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Abstract 

Amino acids are fundamental to sustaining life. They are crucial for intracellular 

processes, such as energy metabolism, biosynthesis of nucleotides, and maintenance of 

oxidative homeostasis. These processes ensure the proper functioning of cells (including 

immune cells) and organs. Many studies have demonstrated that immune cells, as key 

players in immune regulation, have distinct amino acid demands, and their rapid growth 

and activation are shaped by amino acid availability in their microenvironment. In 

particular, the proliferation, maturation, and functional responses of innate immune cells 
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are closely linked to amino acid metabolism. The transport, sensing, and mobilization of 

amino acids drive metabolic reprogramming to support these processes. Therefore, this 

review focuses on the influence of amino acids on the fate and function of immune cells 

across development, homeostasis, activation, and effector phases, highlighting the 

underlying mechanisms. It provides a scientific basis for improving disease resistance 

and production efficiency in animals. 

Keywords: amino acids; immune cell fate; pig; metabolic reprogramming; immune 

function 

 

Introduction 

Amino acids are essential components that not only condense into peptides and proteins 

but also maintain the homeostasis of the immune system. Their influence on immune cell 

fate and functionality is multifaceted [1]. On the one hand, amino acids provide the 

essential structural components and energy sources required for immune cell 

proliferation, differentiation, and functioning. On the other hand, immune cells have 

specific demands for amino acids. Processes like amino acid mobilization, uptake, and 

sensing drive metabolic reprogramming in immune cells, which affects their fate and 

functionality [2, 3]. Studies have revealed that metabolic pathways of various immune 

cell types during origin, proliferation, differentiation, maturation, activation, and 

senescence differ significantly from those in resting states. For example, during an 

immune response to infections or environmental changes, immune cells transition into a 

highly active state characterized by elevated expression of amino acid transporters [4]. T 

cells serve as a representative example. When they become activated, they rapidly 
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proliferate and upregulate the transcription and translation of key immune-related genes. 

This heightened activity accelerates amino acid metabolism to support the synthesis of 

essential macromolecules like proteins and nucleotides [5]. 

Emerging research has revealed the link between dysregulated amino acid metabolism 

and various pathological conditions, such as metabolic disorders and immune 

dysfunction. In animal husbandry, amino acids are important feed components for 

livestock and poultry, effectively regulating immune dysfunction triggered by external or 

internal factors, thereby influencing disease resistance and survival rates [6]. This is 

especially relevant under policies restricting antibiotic use and in the context of African 

swine fever, where amino acids, as key nutritional regulators, have become increasingly 

important in improving health and immune function in livestock such as pigs. Previous 

studies have suggested that serine and glutamine can influence the porcine T cells 

activity, improving host defense against pathogens [7-12]. Research on amino acid 

metabolism pathways further highlights their role in regulating redox balance, gene 

expression in immune cells, and lymphocyte proliferation [13-16]. For example, arginine 

supports the growth and proliferation of immune cells while contributing to the synthesis 

of key immune mediators, such as nitric oxide and cytokines, which are vital for 

modulating inflammation and controlling autoimmune disorders [17]. These findings 

illustrate the dynamic interplay between amino acid metabolism and immune cells, driven 

by signal transduction and metabolic reprogramming, which adapts to physiological and 

pathological conditions in animals. This provides an essential theoretical foundation for 

an in-depth understanding of how amino acid metabolism affects the immune cell fate 

and function and also opens new ways for the development of nutritional strategies to 
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enhance animal immunity. Therefore, this review aims to focus on three key areas: 1) the 

mechanisms by which immune cells sense and selectively utilize amino acids; 2) the 

influence of amino acids on metabolic reprogramming in immune cells; and 3) the impact 

of amino acids on the function and fate of immune cells. Finally, we discuss future 

directions for research on how amino acid metabolism impacts immune cells, aiming to 

establish a theoretical basis that fosters integration between immunology and nutrition 

and expands the existing nutritional theories on amino acids. 

Sensing and uptake of amino acids by immune cells 

Mechanisms of amino acid sensing in immune cells 

Rapamycin, a compound isolated from soil, exhibits antifungal and antitumor properties 

[18]. In mammals, the mammalian target of rapamycin (mTOR) is a conserved 

serine/threonine kinase that senses environmental changes to regulate eukaryotic cell 

metabolism and growth [19]. This kinase forms two distinct complexes: mTOR complex 

1 (mTORC1) and mTOR complex 2 (mTORC2). The primary difference between these 

complexes lies in their unique scaffold proteins, with mTORC1 showing higher 

sensitivity to macrolide drugs like rapamycin [20]. Activation of mTORC1 involves key 

metabolites, such as amino acids, glucose, and nucleotides, through signaling pathways 

involving small GTPases, such as Ras homolog enriched in brain (RHEB) GTPases [21-

23]. At the molecular level, the Rag complex, consisting of heterodimers formed by 

RagA or RagB with RagC or RagD, collaborates with the Ragulator complex, which acts 

as a guanine nucleotide exchange factor for RagC or RagD. Together, these complexes 

facilitate the lysosomal translocation of mTORC1, a critical step that enables its 

activation by RHEB on the lysosomal surface [24-27]. The regulatory mechanism of the 
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Rag complex is further refined by the GTPase activating protein activity toward Rags 1 

(GATOR1), which specifically targets RagA and RagB, modulating their activity [28]. Its 

localization to the lysosomal membrane is mediated through its interaction with the Rag 

complex. This process is further regulated by the KICSTOR complex, a key assembly 

that includes SZT2, and by the GTPase activating protein activity toward Rags 2 

(GATOR2) complex, which acts upstream to fine-tune the Rag complex activity [29-31]. 

Some studies have demonstrated that immune cells sense amino acids through 

mTORC1, which relies on vacuolar-type ATPase on lysosomes[32]. Under conditions of 

sufficient amino acid availability, the vacuolar-type ATPase activates the guanine 

nucleotide exchange function of Ragulator, facilitating nucleotide exchange and 

activating Rag GTPases [33, 34]. The activated Rag GTPases then recruit mTORC1 to 

the lysosomal membrane, positioning it near RHEB, which triggers mTORC1 activation 

[24, 35-37]. Following its activation, mTORC1 localizes to the lysosome, where it 

phosphorylates 4EBP1. This phosphorylation event releases eIF4E, which initiates 

protein synthesis [38-41]. GATOR2 can inhibit GATOR1, but when arginine or leucine is 

present, the cellular arginine sensor for mTORC1 (CASTOR1) or Sestrin can bind 

GATOR2 in response to arginine or leucine, which relieves this inhibition [42]. 

Additionally, some studies have shown that a sensor of S-adenosylmethionine (a 

metabolic product of methionine) upstream of mTORC1 (SAMTOR) can suppress 

mTORC1 by interacting with GATOR1, and binding of S-adenosylmethionine to 

SAMTOR destroys this interaction [43]. Amino acids such as arginine and methionine 

play important roles in activating mTORC1 across various T-cell subsets [44]. Key 

transporters, including L-type amino acid transporter 1 (LAT-1/SLC7A5) and SLC1A5, 
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are critical for initiating mTORC1 signaling in naive, activated, and regulatory T cells 

(Tregs) [41, 45, 46]. During the first division of CD8
+
 T cells, the asymmetric distribution 

of amino acid transporters changes how much mTOR accumulates in proximal and distal 

daughter cells, which eventually determines whether CD8
+
 T cells become memory cells 

or effector cells [47-51]. Additionally, the Rag complex is indispensable for detecting 

amino acid levels and has been found to suppress regulatory T cell function [52-55]. 

Thus, immune cells sense environmental amino acid levels by regulating mTORC1 

activity, reshaping their fate and functionality.  

Immune cells also sense amino acids through general control nonderepressible 2 

(GCN2), which detects tRNA that is not fully loaded with amino acids [56]. Under 

normal conditions, tRNA that carries amino acids accumulates at ribosomes during 

protein translation, ensuring that the growing peptide chain receives enough amino acids 

[57]. When amino acids are scarce, uncharged or unloaded tRNA accumulates in the cell. 

This accumulation leads to an overall slowdown in protein translation to save energy and 

resources, accompanied by a selective reduction in the translation of mRNAs that restore 

cellular homeostasis [58]. Excessive accumulation of uncharged tRNAs interacts with 

GCN2, causing a structural rearrangement that triggers downstream signaling pathways 

[59]. Upon activation, GCN2 phosphorylates eIF2α at serine 51, which disrupts the 

assembly of the eIF2/tRNAiMet/GTP ternary complex, a crucial step in initiating protein 

translation [60] (Figure 1). Previous studies have suggested that GCN2 activation 

negatively affects T-cell proliferation and Treg differentiation [61-63]. Studies on amino 

acid deprivation, such as those using indoleamine 2,3-dioxygenase to degrade tryptophan, 

have revealed that indoleamine 2,3-dioxygenase increases IL-10 production while 
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reducing IL-12 expression in macrophages via a GCN2-dependent mechanism that 

inhibits protein synthesis [64, 65]. During apoptosis or exposure to apoptotic antigens, 

macrophages suppress IL-12 mRNA expression while increasing IL-10 transcript 

translation [66]. Additionally, the amino acid starvation response activated by 

halofuginone can suppress IL-1β production in macrophages through GCN2 activation 

[67]. Collectively, immune cells can sense amino acids through both the GCN2 and 

mTORC1 pathways, which allows them to regulate their fate and function based on 

amino acid availability 

Mechanisms of amino acid mobilization and uptake in immune cells 

Amino acid mobilization and uptake are critical regulatory points that impact the 

significantly influence immune cell function and fate. These cells primarily acquire 

amino acids through transporters that move amino acids from the microenvironment into 

the cells [68-71]. Activation of the T cell receptor (TCR) has been shown to trigger 

metabolic reprogramming in T cells, leading to changes in glycolysis, oxidative 

phosphorylation, and fatty acid β-oxidation pathways [72-75]. These metabolic changes 

rely heavily on amino acid availability and the corresponding transporters. The large 

amino acid transporter 1, also referred to as SLC7A5, forms a heterodimeric complex 

with the transmembrane protein CD98 (also known as SLC3A2) to transport large 

hydrophobic amino acids [76]. This transporter facilitates the uptake of seven essential 

amino acids, excluding lysine and threonine [77]. T cell activation dramatically increases 

the expression of the LAT-1/CD98 complex, supporting antigen recognition and rapid 

clonal expansion [78, 79]. Some studies have found that CD4
+
 T cells with a knockout of 

the Slc7a5 gene exhibit impaired antigen responses, with an inability to proliferate or 
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differentiate into Th1 and Th17 subsets [80, 81]. These findings suggest the critical role 

of LAT-1 not only in early T cell activation but also in guiding T cell differentiation. In 

animal models of lupus and psoriasis induced by imiquimod (a TLR7 agonist), the 

absence or inhibition of LAT-1 significantly reduces IL-17 secretion and suppress the 

expansion of γδ T cells and CD4⁺ T cells [82]. Other amino acid transporters, such as 

SLC7A7, which forms complexes with CD98, are responsible for the transport of lysine, 

arginine, and other amino acids, highlighting the diversity and complexity of amino acid 

transporters in immune function regulation [83]. Once amino acids enter immune cells, 

the cells can recycle certain chemical groups to synthesize new amino acids [69]. 

Lysosomes within immune cells also contain amino acid transport mechanisms as part of 

the self-protection system during starvation [84]. These lysosomal transporters are also 

crucial for immune functions such as the production of type I interferons in dendritic cells 

and immunoglobulin G synthesis in B cells [85-88]. 

The asymmetric distribution of amino acid transporters is crucial in determining T cell 

fate [47]. When interacting with antigen-presenting cells, SLC7A5 displays a notable 

asymmetric distribution [89]. This distribution results in differing amino acid 

concentrations and metabolic activities between proximal and distal T cell subsets, 

ultimately influencing immune cell function and fate [51]. In proximal daughter cells, 

high SLC7A5 expression promotes increased amino acid uptake, particularly glutamine, 

which supports rapid proliferation and high energy demand [90]. Increased glutamine 

enhances glycolysis, providing abundant energy and carbon sources for biosynthesis. 

Additionally, glutamine contributes to α-ketoglutarate production, accelerating the 

tricarboxylic acid cycle and enhancing metabolic activity and energy generation [91]. 
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Enhanced glycolysis and metabolic activity activate the c-Myc and mTORC1 signaling 

pathways, laying the molecular foundation for proximal daughter cells to differentiate 

into effector T cells. In contrast, distal daughter cells with lower SLC7A5 expression 

exhibit reduced amino acid uptake and metabolic activity, resulting in weaker metabolic 

activity. While this situation does not favor rapid cell proliferation, it does help the cells 

conserve energy and resources, preparing them for future reactivation and rapid 

responses. Consequently, these distal daughter cells tend to develop into memory T cells 

that survive long-term and can respond quickly when they encounter the same antigen 

again [51, 92-94]. Overall, the uptake of amino acids and the asymmetric distribution of 

their transporters are decisive factors in T cell function and fate, affecting both immediate 

immune responses and long-term functionality and survival. 

T Cell Development 

The development of T cells occurs primarily in the thymus. Hematopoietic stem cells 

derived from the bone marrow differentiate into common lymphoid progenitor cells, 

which migrate to the thymus and further develop into progenitor T cells [95]. These 

progenitor cells undergo T cell receptor (TCR) rearrangement and selection processes, 

giving rise to mature conventional αβ T cells  as well as unconventional subsets such as 

γδ T cells, natural killer T cells (NKT), mucosal-associated invariant T cells, and thymic-

derived regulatory T cells (tTreg) [96, 97]. T cell maturation progresses through distinct 

developmental stages, including double-negative (DN) and double-positive (DP) phases. 

The double-negative stage is further classified into DN1, DN2a, DN2b, DN3a, DN3b, 

and DN4 phases [98-100]. The transition from DN2 to DN3 determines whether pro-T 

cells differentiate into αβ or γδ T cells[101]. Pre-T cell receptor and Notch signaling in 
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DN3a cells are crucial for β-selection and the subsequent development of conventional 

αβ T cells [101]. Conversely, DN2 and DN3 cells exposed to elevated interleukin-7 (IL-

7) signaling pathways are driven towards the γδ T cell lineage [102]. Double-positive 

cells have the potential to differentiate into unconventional subsets, such as iNKT and 

tTreg cells [103, 104] (Figure 2). In pigs, the composition of T cell subsets differs 

significantly from other mammals. Some studies have shown that during late gestation in 

sows, the population of γδ T cells in embryonic blood and peripheral lymphoid tissues 

increases sharply, far exceeding the number of CD4⁺CD8⁻ and CD4⁻CD8⁺ T lymphocytes. 

This αβ-to-γδ T cell ratio is distinct from what is observed in other mammals [105-108]. 

Some T cells in pigs may originate outside the thymus [109]. Previous studies identified 

mitotic T cells in the gastrointestinal epithelium of pigs, referred to as intraepithelial T 

cells (IEK) [110]. Currently, research on unconventional T cells in pigs remains limited. 

Further studies on these cells could enhance our understanding of their roles in amino 

acid metabolism, disease prevention, and vaccine responses. 

Immune Cell Metabolism 

Once immune cells mature, they leave the thymus. When T cells are in a resting state and 

have not been activated by receptor engagement or cytokine signals, their metabolic 

demands remain low. They rely mainly on fatty acid β-oxidation and tricarboxylic acid 

(TCA) cycle. The maintenance of this resting metabolic state in T cells requires external 

signals such as IL-7. When T cells encounter an antigen, they undergo dynamic 

metabolic, differentiating into effector T cells in a process known as metabolic 

reprogramming. The activated T cells switch their primary energy source from oxidative 

phosphorylation to glycolysis [70, 111]. Although glycolysis produces less ATP per cycle 
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compared to oxidative phosphorylation, it can generate ATP at a faster rate, work 

effectively in low-oxygen or acidic environments, and provide higher biosynthetic 

efficiency to help maintain redox balance [112-114]. Metabolites produced during 

glycolysis feed into the pentose phosphate pathway, which contributes to amino acid and 

nucleotide biosynthesis and generates nicotinamide adenine dinucleotide phosphate 

(NADPH) for reducing power [115]. During the later stages of immune responses, a 

small subset of antigen-specific T cells persists as long-lived memory T cells [116]. These 

memory T cells are characterized by an increased mitochondrial mass, which enhances 

their spare respiratory capacity and prepares them for rapid responses upon re-exposure 

to antigens [117]. Therefore, amino acid metabolism is an integral component of T cell 

metabolism, providing intermediates that support these metabolic pathways and 

determining immune cell functionality [70, 118, 119] (Figure 3).  

In addition to the metabolic distinctions between effector and memory T cells, various 

T cell subsets exhibit unique metabolic characteristics. The differentiation of Th1, Th2, 

Th17, and Tregs is heavily influenced by cytokines such as interferon-γ (IFN-γ), 

interleukin-4 (IL-4), interleukin-6, and transforming growth factor-β, respectively [120-

127]. While Th1, Th2, and Th17 cells primarily rely on glycolysis for energy and 

biosynthesis, Tregs employ a mixed metabolic approach that integrates glycolysis, fatty 

acid oxidation, and oxidative phosphorylation [71, 111] Interestingly, shifting the 

metabolic balance can alter T cell differentiation. Inhibiting glycolysis during Th17 

differentiation has been shown to favor the generation of Tregs [128-131]. Similarly, the 

addition of exogenous fatty acids to T cell cultures significantly suppresses the 

production of cytokines associated with Th1, Th2, and Th17 cells, while having minimal 
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impact on Tregs. Notably, this suppression of effector T cells by fatty acids cannot be 

reversed by the addition of cytokines that typically promote their differentiation [132, 

133]. Moreover, suppressing mTOR signaling to enhance fatty acid oxidation increases 

the number of memory T cells [134-136]. These findings underscore the fundamental 

metabolic differences between effector T cells and Tregs. Therefore, the study on amino 

acid metabolism-mediated T cell fate and function has emerged as a hot and active topic 

in the present and future. 

The impact of amino acid metabolism on immune cell fate and function 

Glutamine metabolism-mediated immune cell fate  

Glutamine and its metabolism are critical for the proliferation, differentiation, and 

activation of T cells by providing essential energy [137, 138]. Some studies have shown 

that in glutamine-free media, T cells predominantly differentiate into Tregs rather than 

Th17 cells, and prolonged glutamine deprivation exacerbates this effect [139]. Immune T 

cells rely on SLC38A2 to transport extracellular glutamine into the cell. Without this 

transporter, Th17 differentiation is significantly reduced, whereas the formation of Tregs 

remains unaffected [61]. Within immune cells, glutamine metabolism requires the 

catalytic activity of glutaminase-1 (Gls1) to convert glutamine into glutamate. Th17 cells 

exhibit higher Gls1 expression levels than other T cell subsets, with elevated intracellular 

levels of glutamate and α-ketoglutarate (a glutamate metabolite) [140]. Previous studies 

have suggested that Gls1 deficiency reduces α-ketoglutarate levels, affecting chromatin 

states and gene expression, further inhibiting mTORC1 and IL-2 signaling, thereby 

impairing Th17 differentiation while promoting Th1 cell formation [141, 142]. The 

dependence of Th17 cells on glutamine has been further demonstrated in Gls1-deficient 
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mice. Inhibition of Gls1, either through pharmacological means or siRNA-mediated 

approaches, significantly reduces Th17 differentiation in vitro [140].  

Glutamine also influences the activation, proliferation, and development of other 

immune cells. In M1 macrophages, it enhances the production of α-ketoglutarate, a key 

metabolite that drives the synthesis of IL-1β and supports inflammatory responses [143, 

144]. In M2 macrophages, glutamine contributes to the TCA cycle, supporting anti-

inflammatory responses [145-148]. Additionally, glutamine is vital for the activation and 

functionality of NKT cells and B cells. NKT cells use glutamine to synthesize glutathione 

and hexosamines, while B cells depend on it for antibody production [86, 149]. Overall, 

glutamine serves as a versatile metabolite that sustains the functionality and metabolic 

adaptability of diverse immune cell populations. 

Branched-chain amino acids metabolism-mediated immune cell fate 

In addition to glutamine, branched-chain amino acids (BCAAs) contribute to the TCA 

cycle and are involved in various biosynthetic processes. Through the generation of 

intermediates such as acetyl-CoA and succinyl-CoA, BCAAs provide essential substrates 

for the TCA cycle [150-152]. During immune cell activation, neutral amino acid 

transporters, particularly SLC7A5/CD98, are significantly upregulated, serving as crucial 

mediators during pathogen infections and immune responses. In T cells, infections trigger 

elevated expression of SLC7A5, a process further maintained by IL-2 to ensure a 

constant supply of BCAAs [80, 153, 154]. The inhibition of SLC7A5 has been shown to 

significantly reduce IFN-γ and IL-17 production, impairing the differentiation of Th1 and 

Th17 cells, while having minimal impact on the Tregs [4, 78]. Loss of SLC7A5 in T cells 

also impairs mTORC1 and Myc-dependent glycolysis, affecting T cell activation and 

https://doi.org/10.1017/anr.2025.5 Published online by Cambridge University Press

https://doi.org/10.1017/anr.2025.5


 

14 

 

proliferation [155]. In macrophages, lipopolysaccharide (LPS)-induced inflammatory 

responses also activate BCAA transporters, with leucine transported by SLC7A5 being 

essential for glycolysis [156]. Similarly, CD98 expression is closely linked to the 

proliferation of immune cells and cytokine production. Plasma cells with high CD98 

expression demonstrate stronger immune responses, longer lifespans, and increased 

antibody production [157-161]. The enzyme BCAA aminotransferase 1 (BCAT1) is 

integral to BCAA metabolism, catalyzing the conversion of BCAAs into branched-chain 

keto acids, which serve as precursors for TCA cycle entry. Inhibition of BCAT1 

effectively reduces glycolysis and oxidative phosphorylation, thereby reducing the 

production of anti-inflammatory metabolites [162]. These metabolic pathways not only 

drive short-term immune responses but also underpin the adaptive immune responses 

required for prolonged antigen exposure. 

Serine metabolism-mediated immune cell fate 

Serine regulates immune cell metabolic reprogramming, influencing their fate and 

function. It interacts with pyruvate kinase M2 (PKM2), enhancing glycolytic flux to 

provide energy for immune cells [163]. Previous study has suggested that PKM2 

activation in lipopolysaccharide-induced macrophages drives a shift toward glycolysis 

and speeds up IL-1β production [164-166]. In CD4⁺ T cells, activation of the T cell 

receptor promotes the nuclear translocation of PKM2, increasing glycolysis and 

facilitating differentiation into Th1 and Th17 subsets. Inhibiting PKM2 nuclear 

translocation can limit the differentiation of these cells and reduce cytokine production, 

which helps slow the progression of multiple sclerosis [167-169]. Additionally, limiting 

serine intake can reduce PKM2 activity, thereby lowering macrophage activation in 
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atherosclerosis and decreasing LPS-induced IL-1β production [170-172]. Similar findings 

from our lab have demonstrated that LPS-treated piglet serum exhibits elevated IL-1β 

levels, which are reduced by dietary serine supplementation [173]. In a dextran sulfate 

sodium-induced colitis model, our study also indicated that adding serine lowered the 

levels or activity of proinflammatory cytokines in mice [174]. Additional research 

highlights the role of phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme 

in the serine de novo synthesis pathway, in macrophages. Inhibiting PHGDH increases 

NAD⁺ levels and enhances the activity of NAD⁺-dependent SIRT1/3, which promotes IL-

1β production. PHGDH also supports Toll-like receptor 4 transcription via H3K9/27 

acetylation and activates the NLRP3 inflammasome by facilitating acetylation of 

inflammasome components [175]. Lack of serine can suppress IL-1β production in 

macrophages by inhibiting mTOR signaling [11, 12]. Moreover, our team was the first to 

discover that adding appropriate amounts of serine to sow diets during late pregnancy and 

lactation significantly increased antibody levels in both sows and piglets, raised the 

positive rate of CD4⁺/CD8⁺ cells, improved the growth performance of nursing piglets 

and the reproductive performance of sows, and enhanced immunity in both sows and 

piglets [176]. This suggests that serine may be a promising new feed additive for 

improving swine immunity. Additionally, serine supports mitochondrial metabolism 

through serine hydroxy methyltransferase 2 (Shmt2), essential for mitochondrial 

translation and respiration. Shmt2-deficient models exhibit severe respiratory defects 

[177]. Serine-derived one-carbon units are crucial for nucleotide synthesis and 

methionine cycling, particularly in proliferating tissues. In Shmt2 null Jurkat cells, 

supplying one-carbon units can fix defects in mitochondrial respiration and translation, 
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especially under low-glucose conditions, highlighting the vital role of this pathway in 

adjusting metabolic states [178]. Moreover, serine is indispensable for T cell proliferation 

and differentiation. The serine de novo synthesis pathway supports purine synthesis and 

one-carbon metabolism, while activated T cells upregulate key enzymes in this pathway 

to regulate immune responses and metabolism directly [179]. In models of Pasteurella 

multocida infection, serine levels in the lungs significantly decrease. Supplementing 

serine in these mice reduces bacterial colonization and inflammatory responses, further 

demonstrating its critical role in immune regulation [180]. 

Sulfur-containing amino acids metabolism-mediated immune cell fate 

Methionine plays multiple roles in regulating immune cell function and fate, primarily 

through its involvement in methylation processes. By providing S-adenosylmethionine 

(SAM), methionine drives the methylation of biomolecules, which can promote or inhibit 

transcription by changing how DNA is accessed by transcriptional machinery. During T 

cell activation, both repressive and activating histone methylation events occur 

frequently, facilitating transcriptional remodeling [181, 182]. Additionally, RNA 

methylation, particularly N6-methyladenosine modification, plays a pivotal role in 

maintaining T cell homeostasis. The absence of this modification leads to defects in 

mRNA stability, splicing, and translation initiation, ultimately impairing T cell 

proliferation and differentiation [183-185]. Beyond transcriptional regulation, methionine 

metabolism has a profound impact on immune memory formation and function. The 

methylation of histones, RNA, and other cellular components relies on the availability of 

SAM. For example, Th17 cells starved of methionine or subjected to methionine cycle 

inhibition exhibit reduced H3K4 methylation, leading to decreased IL-17 production, 
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while methionine restriction in Th1 cells similarly reduces IFN-γ expression. 

Additionally, dietary methionine restriction has been shown to reduce the number of IL-

17- and IFN-γ-producing cells, thereby influencing immune responses in conditions such 

as experimental autoimmune encephalomyelitis [186]. 

Methionine not only participates directly in methylation reactions through its 

metabolite SAM but also supports immune cell function and proliferation through 

byproducts such as S-adenosylhomocysteine and further metabolic pathways. β-glucan-

trained human peripheral blood mononuclear cells exhibit increased H3K4 trimethylation 

at cytokine and immune signaling gene promoters, enhancing cytokine production upon 

Candida albicans re-exposure [187]. Similarly, memory CD4⁺ T cells show enriched 

histone marks associated with cytokines such as IL-17 and IFN-γ and transcription 

factors like T-bet, establishing a “primed” chromatin state that enables rapid cytokine 

production upon stimulation [188, 189]. Methionine transport is critical for these 

processes. Following antigen stimulation, T cells upregulate methionine transporters, 

including SLC7A5, to meet the increased demand for methyl donor production and 

protein synthesis, which are essential for T cell differentiation and function. The balance 

between SAM and its byproduct, S-adenosylhomocysteine, also modulates histone 

methylation levels. Accumulation of S-adenosylhomocysteine due to disruptions in 

methionine metabolism can inhibit histone methylation, further suppressing immune gene 

expression. This metabolic-epigenetic interplay ensures that immune cells efficiently 

integrate nutrient availability with functional adaptation, reinforcing the role of 

methionine metabolism in maintaining long-term immune memory [119]. 
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Cysteine, another sulfur-containing amino acid, is vital for maintaining redox balance 

and methylation regulation. It serves as a key precursor for glutathione (GSH), one of the 

body’s main antioxidants that control reactive oxygen species levels and preserve 

intracellular redox balance. In immune cells, methionine metabolism can generate 

cysteine. Beyond the regulatory roles methionine plays, cysteine also modulates immune 

cell responses through specific mechanisms: 1) antioxidant and cellular protection: Upon 

activation, T cells, B cells, and macrophages upregulate GSH synthesis, with cysteine 

providing the sulfur atom essential for this process. For example, LPS-stimulated 

macrophages produce high ROS levels, which are neutralized by GSH to prevent 

oxidative damage. 2) sulfur metabolism and translational support: Cysteine also 

contributes to iron-sulfur cluster synthesis, vital for mitochondrial electron transport 

chains and various metabolic enzymes. These clusters play a vital role in sustaining 

energy production and metabolic activity in T cells and macrophages (Figure 4). 

Additionally, cysteine plays a role in post-translational modifications. The sulfur from 

cysteine is critical for tRNA thiolation, which facilitates efficient translation, particularly 

for proteins required in immune activation. Furthermore, iron-sulfur clusters derived from 

cysteine support mitochondrial metabolism and electron transport chain function, 

ensuring energy production for highly active immune cells. Therefore, sulfur-containing 

amino acids play indispensable roles in regulating oxidative stress, cellular metabolism, 

epigenetic control, and long-term immune memory. 

Arginine metabolism-mediated immune cell fate 

Arginine influences protein structure modifications and immune cell activity regulation 

through its metabolism. In the presence of SAM, arginine generates polyamines, 
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highlighting the interdependence and centrality of arginine and SAM in immune cell 

metabolism [190]. Polyamine production signals sufficient nutrient supply, coordinates 

biosynthesis, and supports immune cell proliferation. Polyamines participate in producing 

rare amino acid derivatives critical for the post-translational modification of eukaryotic 

translation initiation factor 5a (eIF5a), a key regulator of translation elongation and 

termination [191, 192]. Inhibition of the polyamine-eIF5A-taillessin pathway suppresses 

oxidative phosphorylation-dependent M2 macrophage polarization, leading to a shift 

towards glycolysis-dependent M1 polarization [190].  

Other amino acids metabolism-mediated on immune cell fate 

During immune cell proliferation and differentiation, nucleotides synthesis relies on 

amino acids such as aspartate and glycine. Aspartate and serine-derived glycine provide 

carbon backbones for nucleotide formation [193]. Glycine plays a particularly critical 

role in the early stages of T cell activation [179]. Although glycine can convert to alanine, 

T cells typically use alanine for protein synthesis rather than glycolysis [194]. 

Tryptophan’s metabolic product, melatonin, can influence macrophage M1/M2 

polarization [195]. Additionally, melatonin regulates the activation and differentiation of 

T cells (Th17, Treg, and memory T cells) by activating calcineurin and the ERK1/2-

C/EBPα signaling pathways [196]. Gamma-aminobutyric acid promotes the 

differentiation of intestinal Th17 cells and the expression of IL-17 during E. coli infection 

[197]. These functions, along with the broader immunomodulatory roles of amino acids, 

have been extensively summarized in previous reviews [69, 198-203]. 

Challenges and practical considerations in pig farming 
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Despite the potential benefits of amino acid supplementation in improving immune 

function and growth performance in pigs, several challenges must be addressed for 

successful application in pig farming. Amino acid bioavailability is a key determinant of 

immune cell function and fate, as immune cells require optimal amino acid availability to 

support proliferation, cytokine production, and immune signaling pathways [204]. The 

absorption efficiency of amino acids depends on feed formulation, processing methods, 

and the presence of anti-nutritional factors. Arginine and glutamine play essential roles in 

immune regulation, supporting T cell activation and macrophage function, but their 

bioavailability is highly dependent on feed processing and dietary composition [205-

207]. Feed formulation influences amino acid digestibility through ingredient selection, 

balancing essential and non-essential amino acids to meet metabolic demands [208]. 

Processing methods, such as extrusion and pelleting, can enhance amino acid 

bioavailability by breaking down cell walls and denaturing anti-nutritional proteins, but 

excessive heat treatment may degrade heat-sensitive amino acids like lysine and 

methionine [209]. Anti-nutritional factors, such as tannins and phytates in plant-based 

feedstuffs, can inhibit amino acid absorption by forming complexes with proteins, 

reducing enzymatic hydrolysis and intestinal uptake [210]. Plant-derived protein sources 

contain fiber and phytates, which can lower amino acid digestibility and reduce their 

availability to immune cells, thereby impairing immune function [211]. Pigs (13-35kg) 

fed a low-protein diet (13.9% crude protein) also impair T cell activation and 

proliferation, suggesting that protein restriction can compromise immune resilience 

[212].  
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Amino acid metabolism also interacts with other nutrients, influencing immune 

homeostasis and inflammatory responses. Amino acid antagonism is a significant factor 

influencing nutrient bioavailability and immune regulation. For instance, excessive lysine 

intake can interfere with arginine absorption by competing for the same transporters, 

potentially reducing nitric oxide production and impairing macrophage-mediated immune 

responses [213]. Similarly, an imbalance in branched-chain amino acids (BCAAs), 

particularly excessive leucine, can suppress isoleucine and valine uptake. Valine 

deficiency can reduce lymphocyte proliferation and hinder the growth of lymphoid tissue 

[214]. Deficiencies in key vitamins, such as vitamin B6, which is involved in amino acid 

metabolism, can impair amino acid transamination processes, leading to reduced protein 

synthesis and weakened immune responses [215].  

Although amino acid fortification enhances immune resilience and growth 

performance in pigs, its cost-effectiveness remains a significant consideration. While 

synthetic amino acid supplements can improve the bioavailability of nutrients, they can 

increase feed costs, so the cost-effectiveness must be carefully evaluated [216]. Future 

research should focus on optimizing dietary formulations that balance immune support 

with economic feasibility to maximize health and productivity outcomes in pig farming. 

Addressing these challenges through optimized feed strategies and targeted research will 

improve the practical implementation of amino acid-based nutritional interventions in pig 

farming, ensuring that immune cell function and fate are optimally regulated to improve 

disease resistance and overall health outcomes. 

Gut microbiota, amino acid metabolism and immune cell function in pigs 
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Gut microbes not only utilize dietary amino acids for microbial protein synthesis but also 

influence host amino acid availability through protein degradation and nitrogen recycling 

[217, 218]. Specific commensal bacteria, such as Bacteroides, Clostridium, 

Lactobacillus, and Streptococcus, contribute to protein fermentation and enhance amino 

acid bioavailability by synthesizing essential amino acids that the host cannot produce 

[219]. In the small intestine, microbial protein synthesis is predominant, whereas in the 

large intestine, amino acid catabolism dominates, generating various metabolites such as 

ammonia, short-chain fatty acids and biogenic amines. These metabolites not only impact 

on intestinal health but also modulate host immune responses [220, 221].  

Tryptophan is metabolized by gut bacteria into indole derivatives, such as indole-3-

aldehyde, which activate the aryl hydrocarbon receptor in immune cells. Aryl 

hydrocarbon receptor activation induces IL-22 production, which enhances mucosal 

immunity and maintains gut homeostasis by promoting epithelial barrier integrity [222]. 

Additionally, Tryptophan metabolism leads to the formation of kynurenine, a metabolite 

that modulates immune responses by interacting with dendritic cells and macrophages, 

affecting cytokine secretion and T-cell differentiation [223]. Glutamine is a critical amino 

acid for immune cells and intestinal barrier function. Gut bacteria metabolize glutamine 

into glutamate, which influences the gut-microbiome-immune axis by supporting 

intestinal epithelial renewal and regulating immune responses [224]. Arginine 

metabolism by gut microbiota also plays a key role in immune modulation. Certain 

bacteria convert arginine into ornithine and nitric oxide, both of which contribute to 

macrophage activation and pathogen clearance. Nitric oxide, produced by inducible nitric 

oxide synthase, is essential for immune defense, as it enhances macrophage antimicrobial 
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activity and controls inflammatory responses [225]. However, when gut microbiota 

composition is imbalanced, amino acid metabolism can generate harmful metabolites that 

impair immune function. For example, the overgrowth of proteolytic bacteria, such as 

certain Clostridium species, can lead to excessive production of ammonia and hydrogen 

sulfide, which negatively affect intestinal epithelial integrity and immune homeostasis 

[220]. However, there is currently little understanding of the basic mechanisms of the 

interactions between amino acids, the microbiome and immune cells. Future research 

should clarify their relationship in order to improve pig health and productivity. 

Conclusion and perspectives 

In recent decades, the relationship between amino acid metabolism and T cell 

development and function has gained increasing attention. Although significant progress 

has been made, many fundamental issues remain unresolved. A deeper understanding is 

needed to elucidate how amino acid metabolism shapes the fate and function of immune 

cells across different mammalian species, particularly in livestock and poultry, where 

research remains relatively limited. While numerous studies have explored the impact of 

amino acids on T cell activity and differentiation, the role of amino acid metabolism in 

maintaining or reprogramming effector cells is still not fully understood. Some studies 

have confirmed that dietary amino acids must be digested in the intestine and then 

undergo intracellular transformations before the body can utilize them. Simply adding 

amino acids to the diet may not allow them to be directed to specific sites to exert their 

corresponding effects. Immune cells exhibit distinct responses to amino acid 

perturbations, emphasizing the need to decode metabolic requirements in various tissues 

and physiological contexts. Another major challenge is converting our knowledge of how 
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amino acids affect immune cell fate and function into precise and targeted therapies. 

Future studies targeting amino acid-specific signaling pathways in immune cells under 

different conditions will facilitate the development of targeted metabolic strategies for 

combating pathogens, tumors, and related diseases. 
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Figures and Figure legends

 

Figure 1. Mechanism of amino acid sensing by immune cells. When amino acid levels are 

low, uncharged tRNA activates GCN2, which interferes with the recruitment of mTORC1 

substrates and blocks protein synthesis. In contrast, when amino acid levels are sufficient, 

cytoplasmic amino acid sensors inhibit GATOR1 through GATOR2, ultimately activating 

mTORC1 and promoting protein synthesis. 
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Figure 2. Development of T cells. T cell development proceeds through a series of stages. 

DN1 cells can differentiate into B cells, myeloid cells, and innate T cells, while DN2b 

and DN3a cells can give rise to γδ T cells. At the DN3 stage, the pre-TCR complex-

formed by TCRβ, pTα, and CD3 molecules-promotes β selection and drives the transition 

from DN3 to DN4. Both the pre-TCR and Notch signals are crucial for β selection and 

for the shift from the DN to the DP stage. After positive selection in the thymic cortex 

and negative selection in the thymic medulla, DP cells eventually differentiate into CD4
+
 

T cells, CD8
+
 T cells, or iNKT cells. 
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Figure 3. Amino acid metabolism in activated T cell. Serine is required for the production 

of cytokines in activated T cells with the help of the key glycolytic enzyme PKM2. 

Although pyruvate can be used to make alanine, activated T cells reduce the synthesis of 

alanine from pyruvate in order to conserve pyruvate metabolism and convert it into 

acetyl-CoA for TCA cycle activity. Branched-chain amino acids (BCAAs) provide the 

TCA cycle with the intermediate product CoA. Glutamine and leucine also contribute to 

the TCA cycle via glutamate to α-ketoglutarate. 
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Figure 4. Sulfur-containing amino acids maintain redox status homeostasis in T cells. In 

T cells, methionine can be converted into cysteine. During this process, the intermediate 

S-adenosylmethionine donates methyl groups that modify immune effector proteins and 

nucleic acids, promoting cytokine gene expression in T cells and supporting innate and 

adaptive immune memory. Serine can also be transformed into cysteine, which 

contributes to the synthesis of the antioxidant glutathione and the formation of iron-sulfur 

(FeS) clusters. 
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