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Abstract. Weak gravitational lensing can be combined with distance information from galaxy
redshifts to great effect in 3-D weak lensing. With both shear and redshift information I show
how the full 3-D dark matter distribution can be reconstructed and present a first application
to the COMBO-17 data-set. In addition, I describe the Jain-Taylor geometric test, taking ratios
of galaxy shear at different distances, as a probe of the dark energy in the universe and present
a preliminary application to COMBO-17.

1. Introduction
Gravitational lensing is usually thought of as a 2-D phenomenon, where the distances

to galaxy images are averaged over and compressed into a radial weighting function.
However, lensing is really a 3-D effect, dependent on the relative geometry of the observer,
lens and background source. By compressing the radial dimension, much information is
lost. In the case of dark matter mapping, projection effects increase the uncertainty on
images, while in statistical weak lensing information about the evolution of structure
and gravitational lens geometry is mostly lost. This information can be particularly
important, especially in the case of probing dark energy which directly affects both the
evolution of structure and global geometry of the universe.

Depth information, from galaxy redshifts, has already been used in weak lensing studies
to determine the median redshifts of the lens and background populations (see Brown
et al 2003, who use the COMBO-17 data to determine the detailed population redshift
distribution for a statistical shear analysis). But much more of this lost information can
be regained by extending gravitational lensing to include the information about the radial
positions of each of the background source galaxies.

Source distances will yield information on the distance to the lens. This is obvious
when one considers a single, point-like lens. In this case the background shear pattern
rises rapidly just behind the lens, flattening off at higher redshifts. By looking for the rise
in the shear signal, by taking differences between shears at different redshifts, one can
hope to pin down the redshift of the lens. What is perhaps less obvious is that there is an
exact, one-to-one inversion between the shear pattern with distances to each source, and
the full, 3-D distribution of the dark matter doing the lensing (Taylor, 2001). In Section
2, I outline the method used to achieve this inversion and present a first application to
map the 3-D dark matter field in the COMBO-17 data-set.

In addition to mapping the 3-D dark matter field, distance information is also valu-
able for more statistical tests. With distances one can extract the growth rate of dark
matter evolution (see David Bacon in these proceedings) or add information in cosmo-
logical parameters (see Alan Heavens and Lindsay King’s contributions). Here I describe
an alternative method, the Jain-Taylor approach, based on extracting only geometric
information and using it to probe the dark energy in the universe, free from assumptions
about the dark matter. I begin with 3-D dark matter mapping.
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2. 3-D Dark Matter Mapping
The central lensing equation relating the 3-D Newtonian potential, Φ, field to a grav-

itational lensing potential, φ, is

φ(r, rθ) = 2
∫ r

0

dr′
(

r − r′

rr′

)
Φ(r′, r′θ), (2.1)

where θ is a position angle on the sky, and r is the comoving distance. Here we have
assumed a spatially flat universe, which can be easily relaxed, and the Born approxi-
mation. This just says that the lensing effect is due to deflections of the photon beam,
characterized by the lensing potential, caused by the gravitational field of structure along
the beam path. The lensing potential is related to the shear matrix, γij , by

φ(r, rθ) = 2∂−4∂i∂j γij(r, rθ), (2.2)

where ∂i ≡ r(δij−r̂ir̂j)∇j is a dimensionless differential operator on the sky and ∂2 ≡ ∂i∂
i

is its Laplacian. Equation (2.2) reconstructs the lensing potential up to a quadratic
function on the sky with arbitrary function of distance (Taylor 2001, Bacon & Taylor
2003). This arbitrary behaviour is due to the more familiar sheet-mass degeneracy for
the lens convergence, translated to the lensing potential at each distance. This function
can be estimated and removed from the data (see Bacon & Taylor 2003).

It turns out that equation (2.1) can be exactly solved for the 3-D Newtonian potential,

Φ(r, rθ) =
1
2
∂rr

2∂rφ(r, rθ), (2.3)

where ∂r = r̂.∇ is a radial derivative. This relation reflects the more intuitive idea that
the lensing signal can be differenced to yield distance information about the lens. For
completeness we note that a similar expression exists for the matter density field, δ, and
the convergence field, κ, given by

δ(r, rθ) =
2a(r)

3ΩmH2
0

r−2∂rr
2∂rκ(r, rθ), (2.4)

where a is the expansion factor.
The shot-noise on a reconstructed 3-D Newtonian potential field, per pixel, is given by

∆Φ = 10−7(n/20 sq.arcmin)−1/2(∆z/0.05)−5/2(z/0.1), (2.5)

where n is the galaxy surface density, and is fairly independent of angular pixel size
(Bacon & Taylor, 2003). This is higher than the potential field we can expect for a small
cluster, so we usually also apply a radial Wiener filter to help bring out the full structure
(Bacon & Taylor, 2003; Hu & Keeton, 2002).

Not only is the 3-D inversion of the lensing fields to the 3-D matter fields straight-
forward, the quality of data needed to apply it is already available. The COMBO-17
data-set (Wolf et al, 2003) contains both lens quality galaxy images and accurate photo-
metric redshift information (∆z ≈ 0.01). Putting the galaxy shear data on a 3D grid we
can easily implement the 3-D inversion (see Taylor et al 2004 for details).

Figure 1 (top) shows the 3D distribution of the dark matter potential for the Abell
901/2 supercluster in the COMBO-17 survey. The main features of the supercluster are
seen in the x−y image (top-left), looking back towards the observer. Rotating the image
we can see the main supercluster lies in a plane at redshift z = 0.17, but a new cluster,
CB1, lies behind the supercluster at z = 0.48. The same structure is seen in the galaxy
number density, displayed in similar orientations below.
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Figure 1. Three-dimensional iso-surface plots of the dark matter potential and galaxy number
density fields from Taylor et al. (2004). The coordinates of the map are (x, y, z) = (θx , θy , z),
which distorts the map geometry. Note that axes are in pixel units, where ∆x = ∆y = 1.5
arcmins and ∆z = 0.05 in redshift. The plots are filtered on the scale of the pixels. Upper
panels: (LHS) The dark matter potential field, seen from high-redshift looking back to z = 0
and (RHS) at an oblique angle. The supercluster A901/2 is seen as a sheet in the potential
field in the lower part of the RHS map. The new cluster, CB1, is clearly seen as an isolated
structure in the potential field behind A902 at z = 0.48, with grid coordinates (10, 5, 6). Lower
panels: (LHS) The galaxy number density field for the A901/2 field, in the same projection as
the above dark matter image, and (RHS) in oblique projection. The main overdensities due to
the supercluster are seen as a sheet at low redshift, while the CB1 cluster is again clearly seen
at z = 0.48.
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3. Dark Energy from the Geometric Test

While the combination of shear and redshift information can be use to directly map the
3-D dark matter, applications can also be made to probe the 3-D statistical properties
of weak shear. As well as a probe of dark matter, this can also be used to probe the dark
energy component of the Universe. The dark energy makes itself felt via its effect on
the evolution of the universe and in particular the Hubble parameter, H(a). This affects
both the evolution of dark matter, and the geometry of the Universe. See Alan Heavens
and Lindsay King’s contributions for more details. Bacon et al (2004 in preparation;
see David Bacon in these proceedings) have fixed the cosmological model and used the
2-point shear correlation in 3-D to measure the evolution of the dark matter clustering.

An orthogonal statistic proposed by Jain and Taylor, the ratio of shears, can be used
to measure purely the geometry of the universe, since the shear ratio only depends on
the vacuum, matter and curvature density parameters Ωv, Ωm, ΩK ,and the equation of
state of the dark energy, w = p/ρ (Jain & Taylor, 2003). We can understand this by
again thinking of an isolated, point-like lens. As the lens shear is proportional to the
mass of the lens the ratio of shears at different redshifts is independent of the lens mass,
and only depends on the ratio of comoving distances;

R12 =
γ1(θ)
γ2(θ)

=
(r1 − rL)/r1

(r2 − rL)/r2
, (3.1)

where rL is the lens distance. The cosmological parameters enter via the comoving dis-
tance, r(a) =

∫ a

0
da′/a′2H(a′), where the Hubble parameter, H(a), is given by

H(a) = H0

[
Ωma−3 + ΩKa−2 + ΩVe−3

∫ a
1 d ln a′(1+w(a′))

] 1
2

, (3.2)

where H0 is the Hubble parameter today.
Jain & Taylor (2003) originally proposed this for ratios of shear correlations, but used

the example of a single cluster as illustration. In fact the test can also be applied to
individual clusters (since it is independent of structure), but we should also include the
effect of other structure along the same path as an addition source of noise. Thus, a
simple estimate for the fractional error on w is;

∆w

w
∝ 1

MNbins

√
1

NiNcl
(σ2

ε + NiCγγ), (3.3)

where M is the mass of the cluster, Nbins is the number of background redshift bins with
length of the redshift uncertainty, Ni is the average number of galaxies per bin, Ncl is the
number of clusters, σε is the intrinsic galaxy ellipticity and Cγγ is the large-scale shear
due to extra structure. Interestingly, this is only inversely proportional to the lens mass,
suggesting that we should preferentially target massive clusters.

In Figure 2 we show the χ2 fit to ΩV and w from the ratios for the shear field in
the background of the A901/2 supercluster in the COMBO-17 survey (Kitching, Taylor
& Bacon 2004, in preparation). We have assumed that the universe is spatially flat. No
constraint is put on ΩV , as the data do not extend beyond z = 1, but a (weak) constraint
is found for w, from just three small clusters. For comparison we show the 1- and 2-σ
constraint on the ΩV − w plane from WMAP + 2dF + Lyman-α data sets (Spergel et
al, 2003). A single, large cluster could, in principle, provide a much stronger constraint
on w.
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Figure 2. 1-σ region in the ΩV − w plane for the A901/2 supercluster field in the COMBO-17
survey (grey block). For comparison we also show the 1- and 2-σ region from WMAP + 2dF,
etc (solid ellipses) and the combined constraint (lighter grey-scale).

4. Summary
Combing weak shear with galaxy distance information, in 3-D weak lensing, allows

us to reconstruct the full 3-D mass distribution of the universe. The exact inversion
of the lens equation allows for a complete reconstruction, although the lensing kernel
requires a double differentiation which amplifies the noise. This can be controlled by
Wiener filtering. The data to apply this already exists, and I have shown the results for
the A901/2 supercluster field from the COMBO-17 survey. In addition, 3-D weak lensing
can be used for a purely geometric test by taking the ratios of galaxy shears behind
galaxy clusters. This is only sensitive to the global geometry of the universe, and in
particular the dark energy density and equation of state. Clearly, from these applications
and many more, the availability of source redshifts and 3-D methods has opened up a
whole new dimension for gravitational lensing.
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Discussion

Sarah Bridle: Why are the uncertainties on the cluster redshifts from a parametric
estimate of the cluster positions so large (see Taylor et al 2004), when the 3-D recon-
struction of the mass field looks so good?

Andy Taylor: There are a number of reasons for this. One is that a parametric fit
tries to use the data non-locally, all along the line of sight. This means that an estimate
of lens distance can get biased by poorer data and outliers at higher redshift. The 3-D
reconstruction is more local. A second reason may also be that the Wiener filter is adding
in information to the reconstruction, and this will help the reconstruction look better.

Laura Parker: At the end of your analysis will you be able to say anything about w(z)
(i.e. w′)?

Andy Taylor: Unfortunately no. The geometric test is nearly as sensitive to w′ as it is
to w. But including w′ introduces a strong correlation with ΩV , as both have a similar
effect on the shear ratio, R. The data we have at the moment only weakly constrains w,
so can’t constraint another, more degenerate parameter.

Laura Parker: How big a data set would you require to start putting reasonable
constraints on w′?

Andy Taylor: Jain & Taylor (2003) showed that with a SNAP-type survey one could
get w′ to about 10%. I suspect that the error on w will fall rapidly in the next few years,
so we might even start to see interesting constraints on w′ with upcoming surveys in the
not too distant future.
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