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Abstract

We give a new proof of Vinogradov’s three primes theorem, which asserts that all sufficiently large
odd positive integers can be written as the sum of three primes. Existing proofs rely on the theory of
L-functions, either explicitly or implicitly. Our proof is sieve theoretical and uses a transference
principle, the idea of which was first developed by Green [Ann. of Math. (2) 161 (3) (2005),
1609–1636] and used in the proof of Green and Tao’s theorem [Ann. of Math. (2) 167 (2) (2008),
481–547]. To make our argument work, we also develop an additive combinatorial result concerning
popular sums, which may be of independent interest.

2010 Mathematics Subject Classification: 11P32 (primary); 11P70, 11N35 (secondary)

1. Introduction

In this paper, we study additive problems involving primes. The famous Goldbach
conjecture asserts that every even positive integer at least four is the sum of two
primes. Although the binary Goldbach problem is considered to be beyond the
scope of current techniques, its ternary analog was settled by Vinogradov [29] in
1937.

THEOREM (Vinogradov). There exists a positive integer V such that every odd
positive integer N > V can be written as the sum of three primes.
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The classical approach to Vinogradov’s theorem is to use the circle method,
which can be found for example in [23, Ch. 8]. The major arcs analysis in the
circle method relies on the equidistribution of primes in arithmetic progressions.
These arithmetic progressions can have length roughly N and step some large
power of log N . In this regime, the equidistribution of primes in arithmetic
progressions is given by the Siegel–Walfisz theorem, whose proof uses Siegel’s
theorem in the theory of Dirichlet L-functions and is ineffective due to the
possible existence of Siegel zeros (see [3, Ch. 22]). Heath-Brown [13] (see
also [16, Ch. 19]) gave a different proof of Vinogradov’s theorem by directly
using certain identities involving primes, but his method also requires the Siegel–
Walfisz theorem.

The main purpose of this paper is to present an L-function-free proof of
Vinogradov’s theorem. The new argument might be interesting for at least two
reasons. First, such a proof directly produces a bound for V if one keeps track
of explicit constants (Vinogradov’s method can be made effective as well with
more effort; see [2] and [20]). This advantage now looks much less exciting in
view of the recent breakthrough by Helfgott [14] which asserts that one can take
V = 7. A discussion on obtaining a bound for V from our method is contained
in Remark 5.5. Second, our method provides another example where the sieve
method produces a lower bound. Sieve methods are extremely effective in giving
upper bounds with the correct order of magnitude, but they generally do not
provide lower bounds (this is related to the parity problem in sieve theory).
Notable exceptions to this phenomenon include [6] and, more closely related to
our argument, Green and Tao’s theorem on finding arbitrarily long arithmetic
progressions in primes [12]. A detailed account of sieve theory can be found
in [7].

1.1. The transference principle in Z/NZ. In this subsection, we explain the
idea of the transference principle, which is the main ingredient in our proof
of Vinogradov’s theorem. The transference principle was first developed by
Green [9] in his proof of Roth’s theorem in the primes, and has since become
a powerful tool for studying additive problems in dense subsets of primes such as
Green and Tao’s theorem [12]. The formulation of the transference principle we
give here is more similar to that appearing in [9].

The main idea of the transference principle is to transfer a problem for a sparse
subset to a corresponding problem for a dense subset, as far as the sparse subset
is pseudorandom in an appropriate sense. In Vinogradov’s theorem, if the set of
primes (a sparse set) is replaced by a dense subset of the integers with density
exceeding a certain threshold, the conclusion is then a standard result in additive
combinatorics.
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THEOREM 1.1 (Quantitative Cauchy–Davenport–Chowla). Let 0 < δ < 1 be
given. Let N be a sufficiently large positive integer. For i = 1, 2, 3, let Ai ⊂ Z/NZ
be a subset with |Ai | = αi N. Suppose that α1 + α2 + α3 > 1 + δ. Then, for any
x ∈ Z/NZ, there are at least cN 2 ways to write x = a1 + a2 + a3 with ai ∈ Ai ,
where c = c(δ) > 0 is a constant depending only on δ.

The statement and proof of the Cauchy–Davenport–Chowla theorem can be
found in [28, Ch. 5], and this robust version is contained in [19]. If the sets Ai

have the same density, then the hypothesis above is satisfied when αi >
1
3 , and it

is easy to see that this threshold density 1
3 is optimal without any assumptions on

the sets Ai .
Theorem 1.1 can also be stated in terms of the characteristic functions of Ai ,

which are bounded by the constant function 1. Its sparse version replaces the
constant function 1 by an arbitrary majorant, under certain assumptions. For the
precise definitions in the pseudorandomness condition and the discrete majorant
property, see Definition 3.1 below.

THEOREM 1.2 (Transference principle in Z/NZ). Let 0 < δ < 1 be given. Then,
for sufficiently small η > 0 and sufficiently large prime N, the following statement
holds. For i = 1, 2, 3, let νi , ai : Z/NZ→ R be arbitrary functions. Let αi be the
average of ai . Suppose that they satisfy the following assumptions.

(1) (Majorization condition) 0 6 ai(n) 6 νi(n) for all n ∈ Z/NZ.

(2) (Mean condition) αi > δ and α1 + α2 + α3 > 1+ δ.
(3) (Pseudorandomness condition) The majorant νi is η-pseudorandom.

(4) (Discrete majorant property) The function ai satisfies the discrete majorant
property for some 2 < q < 3.

Then, for any n ∈ Z/NZ,∑
n1,n2,n3

n1+n2+n3≡n (mod N )

a1(n1)a2(n2)a3(n3) > cN 2,

where c = c(δ) > 0 is a constant depending only on δ.

This directly follows by Green’s argument (see [19, 27]). It is usually applied
as follows in studying additive problems involving dense subsets of primes.
Take νi to be the (normalized) characteristic function of the primes, and ai to
be the (normalized) characteristic function of the dense subset of the primes.
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The assumptions are all satisfied with these choices, but the pseudorandomness
condition for νi relies on the Siegel–Walfisz theorem.

REMARK 1.3. The virtue of working in Z/NZ comes from its finite abelian group
nature. However, a constant factor will be lost in the process of embedding subsets
of integers to subsets of Z/NZ. This is something we cannot afford to lose here.
More precisely, the conclusion of Theorem 1.2 counts the number of solutions to
n1+n2+n3 ≡ n (mod N ), while we are interested in solutions to n1+n2+n3 = n
in the integers. For n close to N , we may demand the function ai to be supported
in the interval [0, 2N/3]. In doing so, however, we are effectively reducing the
average of ai by a factor of 2

3 , and thus the threshold for the average of ai becomes
1
2 rather than 1

3 .

1.2. Transference principle in Z. In our proof of Vinogradov’s theorem,
we will choose the majorant νi differently so that its pseudorandomness can
be established elementarily. This can be achieved by using Selberg’s majorant.
However, the parity phenomenon in sieve theory suggests that the mean value
of Selberg’s majorant is necessarily more than twice the mean value of the
characteristic function of the primes. Thus Theorem 1.2 barely fails to apply to
this choice of ai and νi (see Remark 1.3).

The main innovation of the current paper is a new version of Theorem 1.2,
which applies even when the average of ai is slightly less than 1

2 . To make this
possible, we will work directly in Z. Let us first state the combinatorial result
when ai is bounded by the constant function 1. For the precise definition of the
regularity condition, see Definition 2.3 below.

THEOREM 1.4 (Transference principle in Z, ν = 1 case). Let 0 < δ, κ < 1 be
given. Let N be a sufficiently large positive integer. Let N3 = N, and let N1 =
N2 = bN/2c. For i = 1, 2, 3, let ai : [1, Ni ] → [0, 1] be an arbitrary function, and
let αi be the average of ai . Suppose that they satisfy the following assumptions.

(1) (Mean condition) αi > δ and 1
2 (min(1, α1 + α2)+ α2)+ α3 > 1+ δ.

(2) (Regularity condition for a1) The function a1 is (δ/50, κ)-regular.

Then ∑
n1,n2,n3

n1+n2+n3=N

a1(n1)a2(n2)a3(n3) > cN 2,

where c = c(δ, κ) > 0 is a constant depending only on δ and κ .
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If the functions ai all have the same average, then the mean condition above is
satisfied when αi >

2
5 , beating the 1

2 barrier. Theorem 1.4 will be deduced from
a robust version of Freiman’s 3k − 3 theorem in Section 2. A certain regularity
condition for ai is necessary for the statement to be true. For example, consider
the case when each ai is supported on even integers and N is odd, or the case
when each ai is supported on the first 0.45Ni integers in [1, Ni ].

As in Theorem 1.2, the majorant ν can be replaced by any pseudorandom
functions as long as ai satisfies the discrete majorant property. For the precise
meanings of these conditions, see Definition 3.1 below.

THEOREM 1.5 (Transference principle in Z). Let 0 < δ, κ < 1 be given. Then,
for sufficiently small η > 0 and sufficiently large positive integer N, the following
statement holds. Let N3 = N, and let N1 = N2 = bN/2c. For i = 1, 2, 3, let
νi , ai : [1, Ni ] → R be arbitrary functions. Let αi be the average of ai . Suppose
that they satisfy the following assumptions.

(1) (Majorization condition) 0 6 ai(n) 6 νi(n) for all 1 6 n 6 Ni .

(2) (Mean condition) αi > δ and 1
2 (min(1, α1 + α2)+ α2)+ α3 > 1+ δ.

(3) (Pseudorandomness condition) The majorant νi is η-pseudorandom.

(4) (Discrete majorant property) The function ai satisfies the discrete majorant
property for some 2 < q < 3.

(5) (Regularity condition for a1) The function a1 is (δ/50, κ)-regular.

Then ∑
n1,n2,n3

n1+n2+n3=N

a1(n1)a2(n2)a3(n3) > cN 2,

where c = c(δ, κ) > 0 is a constant depending only on δ and κ .

This will be proved in Section 3. Working directly in Z requires some
modifications to the traditional argument. In particular, one has to deal with
problems coming from the fact that the interval [1, N ] is not a genuine group.

REMARK 1.6. The dependence of η on δ in Theorem 1.2 and on δ, κ in Theorem
1.5 is exponential. In the application to Roth’s theorem in the primes, this causes
an extra layer of logarithm in the lower bound for the density threshold. However,
this extra layer of logarithm was removed by Helfgott and de Roton [15] (whose
result is further improved by Naslund [21, 22]). Such an improvement comes from
using a weaker L2 estimate instead of an L∞ estimate, but at the cost of decreasing
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the relevant density in the dense model. Our argument is quite sensitive to this
density, and for this reason we are unable to make it work in our setting.

The rest of the article is organized as follows. In Section 2, we treat an additive
combinatorial problem arising from Theorem 1.4, which could be of independent
interest. In Section 3, we combine this additive combinatorial result with a
modification of traditional arguments to prove Theorem 1.5. In Section 4, we
review the construction of Selberg’s majorant. The proof that it is pseudorandom
is quite standard and is given in the appendix. Finally, in Section 5, we deduce
Vinogradov’s theorem from Theorem 1.5.

2. Generalization of Freiman’s 3k − 3 theorem to popular sums

In this section, we prove a combinatorial result related to the νi = 1 case of
Theorem 1.5. Consider the case when νi is the constant function 1 and ai is the
characteristic function of some subset Ai ⊂ [1, Ni ] (recall that N1 = N2 = bN/2c
and N3 = N ). Theorem 1.5 claims that, if the density of Ai is larger than 2

5 , and
if A1 satisfies some regularity condition, then N can be written, in many ways, as
a1 + a2 + a3 with ai ∈ Ai . This is certainly false without the regularity condition:
for example, take Ai to be the set of consecutive integers starting from 1.

As an important step towards this conclusion, we need to study the problem of
obtaining lower bounds on the number of popular sums in the sumset A1 + A2.
More precisely, for s ∈ A1+A2, let r(s) be the number of ways to write s = a1+a2

with a1 ∈ A1 and a2 ∈ A2. We are interested in lower bounds on the cardinality of
the set

DK (A1, A2) = {s ∈ A1 + A2 : r(s) > K }.
Note that, for K = 1, D1(A1, A2) is simply the sumset A1+ A2. However, we are
interested in the regime where K is a small positive constant times the cardinality
of A1 or A2.

In this direction, Green and Ruzsa [10] obtained the following generalization
of Kneser’s theorem in arbitrary finite abelian groups.

LEMMA 2.1 (Green and Ruzsa). Let G be a finite abelian group. Let D = D(G)
be the size of the largest proper subgroup of G. Let A1, A2 ⊂ G be subsets, and
let K > 0 be a parameter. Suppose that min(|A1|, |A2|) > √K |G|. Then

|DK (A1, A2)| > min(|G|, |A1| + |A2| − D)− 3
√

K |G|.

When G is a cyclic group, this is almost sharp when A1 and A2 are arithmetic
progressions of the same step. For our purposes, we would like better bounds once
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these extreme cases are excluded. For A1, A2 ⊂ Z, Freiman [5] has shown that the
lower bound for |A1 + A2| = D1(A1, A2) can be improved if the diameters of A1

and A2 are large compared to |A1| and |A2|. For A ⊂ Z, we define the diameter
of A to be the smallest d such that A is contained in an arithmetic progression of
length d .

THEOREM 2.2 (Freiman). Let A1, A2 ⊂ Z be finite sets with diameters d1, d2,
respectively. Suppose that d1 6 d2. Then

|A1 + A2| > min(|A1| + d2, 2|A1| + |A2| − 3).

When A1 = A2 = A and |A| = k, the lower bound above reads |A+A| > 3k−3
if the diameter of A is large. For this reason, it is traditionally called Freiman’s
3k − 3 theorem.

Our main result in this section is a generalization of Theorem 2.2 to popular
sums, which essentially states that the same lower bound above holds for DK (A1,

A2) when K = γ N for some small γ > 0, under some regularity assumption on
A1. Before stating the result, we first describe this regularity condition. For y > 2,
let P(y) be the product of all primes up to y.

DEFINITION 2.3. Let 0 < β, κ < 1 be parameters. A subset A ⊂ [1, N ] is said
to be (β, κ)-regular if

|{(u, v) ∈ A × A : u 6 βN , v > (1− β)N , (v − u, P(β−1)) = 1}| > κN 2.

Roughly speaking, this regularity condition on A ensures that the diameter of A
is approximately N , even if a small number of elements are removed from A. This
definition is compatible with the (β, κ)-regularity of the characteristic function of
A (see Definition 3.1 below). We now state our main result in this section.

THEOREM 2.4. Let β, κ > 0 be parameters with β < 1
6 . Let A1, A2 ⊂ [1, N ] be

arbitrary subsets with |Ai | > 4βN (i = 1, 2). Suppose that A1 is (β, κ)-regular.
Then, for γ < min(κ2/(16β2), β2/16),

|Dγ N (A1, A2)| > min(N , |A1| + |A2|)+ |A2| − 9βN .

Our argument is motivated by Lev and Smelianski’s proof [18] of Theorem 2.2.
We embed the sets A1 and A2 in an appropriately chosen cyclic group and then
use Lemma 2.1.

Proof. Consider the bipartite graph Γ = (A1, A2, E), whose vertices are elements
of A1 and A2, and whose edges are those pairs (a1, a2) (a1 ∈ A1, a2 ∈ A2) with
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a1+ a2 ∈ Dγ N (A1, A2). Since every element s ∈ (A1+ A2) \ Dγ N (A1, A2) yields
at most γ N edges in the complement of Γ , the edge set E contains all but at most
γ N · |A1 + A2| 6 2γ N 2 pairs.

Let A′1 ⊂ A1 be the set of vertices in A1 with degree at least |A2|−√γ N . Then

|A1 \ A′1| 6
2γ N 2

√
γ N

6 2
√
γ N .

By hypothesis, there are at least κN 2 pairs (u, v) ∈ A1 × A1 with u 6 βN and
v > (1−β)N such that (v−u, P(β−1))= 1. The number of those pairs with either
u /∈ A′1 or v /∈ A′1 is bounded above by 4β

√
γ N 2, which is less than κN 2 by the

choice of γ . Hence there exists such a pair with u, v ∈ A′1. Let A′′1 = A′1 ∩ [u, v].
Then

|A′′1| > |A′1| − 2βN > |A1| − 2(β +√γ )N .
Let d = v − u be the difference between the largest and the smallest elements

of A′′1. Let B1, B2 be the images of A′′1, A2, respectively, under the projection map
Z→ Z/dZ. Then |B1| = |A′′1| − 1 and |B2| > |A2| − 2βN . We claim that

|Dγ N (A′′1, A2)| > |D3γ N (B1, B2)| + (|A2| − 2
√
γ N ). (2.1)

In fact, for each popular sum s̄ ∈ D3γ N (B1, B2) ⊂ Z/dZ, there are at most three
different ways to lift s̄ to an integer s ∈ A′′1 + A2 (since β < 1

6 and thus d >

2N/3). At least one of those liftings lies in Dγ N (A′′1, A2). The additional term
|A2| − 2

√
γ N accounts for the fact that, for all but at most 2

√
γ N values of

a2 ∈ A2, both sums u + a2 and v + a2 lie in Dγ N (A′′1, A2), but they are the same
modulo d .

It is easy to check that |Bi | > √3γ N . We may thus apply Lemma 2.1 to the
sets B1, B2 inside G = Z/dZ to conclude that

|D3γ N (B1, B2)| > min(d, |B1| + |B2| − D)− 6
√
γ N ,

where D = D(Z/dZ) is the size of the largest subgroup of Z/dZ. It follows from
(d, P(β−1)) = 1 that D 6 βN . Combining this with the lower bounds for |B1|,
|B2|, and d , we get

|D3γ N (B1, B2)| > min(N , |A1| + |A2|)− (6β + 8
√
γ )N .

Hence, by (2.1),

|Dγ N (A1, A2)|> |Dγ N (A′′1, A2)|> min(N , |A1|+|A2|)+|A2|−(6β+10
√
γ )βN .

This is enough to conclude the proof by the choice of γ .
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REMARK 2.5. A central topic in additive combinatorics is the study of structures
of sets with small doubling. For A ⊂ Z, the doubling of A is the quantity K =
|A + A|/|A|. Freiman’s celebrated theorem gives a classification of the sets with
small doubling K : they are dense subsets of generalized arithmetic progressions
of rank at most K . See [28] for the precise result and its history. Theorems 2.2
and 2.4 roughly state that, if K < 3, then A is efficiently covered by an arithmetic
progression. This gives a more precise structure than Freiman’s theorem when
K < 3. In the wider region K < 4, see [4] for a recent result.

3. The transference principle

In this section, we prove Theorem 1.5. The precise definitions of the
pseudorandomness condition, the discrete majorant property, and the regularity
condition are given as follows. For a (compactly supported) function f : Z→ R,
its Fourier transform is defined by

f̂ (θ) =
∑
n∈Z

f (n)e(nθ),

where e(nθ) = exp(2π inθ). The Lq norm of its Fourier transform is defined by

‖ f̂ ‖q =
(∫ 1

0
| f̂ (θ)|q dθ

)1/q

.

For y > 2, let P(y) be the product of all primes up to y.

DEFINITION 3.1. Let f : [1, N ] → R be an arbitrary function.

(1) The function f is said to be η-pseudorandom if | f̂ (r/N )− δr,0 N | 6 ηN for
each r ∈ Z/NZ, where δr,0 is the Kronecker delta.

(2) The function f is said to satisfy the discrete majorant property if ‖ f̂ ‖q �q

N 1−1/q , where the implied constant depends only on q .

(3) The function f is said to be (β, κ)-regular if∑
(u,v)∈M

f (u) f (v) > κN 2,

where

M = {(u, v) : u 6 βN , v > (1− β)N , (v − u, P(β−1)) = 1}.
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Note that, when f is the characteristic function of a subset A ⊂ [1, N ], (β, κ)-
regularity of f is equivalent to (β, κ)-regularity of A (recall Definition 2.3).

The proof of Theorem 1.5 is similar to the arguments in [9] and [11], but with
some new ingredients. In the treatment of the case νi = 1, we use Theorem 2.4
established in the previous section. In the reduction from arbitrary νi to the case
νi = 1, we work directly in Z rather than in Z/NZ.

3.1. Proof of the case νi = 1 (Theorem 1.4). Let ξ > 0 be a small parameter
to be chosen later. Let Ai ⊂ [1, Ni ] be the essential support of ai :

Ai = {1 6 n 6 Ni : ai(n) > ξ},

Then
|Ai | > (αi − ξ)Ni .

Write β = δ/50. It follows from the regularity condition for a1 that

|{(u, v) ∈ A1 × A1 : u 6 βN , v > (1− β)N , (v − u, P(β−1)) = 1}|
> (κ − ξ 2β2)N 2 > 1

2κN 2

if ξ is chosen small enough. Hence A1 is (β, κ/2)-regular. By Theorem 2.4, there
exists γ = γ (δ, κ) > 0 such that

|Dγ N1(A1, A2)| > min(N1, |A1| + |A2|)+ |A2| − 1
2δN1

> (min(1, α1 + α2)+ α2 − δ)N1.

Note that Dγ N1(A1, A2) and A3 are both subsets of [1, N ], and their densities in
[1, N ] add up to at least 1+ δ/4 by the mean condition, provided that N > 4δ−1

is sufficiently large. Hence

|Dγ N1(A1, A2) ∩ (N − A3)| > 1
4δN .

This shows that there are at least δN/4 ways to write N as the sum of an element
in Dγ N1(A1, A2) and an element in A3. Each of these δN/4 representations gives
rise to at least γ N1 ways to write N as a1 + a2 + a3 (ai ∈ Ai ). This shows that∑

n1,n2,n3
n1+n2+n3=N

a1(n1)a2(n2)a3(n3) > ξ 3
∑
ni∈Ai

n1+n2+n3=N

1 > 1
4ξ

3δγ N 2.

This completes the proof.
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3.2. Decomposition of ai into uniform and anti-uniform parts. For
notational convenience, in this subsection we will fix some i ∈ {1, 2, 3}, and
simply write a = ai , ν = νi , and N = Ni . The main idea of reducing from general
ν to the case ν = 1 is to decompose the function a into a structured part a′ and
a random part a′′. The precise meanings of these properties are summarized in
Lemma 3.3 below.

To construct this decomposition, let 0 < ε < 1 be a small parameter to be
chosen later (which depends only on δ and κ). Let

T = Tε = {θ ∈ T : |â(θ)| > εN }.
Since a satisfies the discrete majorant property, the measure of Tε satisfies the
bound

meas(Tε)�ε N−1. (3.1)

Define
B = Bε = {1 6 b 6 εN : ‖bθ‖ < ε for all θ ∈ T },

where ‖x‖ denotes the distance from x to its closest integer. The definition of B
resembles the definition of Bohr sets in finite abelian groups. In that setting, lower
bounds for |B| are available in terms of its rank. The following lemma shows that
a similar lower bound holds in our situation as well.

LEMMA 3.2. With the definitions of T = Tε and B = Bε as above, we have
|B| �ε N.

Proof. For each θ ∈ Tε and ` > 0, let I (θ, `) = [θ − `/2, θ + `/2] be the interval
of length ` centered at θ . By compactness, there exists θ1, . . . , θm ∈ T such that

Tε ⊂ I (θ1, ε/24N ) ∪ · · · ∪ I (θm, ε/24N ).

By the Vitali covering lemma, there exists a subcollection {I (θ j , ε/24N ) : j ∈ J }
consisting of disjoint intervals and satisfying

Tε ⊂
⋃
j∈J

I (θ j , ε/8N ). (3.2)

We claim that |J | = Oε(1). In fact, for any θ ∈ I (θ j , ε/8N ) ( j ∈ J ),

|â(θ)−â(θ j)|6
N∑

n=1

a(n)|1−e(n(θ−θ j))|6
N∑

n=1

a(n)· εn
2N

6
ε

2

N∑
n=1

ν(n)= 1
2
εN .

Hence
â(θ) > â(θ j)− 1

2εN > 1
2εN .
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It follows that ⋃
j∈J

I (θ j , ε/8N ) ⊂ Tε/2.

Using (3.1), we get

ε|J |
24N

=
∑
j∈J

meas(I (θ j , ε/24N )) 6 meas(Tε/2)�ε

1
N
.

This proves that |J | = Oε(1).
Now, let

B ′ = {1 6 b 6 εN : ‖bθ j‖ < ε/2 for all j ∈ J }.
We claim that B ′ ⊂ B. To see this, take any b ∈ B ′ and θ ∈ Tε . By (3.2), θ ∈ I (θ j ,

ε/8N ) for some j ∈ J . Hence

‖bθ‖ 6 ‖bθ j‖ + b|θ jk − θ | < ε.

This shows that B ′ ⊂ B. A lower bound for |B ′| can be obtained by a simple
pigeonhole argument. Divide the |J |-dimensional cube [0, 1]|J | into small cubes
of side length ε/2. For each 1 6 b 6 εN , consider the small cube to which
the vector vb = (‖bθ j‖) j∈J belongs. By the pigeonhole principle, there exists a
small cube containing at least (2/ε)|J |εN vectors vb. For b1, b2 with vb1, vb2 in
the same small cube, the difference |b1 − b2| is an element of B ′. Hence |B| >
|B ′| �ε N .

The remaining arguments go along the same line as those of Green [9, 11].
Define

a′(n)= Eb1,b2∈Ba(n+b1−b2)= 1
|B|2

∑
b1,b2∈B

a(n+b1−b2), a′′(n)= a(n)−a′(n).

LEMMA 3.3. Suppose that η is chosen small enough depending on ε. The
functions a′ and a′′ defined above have the following properties.

(1) (a′ is set-like) 0 6 a′(n) 6 1 + Oε(η) for any n. Moreover, E16n6N a′(n) =
α + O(ε).

(2) (a′′ is uniform) â′′(θ) = O(εN ) for all θ .

(3) (a′1 is regular) a′1 is (δ/50, κ − O(ε))-regular.

(4) ‖â′‖q 6 ‖â‖q and ‖â′′‖q 6 ‖â‖q .
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Proof. To prove (1), note that

a′(n) 6 Eb1,b2∈Bν(n + b1 − b2) 6 Eb1,b2∈BE06r<N ν̂(r/N )eN (r(n + b1 − b2))

= E06r<N ν̂(r/N )eN (rn)|Eb∈BeN (rb)|2.
The term r = 0 gives ν̂(0) = N (1+ O(η)). For r 6= 0, the summand is bounded
in absolute value by ηN |Eb∈BeN (rb)|2. Hence

a′(n) 6 1+ O(η)+ ηNE06r<N |Eb∈BeN (rb)|2 = 1+ O(η)+ ηN |B|−1

by Parseval’s identity. By Lemma 3.2,

a′(n) 6 1+ Oε(η).

If η is chosen sufficiently small, a′(n) 6 2 for all n. The fact that E16n6N a′(n) =
α + O(ε) follows since En∈Za′(n) = α and the support of a′ is contained in
[−εN , (1+ ε)N ].

To prove (2), note that the Fourier transform of a′′ can be written as

â′′(θ) = â(θ)(1− |Eb∈Be(bθ)|2).
For θ /∈ T , |â′′(θ)| 6 |â(θ)| 6 εN . For θ ∈ T , we have

1− |Eb∈Be(bθ)|2 6 2(1− |Eb∈Be(bθ)|) 6 2Eb∈B |1− e(bθ)| � ε

by the definition of B. Hence |â′′(θ)| � εN as well.
To prove (3), write β = δ/50. Define

M = {(u, v) : 1 6 u 6 βN , (1− β)N 6 v 6 N , (v − u, P(β−1)) = 1},
and

M ′ = {(u, v) : −εN 6 u 6 (β + ε)N , (1− β − ε)N 6 v 6 (1+ ε)N ,
(v − u, P(β−1)) = 1}.

Note that∑
(u,v)∈M ′

a′(u)a′(v) = Eb1,b2,b3,b4∈B

∑
(u,v)∈M ′

a(u + b1 − b2)a(v + b3 − b4)

> Eb1,b2,b3,b4∈B

∑
(u,v)∈M

a(u)a(v) > κN 2.

Hence∑
(u,v)∈M

a′(u)a′(v) >
∑

(u,v)∈M ′
a′(u)a′(v)− 2|M ′ \ M | > (κ − O(ε))N 2.
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To prove (4), note that, for any θ ,

â′(θ) = â(θ)|Eb∈Be(bθ)|2, â′′(θ) = â(θ)(1− |Eb∈Be(bθ)|2),
and thus |â′(θ)| 6 |â(θ)| and |â′′(θ)| 6 |â(θ)|.

3.3. Reduction to the case νi = 1. For each i ∈ {1, 2, 3}, we obtained a
decomposition ai = a′i + a′′i satisfying the conditions summarized in Lemma 3.3.
In this section, we will show that the contributions from a′′i are negligible, and
thus we may essentially replace ai by a′i . Now that the functions a′i are essentially
bounded above by 1, we are back in the case νi = 1 treated in Theorem 1.4.

LEMMA 3.4. With the functions ai , a′i defined as above, we have∣∣∣∣∑
n,m

a1(n)a2(m)a3(N − n − m)−
∑
n,m

a′1(n)a
′
2(m)a

′
3(N − n − m)

∣∣∣∣� ε3−q N 2.

Proof. The difference on the left can be expressed as a sum of several terms, each
of the form∑

n1,n2,n3
n1+n2+n3=N

f1(n1) f2(n2) f3(n3) =
∫ 1

0
f̂1(θ) f̂2(θ) f̂3(θ)e(−Nθ) dθ,

where fi ∈ {ai , a′i , a′′i }, and fi = a′′i for at least one i . Without loss of generality,
assume that f3 = a′′3 . By Hölder’s inequality, this is bounded above by

‖ f̂3‖3−q
∞ ‖ f̂3‖q−2

q ‖ f̂1‖q‖ f̂2‖q .

By Lemma 3.3, ‖ f̂3‖∞ � εN . By the discrete majorant property together with
Lemma 3.3, all of ‖ f̂3‖q , ‖ f̂1‖q , and ‖ f̂2‖q are bounded above by Oq(N 1−1/q).
Combining these, we get the desired bound.

We now finish the proof of Theorem 1.5. By Lemma 3.3, the functions a′i are all
bounded above uniformly by 1+ Oε(η) with averages α+ O(ε), and a′1 is (δ/50,
κ/2)-regular. If ε and η are chosen small enough, Theorem 1.4 then implies that∑

n,m

a′1(n)a
′
2(m)a

′
3(N − n − m) > cN 2

for some c = c(δ, κ) > 0. Combining this with Lemma 3.4, we deduce by
choosing ε small enough that∑

n,m

a1(n)a2(m)a3(N − n − m) > 1
2 cN 2.

This completes the proof of Theorem 1.5.
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4. Pseudorandomness of Selberg’s majorant

To apply the transference principle, we need a majorant for the primes whose
pseudorandomness can be verified in an elementary way. For this purpose, we will
use Selberg’s upper bound sieve. It is a basic and important tool in sieve theory,
and our notation here will follow that in [7, Ch. 7].

Let W =∏p6w p be the product of primes up to some large constant w, and let
b (mod W ) be a reduced residue class. Fix a small positive constant δ > 0. Let
N be sufficiently large depending on w and δ. Let z = N 1/2−δ, and let D = z2.
Let P be the product of all primes p < z and (p,W ) = 1. Define ν = ν(N , z,W,
b) : [N ] → R>0 by

ν(n) = φ(W )

W
log z

( ∑
d|(W n+b,P)

ρd

)2

.

Here, the weights ρd are supported on d < z, and they satisfy |ρd | 6 1 and ρ1 = 1.
Moreover, the new variables

yd = µ(d)φ(d)
∑
d|m

ρm

m

satisfy yd = J−1 for d < z, where

J =
∑
d|P
d<z

1
φ(d)

=
∑
d<z

(d,W )=1

1
φ(d)

.

To see that ν is indeed a majorant for the (W -tricked) primes, note that, if W n+b
is prime and W n + b > z, then

ν(n) = φ(W )

W
log z (4.1)

since ρ1 = 1.

THEOREM 4.1 (Selberg’s majorant is pseudorandom). Let ν : [N ] → R>0 be
defined as above. For any r ∈ Z/NZ,

ν̂(r) = (δr,0 + Oε(w
−1+ε))N ,

where δr,0 is the Kronecker delta. In other words, ν is Oε(w
−1+ε)-pseudorandom.
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The proof of this is quite standard, and is included in the appendix as we are
not able to find in the literature exactly what we need. It divides into two cases
depending on whether r/N lies in the major arc or minor arc. In the major arc
case when r/N ≈ a/q for some reduced fraction a/q with q small, we can get
an asymptotic formula for ν̂(r) whose leading term can be analyzed by standard
manipulations using mean value estimates for multiplicative functions. The minor
arc case follows from a bilinear form estimate.

5. Proof of Vinogradov’s theorem

In this section, we use Theorem 1.5 with Selberg’s majorant considered in
Section 4 to give a proof of Vinogradov’s three primes theorem without using the
theory of L-functions. In particular, we will not need the Siegel–Walfisz theorem,
although we still use the prime number theorem in arithmetic progressions with
constant modulus, which can be proved elementarily. Such an elementary proof
was first given by Selberg [26].

REMARK 5.1. Recently, Koukoulopoulos [17] gave a ‘pretentious’ proof of
the Siegel–Walfisz theorem; namely, the proof uses L-functions only when the
defining Dirichlet series is convergent. The bound is still ineffective, due to the
potential existence of a Siegel zero causing an extremely small value of L(1, χ).
See also [8] for an introduction to the pretentious approach in analytic number
theory.

Let M be a sufficiently large odd positive integer. We will prove that M can be
written as sum of three primes. Take δ = 0.01 in the statement of Theorem 1.5.
Let W = P(w) be a parameter to be chosen later. Choose 0 < b1, b2, b3 < W
with (bi ,W ) = 1 such that b1+ b2+ b3 ≡ M (mod W ) (this can always be done
by the Chinese remainder theorem). Let N = (M−b1−b2−b3)/W . Let N3 = N ,
and let N1 = N2 = bN/2c. For i = 1, 2, 3, define a function ai : [1, Ni ] → R by

ai(n) =

φ(W )

W
log zi W n + bi is prime and W n + bi > zi

0 otherwise,

where zi = N 0.49
i . Construct νi = ν(Ni , zi ,W, bi) as in Section 4.

The majorization condition is satisfied by the observation (4.1). The mean
condition is satisfied because the average of ai is at least 0.48 for sufficiently
large N by the prime number theorem in arithmetic progressions of modulus W
(which is a constant). The pseudorandomness condition is satisfied by Theorem
4.1, if w is chosen large enough.
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Now consider the regularity condition for a1. Write β = δ/50, y = β−1, Y =
P(y), and let

M = {(u, v) : u 6 βN1, v > (1− β)N1, (v − u, Y ) = 1}.
Also write

U = {1 6 u 6 βN1 : W u + b1 is prime},
V = {(1− β)N1 6 v 6 N1 : Wv + b1 is prime}.

∑
(u,v)∈M

a1(u)a1(v) =
(
φ(W )

W
log z1

)2 ∑
u∈U,v∈V
(v−u,Y )=1

1

>

(
φ(W )

W
log z1

)2 ∑
s1,s2 (mod Y )
(s2−s1,Y )=1

|U ∩ (YZ+ s1)|

· |V ∩ (YZ+ s2)|

>

(
φ(W )

W
log z1

)2

Yφ(Y )
(

βN1

2 log N1
· W
φ(W )

· 1
Y

)2

> κN 2

for some κ depending only on δ. Here, we have used the prime number theorem
in arithmetic progressions of modulus W Y , which is again a constant.

Finally, the discrete majorant property for ai follows from the result of Green
and Tao [11].

LEMMA 5.2. For any q > 2,(∫ 1

0
|âi(θ)|q dθ

)1/q

�q N 1−1/q .

Proof. Consider the linear function F(n) = W n + bi and the exponential sum

h(θ) =
∑
n6Ni

F(n)>zi
F(n) prime

e(nθ).

The argument leading to [11, Theorem 1.1] gives

‖h‖q �q GF N 1−1/q
i (log Ni)

−1,
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where the singular series GF is defined by

GF =
∏

p prime

γ (p)
(

1− 1
p

)−1

and
γ (p) = p−1|{n ∈ Z/pZ : (p, F(n)) = 1}|.

(See (1.2) and (1.7) in [11]). In the current case, γ (p) = 1 for p 6 w and γ (p) =
1− 1/p for p > w. Hence

GF =
∏
p6w

p
p − 1

= W
φ(W )

.

Finally, note that

âi(θ) =
(
φ(W )

W
log zi

)
h(θ).

It follows that

‖âi‖q 6

(
φ(W )

W
log zi

)
‖h‖q �q N 1−1/q

i .

REMARK 5.3. Lemma 5.2 was also proved in [9], using the Brun sieve and the
Siegel–Walfisz theorem. Bourgain [1] showed how to obtain bounds for ‖ f̂ ‖q ,
where f is a function supported on the primes. The proof in [11] differs from
these previous arguments, and solely depends on properties of an enveloping sieve
(see also [24, 25]); in particular, the theory of L-functions is not used.

Now that all hypotheses in the statement of Theorem 1.5 are verified, we
conclude that there exists ni ∈ [1, Ni ] with ai(ni) > 0 such that N = n1+n2+n3.
In particular, W ni + bi is prime, and

M = W N + b1 + b2 + b3 = (W n1 + b1)+ (W n2 + b2)+ (W n3 + b3),

proving that M is the sum of three primes.

REMARK 5.4. Our method actually produces a lower bound for the number
of representations of M as the sum of three primes, which is of the correct
order of magnitude, but with a poor constant in the front. In comparison, the
traditional circle method is able to produce an asymptotic formula for this number
of representations.
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REMARK 5.5. We make a final remark concerning the explicit bound for M
that can be produced from our method. Unfortunately, directly following our
arguments only gives M > exp(exp(exp(C))) for a reasonable constant C . This
can be seen as follows. For our choice of δ, the transference principle theorem 1.5
requires the parameter η to be exponential in 1/δ. Thus, by the pseudorandomness
estimate Theorem 4.1, the parameter w should be taken to be exponential in 1/δ.
Hence W , being the product of primes up to w, becomes double exponential in
1/δ. Finally, in the arguments in this section we used lower bounds on the number
of primes up to M in congruence classes modulo W . Such lower bounds are only
available when M is exponential in W , and thus triple exponential in 1/δ.
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Appendix A. Proof of Theorem 4.1

This appendix is devoted to proving Theorem 4.1. We follow the notation in
Section 4. In particular, recall the construction of ν = ν(N , z,W, b) : [N ] → R>0

from the weights {ρd}. The following basic estimate will be used multiple times.

LEMMA A.1. For any z > 2 and positive integer m dividing P,∑
d<z

(d,m)=1

1
φ(d)

� φ(m)
m

log z

and ∑
d<z

(d,m)=1

1
φ(d)

= φ(m)
m

(log z + Om(1)).

Proof. The upper bound is clear:∑
d<z

(d,m)=1

1
φ(d)

6
∏
p<z
p-m

(
1+ 1

φ(p)

)
= φ(m)

m

∏
p<z

(
1+ 1

p − 1

)
� φ(m)

m
log z.

For the asymptotic, see [7, Theorem A.8].
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In particular, Lemma A.1 implies that

J = φ(W )

W
(log z + OW (1)). (A.1)

LEMMA A.2. For any positive integers q and r dividing P, the sum

J (q, r) =
∑
d|P

(d,q)=1

ρrd

d

satisfies

|J (q, r)| 6 J−1 [q, r ]
φ([q, r ]) .

Moreover, J (q, q) = yqqµ(q)/φ(q).

Proof. We write

J (q, r) =
∑
d|P

ρrd

d

∑
e|(d,q)

µ(e) =
∑
e|q
µ(e)

∑
d|P
e|d

ρrd

d
.

Note that ρrd = 0 if rd is not squarefree. Hence we can restrict the sum to those
e with (e, r) = 1:

J (q, r) =
∑

e|q/(q,r)
µ(e)

∑
d|P
e|d

ρrd

d
= r

∑
e|q/(q,r)

µ(e)yreµ(re)φ(re)−1

= rµ(r)
φ(r)

∑
e|q/(q,r)

yre

φ(e)
.

If q = r , then q/(q, r) = 1, and thus

J (q, q) = qµ(q)
φ(q)

yq .

In general, since yre is bounded by J−1, it follows that

|J (q, r)| 6 J−1 r
φ(r)

∑
e|q/(q,r)

1
φ(e)

= J−1 r
φ(r)

q/(q, r)
φ(q/(q, r))

= J−1 [q, r ]
φ([q, r ]) .

LEMMA A.3. For any positive integer q dividing P, the sum

T (q) =
∑

d1,d2|P
q|[d1,d2]

ρd1ρd2

[d1, d2]
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satisfies
|T (q)| �ε J−1q−1+ε .

Moreover, T (1) = J−1.

Proof. Write e1 = (d1, q), d1 = e1 f1, e2 = (d2, q), and d2 = e2 f2. Then

T (q) =
∑

e1,e2|q[e1,e2]=q

∑
f1, f2|P

( f1,q)=( f2,q)=1

ρe1 f1ρe2 f2

q[ f1, f2] .

For fixed e1, e2, use the identities ( f1, f2)[ f1, f2] = f1 f2 and ( f1, f2) =∑
g|( f1, f2)

φ(g) to rewrite the inner sum as

1
q

∑
f1, f2|P

( f1,q)=( f2,q)=1

ρe1 f1ρe2 f2

f1 f2

∑
g|( f1, f2)

φ(g)

= 1
q

∑
g|P

(g,q)=1

φ(g)


∑
f1|P

( f1,q)=1
g| f1

ρe1 f1

f1



∑
f2|P

( f2,q)=1
g| f2

ρe2 f2

f2

 .
The two sums in the parentheses above are g−1 J (qg, e1g) and g−1 J (qg, e2g).
When q = 1, apply Lemma A.2 to get

T (1) =
∑
g|P
φ(g)(g−1 J (g, g))2 =

∑
g|P

y2
g

φ(g)
= J−2

∑
g|P
g<z

1
φ(g)

= J−1.

In general, Lemma A.2 gives the bounds

|g−1 J (qg, e1g)| 6 J−1 q
φ(qg)

, |g−1 J (qg, e2g)| 6 J−1 q
φ(qg)

.

Observe that there are 3ω(q) pairs (e1, e2) with [e1, e2] = q . Note also that we can
clearly restrict the sum to g < z. Hence, by Lemma A.1,

|T (q)| 6 3ω(q) J−2 q
φ(q)2

∑
g<z

(g,qW )=1

1
φ(g)

� 3ω(q) J−2 q
φ(q)2

φ(qW )

qW
log z � J−1 3ω(q)

φ(q)
.

The desired bound for |T (q)| follows because 3ω(q)�ε qε and φ(q)�ε q1−ε .
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We are now ready to prove Theorem 4.1. Let R = bN 1−δ/2c and Q = bN δ/4c
be parameters. For q 6 Q and (a, q) = 1, let

M(q, a) =
{

r ∈ Z/NZ :
∣∣∣∣ r

N
− a

q

∣∣∣∣ 6 1
q R

}
.

Let

M =
Q⋃

q=1

q⋃
a=1

(a,q)=1

M(q, a), m = Z/NZ \M.

A.1. Major arc analysis. In this subsection, we prove Theorem 4.1 for those
r ∈M. Suppose that r ∈M(q, a) for some q 6 Q and (a, q) = 1. Then r/N is
very close to a/q . We first prove a result when they are equal. Recall the quantity
T (q) defined in Lemma A.3.

PROPOSITION A.4. With notation as above, for 1 6 x 6 N,

f (x, a/q) =
∑
n6x

ν(n)eq(an) = φ(W )

W
log z(εxT (q)+ E(x, q)),

where ε = ε(a/q,W, b) does not depend on x, and E(x, q) = O(q N 1−δ).
Moreover, ε = 1 if q = 1, ε = 0 if (q,W ) > 1, and |ε| = 1 if (q,W ) = 1.

Proof. By the definition of ν(n), we can write

f (x, a/q) = φ(W )

W
log z

∑
d1,d2|P

ρd1ρd2

∑
n6x

[d1,d2]|W n+b

eq(an).

Split the sum into two parts:

f (x, a/q) = φ(W )

W
log z(S1 + S2),

where

S1 =
∑

d1,d2|P
q|[d1,d2]

ρd1ρd2

∑
n6x

[d1,d2]|W n+b

eq(an),

S2 =
∑

d1,d2|P
q-[d1,d2]

ρd1ρd2

∑
n6x

[d1,d2]|W n+b

eq(an).
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First, consider S1. For q | [d1, d2], the inner sum is zero if (q,W ) > 1. Take
ε = 0 in the case when (q,W ) > 1. If (q,W ) = 1, then the summand in the inner
sum is a constant ε with |ε| = 1. Moreover, ε = 1 when q = 1. In either case,

S1 = ε
∑

d1,d2|P
q|[d1,d2]

ρd1ρd2

(
x

[d1, d2] + O(1)
)

= εxTq + O

(∑
d<z

|ρd |
)2
 = εxTq + O(N 1−δ)

since |ρd | 6 1.
Now, consider S2. For d1, d2 6 z with (d1d2,W ) = 1 and q - [d1, d2], the inner

sum over n is bounded by q . Hence

S2 6 q

(∑
d6z

|ρd |
)2

6 q N 1−δ.

The proof is completed by combining the estimates for S1 and S2.

We now use partial summation to complete the major arc estimate. Let r ∈
M(q, a) for some q 6 Q and (a, q) = 1. Then r/N = a/q + β for some |β| 6
1/q R. Note that

ν̂(r) =
N∑

n=1

ν(n)eq(an)e(βn) =
∫ N

1
e(βx)d

(∑
n6x

ν(n)eq(an)

)
.

It follows from Proposition A.4 that

ν̂(r) = φ(W )

W
log z

(
εT (q)

∫ N

1
e(βx) dx +

∫ N

1
e(βx) d E(x, q)

)
.

Consider the second integral above. By partial summation, it is bounded by

E(N , q)+
∫ N

1
E(x, q)(2π iβ)e(βx) dx � q N 1−δ+|β|q N 2−δ 6 QN 1−δ+ N 2−δ

R
.

This is O(N 1−δ/2) by the choices of Q and R. Hence

ν̂(r) = φ(W )

W
log z

(
εT (q)

∫ N

1
e(βx) dx + O(N 1−δ/2)

)
.
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If q > w, then Theorem 4.1 follows from Lemma A.3 and (A.1). If 1 < q 6 w,
then (q,W ) > 1, and thus ε = 0. If q = 1 and β > 0, then β is an integer
multiple of 1/N , and thus the integral above is zero. Finally, if q = 1 and β = 0,
then ε = 1. Lemma A.3 and (A.1) give

ν̂(0) = φ(W )

W
log z(J−1 + O(N−δ/2))N = (1+ OW ((log z)−1))N .

This proves Theorem 4.1 for sufficiently large z.

A.2. Minor arc analysis. Now, consider the case when r ∈ m. This means
that ∣∣∣∣ r

N
− a

q

∣∣∣∣ 6 1
q2

for some Q 6 q 6 R and (a, q) = 1.
By the definition of ν(n), we can write

ν̂(r) = φ(W )

W
log z

∑
d1,d2|P

ρd1ρd2

∑
16n6N

[d1,d2]|W n+b

eN (rn).

Using the bound |ρd | 6 1, we obtain

|ν̂(r)| 6 φ(W )

W
log z

∑
d<z2

(d,W )=1

 ∑
d1,d2[d1,d2]=d

1


 ∑

16n6N
d|W n+b

eN (rn)

 .
For any fixed squarefree d < z2, there are at most 3ω(d) � dδ/8 pairs (d1, d2) with
[d1, d2] = d . Hence

|ν̂(r)| � φ(W )

W
(log z)N δ/8

∑
d<z2

∣∣∣∣∣∣∣
∑

16n6N
d|W n+b

eN (rn)

∣∣∣∣∣∣∣ .
The following lemma estimates this double sum.

LEMMA A.5. Suppose that ∣∣∣∣α − a
q

∣∣∣∣ 6 1
q2
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with (a, q) = 1. For any 1 6 m 6 M, let cm (mod m) be an arbitrary residue
class. Then

∑
16m6M

∣∣∣∣∣∣∣
∑

16n6x
n≡cm (mod m)

e(αn)

∣∣∣∣∣∣∣� (M + xq−1 + q) log(2qx).

Proof. See [16, Lemma 13.7].

It follows that

|ν̂(r)| � φ(W )

W
(log z)N δ/8(z2 + N Q−1 + R) log N � N 1−δ/4,

completing the proof of Theorem 4.1 in the minor arc case.
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[24] O. Ramaré, ‘On Šnirel’man’s constant’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 22(4) (1995),

645–706.
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