ON COHOMOGENEITY ONE FLAT RIEMANNIAN MANIFOLDS

R. MIRZAIE and S.M.B. KASHANI

School of Sciences, Tarbiat Modarres University, P.O. Box 14155-4838, Tehran, Iran e-mail: Kashanim@modares.ac.ir

(Received 16 November, 1999; accepted 23 August 2001)

Abstract. We study the topological properties of cohomogeneity one flat manifolds and their orbits. Among other results we prove that principal orbits of \mathbb{R}^n are isometric to \mathbb{R}^{n-1} or $S^k(c) \times \mathbb{R}^{n-k-1}$. We show that if M has one singular orbit, it is a totally geodesic submanifold of M and if M is orientable then there is at most one singular orbit.

2000 Mathematics Subject Classification. 53C30, 57S25.

1. Introduction. Cohomogeneity one Riemannian manifolds have been studied from different points of view (see [1], [2], [3], [4], [6] and [9]). C. Searle [9] provided a complete classification of such manifolds when they are simply connected compact and of positive curvature of dimension less than or equal to six. F. Podesta and A. Spiro [4] studied the topological properties of cohomogeneity one negatively curved Riemannian manifolds. The aim of this paper is to study the topological properties of a flat cohomogeneity one manifold M^n . In Theorem 3.1 we take M^n to be R^n and prove that the orbits of R^n are isometric to R^{n-1} or $S^k(c) \times R^{n-k-1}$. Then we distinguish two cases. In Theorem 3.3 we prove that if M is orientable then M can admit at most one singular orbit. We show in Theorem 3.5 that if there is a unique singular orbit B then B is a totally geodesic submanifold of M and is isometric to $R^k \times T^m$ and $\pi_1(M) = Z^m$. Also we prove that if there is not any singular orbit then each principal orbit is isometric to $R^k \times T^m$.

2. Preliminaries. Let M be a complete Riemannian manifold of dimension n and G be a Lie group of isometries of M, which is closed in the full isometry group of M. We say that M is of *cohomogeneity one* under the action of G, if G has an orbit of codimension one.

For a general theory of cohomogeneity one manifolds we refer to [1], [2], [3], [4] and [6]. Here we briefly mention some facts about cohomogeneity one manifolds which will be needed in the sequel.

It is known that the orbit space $\Omega = M/G$ is a topological Hausdorff space homeomorphic to one of the following spaces: $R, S^1, R^+ = [0, \infty)$ and [0, 1]. We indicate by $k : M \to \Omega$ the projection to the orbit space.

Given a point $x \in M$, we say that the orbit Gx is *principal* (resp. *singular*) if the corresponding image in the orbit space Ω is an internal (resp. boundary) point. A point x whose orbit is principal (resp. singular) will be called *regular* (resp. *singular*) point. The subset of all regular points turns out to be an open

and dense subset of M denoted by M_{reg} and the subset of singular points is denoted by M_s .

If $\Omega^{o}(\subset \Omega)$ is homeomorphic to an open interval of R and D is a principal orbit then $\Omega^{o} \times D$ is diffeomorphic to $k^{-1}(\Omega^{o})$.

All principal orbits are diffeomorphic to each other and if M/G = R then M is diffeomorphic to $R \times D$, where D is a principal orbit.

Each singular orbit is of dimension less than or equal to n - 1. A singular orbit of dimension n - 1 is called an *exceptional* orbit. Note that no exceptional orbit is simply connected, and if M is simply connected no exceptional orbit may exist. If M is orientable and all principal orbits, are connected, then any exceptional orbit is non-orientable.

If *B* is the unique singular orbit of $M(M/G = R^+)$ then $\pi_1(M) = \pi_1(B)$.

DEFINITION 2.1. A (complete) geodesic $\gamma: R \longrightarrow M$ on a Riemannian manifold of cohomogeneity one is called a *normal geodesic* if it crosses each orbit orthogonally.

It is known (see [1], [2] and [4]) that a geodesic γ is normal if and only if it is orthogonal to the orbit Gx at one point $x = \gamma(t)$. If $M/G = S^1$ or [0,1] then a normal geodesic $\gamma : R \longrightarrow M$ intersects each principal orbit D infinitely many times (for infinitely many $t \in R$ we have $\gamma(t) \in D$), while if $M/G = R^+$, γ intersects each principal orbit in two distinct points and if M/G = R then γ intersects a principal orbit exactly once.

For the sake of completeness, we quote the following theorems which we use in the proofs.

THEOREM 2.2 [7, p. 374]. Let \tilde{M} be a space form of constant curvature $c \leq 0$ and let M be a hypersurface in \tilde{M} whose principal curvatures are constant. Then at most two of them are distinct.

THEOREM 2.3 [8, Theorem 1]. Suppose \tilde{M} is a real space form and M a hypersurface in \tilde{M} . Suppose the principal curvatures of M are constant and at most two are distinct. Then M is congruent to an open subset of one of the standard examples.

REMARK 2.4. When $\tilde{M} = \mathbb{R}^{n+1}$, the standard examples are hyperplanes, spheres and cylinders over spheres. (See [8, Section 1]).

THEOREM 2.5 [6, Theorem 6.1]. Suppose M is a complete Riemannian G-manifold that admits sections, and N is a principal orbit of M. Then

(a) $exp(v(N_x))$ is a properly embedded totally geodesic submanifold of M for all $x \in N$, (v(N) is the normal bundle of N in M).

(b) v(N) is flat and has trivial holonomy; in fact if v_1, \ldots, v_k is a basis for $v(N)_x$ then the G-invariant normal fields $\tilde{v}_i(gx) = dg_x(v_i)$ form a global parallel frame for v(N).

(c) The principal curvatures of N with respect to any parallel normal field are constant.

THEOREM 2.6. Let M be a complete hypersurface of the Euclidean space \mathbb{R}^n , whose principal curvatures are constant. Then M is isometric to one of the following spaces:

(1) R^{n-1} ; (2) $S^k(c) \times R^{n-1-k}$, $1 \le k \le n-1$, c > 0.

Proof. Since M is complete, the theorem is a simple consequence of Theorems 2.2 and 2.3.

THEOREM 2.7 [10, pp. 88, 89]. Let M^n be a connected homogeneous Riemannian flat manifold. Then M^n is isometric to the product $R^m \times T^{n-m}$ of a Euclidean space with a flat Riemannian torus.

THEOREM 2.8. If M is a simply connected cohomogeneity one Riemannian manifold of non-positive curvature, then there is at most one singular orbit.

Proof. The proof is similar to the proof of Proposition 3.3 of [4]. To facilitate the reader we mention it briefly. Suppose that there exist two singular orbits $B_i = G/H_i$, $i = 1, 2, B_1 \neq B_2$, where H_1, H_2 are maximal compact in G. The two subgroups H_1 and H_2 are conjugate to each other, so there exist points $z_1 \in B_1$, $z_2 \in B_2$ with the same isotropy subgroup, say H_1 . The unique geodesic joining z_1 to z_2 would be left pointwise fixed by H_1 , so that H_1 should be a subgroup of a regular isotropy subgroup, which is a contradiction.

3. Main results. Throughout the following M will denote a complete Riemannian manifold of dimension n which is flat and of cohomogeneity one under the action of a connected Lie group G. If M is not simply connected then \tilde{M} the universal covering manifold of M is of cohomogeneity one under the action of a Lie group \tilde{G} , a connected covering manifold of G (see [3, p. 63]).

If $\tilde{\pi}: \tilde{G} \longrightarrow G, \pi: \tilde{M} \longrightarrow M$ are the covering maps then for each orbit \tilde{D} in $\tilde{M}, \pi(\tilde{D})$ is an orbit of M, and for each orbit D in M, we have $D = \pi(\tilde{D})$, for some orbit \tilde{D} of \tilde{M} .

Each deck transformation φ maps orbits to orbits. Thus if $\tilde{M}/\tilde{G} = R^+$ or R, then φ induces an isometry φ^* on \tilde{M}/\tilde{G} such that $k\varphi(\tilde{D}) = \varphi^*k(\tilde{D})$, where $k: \tilde{M} \longrightarrow \tilde{M}/\tilde{G}$ is the projection onto the orbit space and \tilde{D} is an orbit of \tilde{M} .

THEOREM 3.1. Let $M = \mathbb{R}^n$ be of cohomogeneity one under the action of a connected Lie group $G \subset Iso(\mathbb{R}^n)$. Then either each principal orbit is isometric to \mathbb{R}^{n-1} and there is not any singular orbit or each principal orbit is isometric to $S^k(c) \times \mathbb{R}^{n-k-1}$, $1 \leq k \leq n-1$, k is fixed for all orbits, and the unique singular orbit is isometric to \mathbb{R}^{n-k-1} .

Proof. Let D be a principal orbit. By using Theorems 2.5 (c) and 2.6 we get that D is isometric to R^{n-1} or $S^k(c) \times R^{n-k-1}$, for some $k, 1 \le k \le n-1$ (c depends on the orbit D). Since principal orbits are diffeomorphic to each other we get that each principal orbit of M is isometric to R^{n-1} or each principal orbit is isometric to $S^k(c) \times R^{n-k-1}$, $1 \le k \le n-1$. Now we consider two cases.

Case 1. Each principal orbit is isometric to R^{n-1} . By the fact that a line in R^n which is normal to a hyperplane R^{n-1} , intersects it exactly once, we get that a normal geodesic γ intersects each principal orbit exactly in one point, therefore we have M/G = R and there is not any singular orbit.

Case 2. Each principal orbit is isometric to $S^k(c) \times R^{n-k-1}$, for some $k, 1 \le k \le n-1$. By the fact that $M = M_{\text{reg}} \cup M_s$, and M_{reg} is open and dense in M, we get that for each $c \in (0, \infty)$ there exists a principal orbit $S^k(c) \times R^{n-k-1}$, so we conclude that $M_{\text{reg}} = \bigcup_{c \in (0,\infty)} S^k(c) \times R^{n-k-1} = (R^{k+1} - \{0\}) \times R^{n-k-1}$; hence $\{0\} \times R^{n-k-1}$

 R^{n-k-1} is the singular orbit.

From the proof of this theorem we have the following corollary.

COROLLARY 3.2. If \mathbb{R}^n is of cohomogeneity one under the action of a connected Lie group $G \subset Iso(\mathbb{R}^n)$, then the singular orbit (if there is any) is non-exceptional.

The corollary is in accordance with the fact that if M is simply connected, then no exceptional orbit may exist (see [3]).

THEOREM 3.3. If M is an orientable cohomogeneity one flat Riemannian manifold, then there is at most one singular orbit.

Proof. By Theorem 2.8 we need only consider the case of M not simply connected. Let the Lie group G act by cohomogeneity one on M and \tilde{G} be the corresponding covering Lie group of G which acts by cohomogeneity one on $\tilde{M} = R^n$ (the universal covering manifold of M). By Theorem 3.1 we have two cases.

Case 1. Each orbit of \tilde{M} is isometric to \mathbb{R}^{n-1} .

In this case each orbit D of M would be a totally geodesic hypersurface of M (because $D = \pi(\tilde{D})$ for some orbit \tilde{D} of \tilde{M}); therefore each orbit D of M is a homogeneous flat hypersurface of M. By Theorem 2.7 we get that D is isometric to $R^k \times T^m$, k + m = n - 1, D cannot be singular since no exceptional singular orbit is orientable; therefore in this case there is not any singular orbit.

Case 2. \tilde{M} has a unique non-exceptional singular orbit (i.e $\tilde{M}/\tilde{G} = R^+$).

We show that M cannot admit two singular orbits. Let M admits two singular orbits.

Since $\tilde{M}/\tilde{G} = R^+$, a normal geodesic $\tilde{\gamma}$ in \tilde{M} intersects each principal orbit in two points, while since M/G = [0, 1] the normal geodesic $\gamma = \pi \circ \tilde{\gamma}$ intersects each principal orbit D infinitely many times. So we conclude that $\pi^{-1}(D)$ has more than one connected component. Hence for a principal orbit $\tilde{D} \subset \pi^{-1}(D)$ there exists a deck transformation φ such that $\varphi(\tilde{D}) \neq \tilde{D}$. Now let \tilde{B} be the singular orbit of \tilde{M} . For dimension reasons we get that $\varphi(\tilde{B}) = \tilde{B}$. Let φ^* be the induced isometry on the orbit space $\tilde{M}/\tilde{G} = R^+$. We have $\varphi^*(0) = \varphi^*(k(\tilde{B})) = k\varphi(\tilde{B}) = k(\tilde{B}) = 0$, therefore for each $t \in R^+, \varphi^*(t) = t$; so for each orbit \tilde{D} in \tilde{M} we would have $\varphi(\tilde{D}) = \tilde{D}$, which is a contradiction. Therefore M cannot admit two singular orbits.

REMARK 3.4. In fact we proved that the singular orbit of M (if there is any) is non-exceptional.

THEOREM 3.5. Let M be a flat non-simply connected cohomogeneity one Riemannian manifold under the action of a Lie group $G \subset Iso(M)$,

(a) If there is a unique singular orbit B, then B is a totally geodesic submanifold of M and is isometric to $R^k \times T^m$ for some non-negative integers m, k and $\pi_1(M) = Z^m$.

(b) If there is no singular orbit, then each principal orbit is isometric to $R^k \times T^m$ for some non-negative integers m,k.

(c) In the case (b), if M/G = R then M is diffeomorphic to $R^r \times T^t$ for some nonnegative integers r,t, r + t = n.

Proof. (a) Let $\tilde{M} = R^n$ be the universal covering manifold of M and let \tilde{G} be the corresponding covering Lie group of G, which acts by cohomogeneity one on \tilde{M} . By Theorem 3.1 we have two cases.

Case 1. \tilde{M} has a unique singular orbit \tilde{B} isometric to R^{ℓ} , $\ell < n - 1$.

In this case the orbit $\pi(\tilde{B})$ in M has dimension less than n-1. Therefore it is a singular orbit. Since by assumption M has only one singular orbit B, we have $B = \pi(\tilde{B})$. As \tilde{B} is totally geodesic in \tilde{M} , B is totally geodesic in M and hence is flat. Therefore by Theorem 2.7 we get that B is isometric to $R^k \times T^m$ for some non-negative integers m, k, m + k = l. Also $\pi_1(M) \cong \pi_1(B) \cong Z^m$ by the preliminaries.

Case 2. Each orbit of \tilde{M} is isometric to R^{n-1} . From the fact that $B = \pi(\tilde{B})$ (for some orbit \tilde{B} of \tilde{M}) we get that B is a totally geodesic submanifold of M. So B is flat and homogeneous. Hence, by Theorem 2.7, B is isometric to $R^k \times T^m$ for some non-negative integers m, k, m + k = n - 1. So $\pi_1(M) \cong \pi_1(B) \cong Z^m$.

(b),(c). In this case \tilde{M} does not have any singular orbit (because if \tilde{M} admitted a singular orbit, by case 1 we get that M admits a singular orbit). Therefore by Theorem 3.1 we get that each orbit \tilde{D} of \tilde{M} is isometric to R^{n-1} . Thus each orbit $D(=\pi(\tilde{D}))$ of M is a totally geodesic submanifold of M. So D is flat and homogeneous; thus, by Theorem 2.7, D is isometric to $R^m \times T^t$, m + t = n - 1. If M/G = R, from the fact that M is diffeomorphic to $R \times D$ we get that M is diffeomorphic to $R^r \times T^t$, r + t = n.

EXAMPLE 3.6. Suppose that $M = T^{l} \times R$, where T^{l} is a flat *l*-torus, and $G = T^{l}$ acts on T^{l} by translation and on R trivially. Then M is a cohomogeneity one flat manifold, M/G = R, each orbit is isometric to T^{l} and $\pi_{1}(M) = Z^{l}$.

EXAMPLE 3.7. Suppose that $M = S^1 \times R^{n-1}$, $n \ge 2$, and $G = R^{n-1}$ acts on M by translation on R^{n-1} and trivially on S^1 . Then $M/G = S^1$, each orbit is isometric to R^{n-1} , $\pi_1(M) = Z$.

EXAMPLE 3.8. Suppose that $M = S^1 \times R^{n-1}$, $n \ge 3$, and $G = S^1 \times O(n-1)$ acts on *M* componentwise. Then *M* is a cohomogeneity one flat manifold, each principal orbit is diffeomorphic to $S^1 \times S^{n-2}$, the unique singular orbit is S^1 , and $M/G = R^+$.

ACKNOWLEDGEMENT. The authors would like to thank the referee for his (her) useful suggestions.

REFERENCES

1. A. V. Alekseevsky and D. V. Alekseevsky, G-manifolds with one dimensional orbit space, *Adv. Sov. Math.* 8 (1992), 1–31.

2. A. V. Alekseevsky and D. V. Alekseevsky, Riemannian G-manifolds with one dimensional orbit space, *Ann. Global Anal. Geom.* **11** (1993), 197–211.

3. G. E. Bredon, *Introduction to compact transformation groups*. (Academic Press, New York, 1972).

4. F. Podesta and A. Spiro, Some topological properties of cohomogeneity one manifolds with negative curvature, *Ann. Global. Anal. Geom.* 14 (1996), 69–79.

5. S. Kobayashi and K. Nomizu, *Foundations of differential geometry*, Vol. I, II. (Wiley Interscience, New York, 1963, 1969).

6. R. S. Palais and CH. L. Terng, A general theory of canonical forms, *Trans. Am. Math. Soc.* 300 (1987), 771–789.

7. P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, *Tohoku Math. J.* 21 (1969), 363–388.

8. P. J. Ryan, Hypersurfaces with parallel Ricci tensor, Osaka. J. Math. 8 (1971), 251–259.

9. C. Searle, Cohomogeneity and positive curvature in low dimensions. *Math. Z.* 214 (1993), 491–498.

10. J. A. Wolf, Spaces of constant curvature (Publish or Perish, Berkeley, California, 1977).