). The histogram indicates percent walnut
of total nut count multiplied by 10, and per-
cent cultigen/cultivar seeds of total seed count
(note that there are no data for percent culti-
gens before the Early Late Woodland). The line
indicates total small seed count (including non-
cultivated species) per liter of flotation sample.
Representation of walnut increases through ear-
lier periods, reaching 6.1 percent in the Early
Woodland (including 43 percent at the Florence
Street site) and a peak of 9.5 percent in the
Middle Woodland. This accompanies a shift in
wood charcoal from bottomland to upland taxa,
suggesting lowland deforestation (Johannessen
1984) and a peak in hazelnut shell, which
would have been a mid-successional component
of anthropogenic fire landscapes (Simon and
Parker 2006). A decline in both walnut and

hazelnut corresponds with a dramatic increase
in small seed count (seven seeds/liter), made
of 97 percent cultigen seeds, in the Early
Late Woodland. Maize first appears in the Late
Woodland and occurs in over 40 percent of
Terminal Late Woodland samples. This trend
from foraging to horticultural economies accom-
panies a transition from episodic occupations
by semi-sedentary hunter-gatherers in the Late
Archaic to large sedentary villages of complex
structures in the Late Woodland (Kelly 2002),
indicating reduced mobility and larger popula-
tions throughout the period that seed horticulture
develops.

Little Tennessee River Valley

A similar but earlier pattern is evident in Little
Tennessee River valley (Figure 6) assemblages
(Chapman and Shea 1981) spanning Archaic
through Middle Woodland periods (no Late
Woodland occupation was identified). The occur-
rence of walnuts in the archaeological record
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Figure 6. Temporal trends in Little Tennessee River archaeobotanical assemblages.

reaches a maximum of 75 percent of total nut
weight in Late Archaic components (88.5 percent
at the Iddins site), accompanied by an increase in
seed count (1.25 seeds/liter) with a low propor-
tion of cultigen seeds (13 percent). These trends
correspond to palynological evidence indicating
clearance of bottomland forests and increased
use of upland trees for fuel (Jefferson et al. 1982).
Walnut drops off to 6 percent in the Early Wood-
land coincident with increased abundance of
seeds (2.4 seeds/liter) and increased proportion
of cultigens (90 percent), including the earliest
maize macrofossils in the region (Chapman and
Shea 1981). These trends accompany a shift
from mobile, low-density hunting and gathering
camps to sedentary occupations by larger popu-
lations (Davis 1990).

Tombigbee River

The Tombigbee Basin falls outside the area usu-
ally recognized for cultivation of EAC domesti-
cates (Fritz 1993; Gremillion 2002a). Nonethe-
less, similar but later trends are evident in
the relative occurrence of walnuts and seeds
as foragers shifted to a sedentary, agricultural
lifestyle (Caddell 1981, 1982a, 1982b). Palyno-
logical evidence indicates increased clearance of
bottomland species beginning about 2400 B.P.
(Whitehead and Sheehan 1985). Walnuts are
best represented in Middle Woodland features,

comprising over 5 percent of total nut weight,
but drop to only .04 percent in the Late Woodland
(multiplied by 10 in Figure 7). The peak walnut
occurrence is coincident with an increase in both
small seed count (1.8 seeds/liter) and percentage
of cultigens (76 percent). Although seed counts
decline in the Late Woodland (.5 seeds/liter),
they remain dominated by indigenous cultigens
(74 percent) and marked by the earliest occur-
rence of maize in the region (occurring in 10
percent of samples). Once again, these trends
accompany a transition from short-term seasonal
encampments to sedentary villages, apparently
in the context of population growth (Jenkins and
Krause 2002).

Duck River

The archaeobotanical assemblage from the Duck
River differs from the others in seed and walnut
representation. Walnut shell is found only in trace
amounts in Middle Archaic contexts of the Hayes
site, which also produced some of the earliest
dated Cucurbita rind fragments and domesti-
cated Helianthus seeds in the eastern United
States (Crites 1987a; Smith 2011). This site is
not included in Figure 8 because the sample was
taken from a stratigraphic column rather than
from feature contexts. For subsequent materials
(Crites 1978, 1985, 1987b; McMahan 1983),
there is a dramatic rise in small seed and cultigen
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Figure 7. Temporal trends in Tombigbee River archaeobotanical assemblages.

Figure 8. Temporal trends in Duck River archaeobotanical assemblages.

counts beginning in the Early Middle Woodland
(7.7 seeds/liter with 92 percent cultigens), but
they decline to lows in the Late Woodland of
only one seed per liter and 11 percent cultigens.
Walnut proportions are again multiplied by 10
in Figure 8. Overall proportions of walnut are
relatively low, but they increase from the Early
Middle Woodland until reaching a peak of 12 per-
cent in the Late Woodland period, after the peak
representation of seed counts and cultigens. Duck
River subsistence-settlement strategies shifted
from a transient Late Archaic foraging pattern to

a sedentary pattern in the Middle Woodland and
returned to more mobile foraging occupations in
the Late Woodland (Kline et al. 1982). Since peak
walnut use is associated with a resurgence of
mobile foraging, I suggest that Late Woodland
folk harvested walnuts from revegetated seed
plots. The relationship between seed cultivation
and walnut use is broadly similar to those posed
in the marginal value model (increasing through
and peaking following a decline in seed cultiva-
tion), so I count it as consistent, but less robustly
so, with my hypothesis.
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Summary

The archaeological records of all four regions
include contexts where low-ranked walnuts were
intensively used for limited periods, consistent
with intensified use of local resources in anthro-
pogenic niches during the EAC. I interpret this as
broad-spectrum foraging in anthropogenic habi-
tat mosaics where resources from nearby early
(seed grains) and late (walnut) successional com-
munities were stored to supplement population-
induced shortfalls of the hickory crop. Note that
the patterns in the Tombigbee valley, American
Bottom, and the Little Tennessee River valley
are similar even though they are not contem-
porary. Walnut use intensifies either “prior to
or concomitant with” an increase in use of
small grain-seeds, suggesting intentional seed
cultivation. As such, these cases both meet
Smith’s (2015:240) most direct criterion of evi-
dence for anthropogenic niche construction, and
are consistent with predictions of the marginal
value model of hickory transport (Figure 4). This
argues strongly that the three test cases reflect
similar economic foraging decisions made as
burning induced the emergence of anthropogenic
niches, and are certainly consistent with local
population-induced reductions of mobility and
access to mast resources.

Conclusions

A critical weakness of Smith’s formulation of
CNC is its inability to predict economic decision-
making by foragers, preventing it from speci-
fying any adaptive advantages of horticultural
subsistence strategies beyond mere increases in
food abundance. Yet why foragers shifted to
agriculture where and when they did is the very
question that archaeologists want to answer, and
understanding why proto-domesticates transi-
tioned from inadvertent beneficiaries of niche
construction to objects of intentional resource
enhancement is surely fundamental to any under-
standing of agricultural origins based on CNC.
This is the strength of optimal foraging models
employed as a research strategy. Foraging mod-
els grounded in behavioral ecology make explicit
links between evolutionary theory and empirical
aspects of the archaeological record. They allow
theoretical concepts like resource intensifica-

tion and niche construction to be simplified to
measurable aspects of forager economy such as
travel, search, and handling times, diminishing
returns, and so on. These can either be observed
among contemporary foragers or experimentally
replicated, and insights gained can then be tested
against the archaeological record.

Contrary to Smith’s criticisms, optimal for-
aging models neither inherently deny niche
construction nor are intrinsically linked to the
resource depression hypothesis alone. Instead,
such models provide frameworks under which
the economic causes and consequences of niche
construction can be investigated by fleshing out
different expectations for resource enhancement
or depression. The latter should be marked
by increased use of resources with returns as
low as or lower than cultivated seeds, whereas
the former should accompany diminished use
of such low-return, non-cultivated resources. I
find evidence for an initial intensification of
walnut usage followed by a contraction as seed
yields were enhanced in this analysis of mast
and seed procurement strategies. This illustrates
how optimal foraging models serve heuristically
in a context of niche construction, to clarify
correlations between nut use and seed cultivation
that archaeologists have long noted, but were ill-
equipped to formulate testable hypotheses about
the economic linkages between the two procure-
ment systems. Anyone interested in exploring
how the economic context of prehistoric foraging
decisions led to agriculture, within a niche con-
struction framework, will find optimal foraging
models useful tools.
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Notes

1. Calibrated date ranges for regional cultural periods
follow Anderson and Sassaman (2012). Date ranges for
Figures 5–8 follow local authors as cited.

2. I assume that partial field processing to improve
the utility of a transported load of hickory would not be
worthwhile given the travel thresholds predicted by the model
(less than 5 km from a central place). Nonetheless, model-
ing and experimentation demonstrate that field processing
improves the rate that California acorns (Bettinger et al. 1997)
and Great Basin piñon and pickleweed seeds (Barlow and
Metcalfe 1996) can be transported back to central places
over longer distances. Actualistic experiments on the effects
of field processing on hickory and chenopod transportabil-
ity would be informative and likely have archaeologically
testable implications.

3. Butternut is not easily distinguished from black
walnut in archaeobotanical assemblages. Butternut offers
even lower returns than black walnut, so confusion of shell
makes no difference in regard to prediction of very low-
ranked mast procurement. Although closely related to black
walnut, butternut is less fire tolerant, so may not be as closely
associated with anthropogenic fire regimes. Since all the
archaeobotanical assemblages discussed in this paper occur
within the natural distribution of walnut, whereas some occur
outside the distribution of butternut (U.S. Geological Survey
1999). I assume that fire-sensitive black walnut makes up the
bulk of Juglans shell in these assemblages, accounting for
temporal trends observed.
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