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ELECTROPHYSIOLOGY OF A LEAKY CABLE MODEL FOR
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Abstract

An analytical expression for the voltage response to current stimulation at relatively short
and long times is used to obtain estimates of the passive electrical constants of a neuron that
is electrotonically coupled at the soma and dendritic terminals to other neurons in a neural
network.

1. Introduction

There are various types of neurons in the central nervous system (including the brain)
that are electrotonically coupled through gap junctions (Spray and Dermietzel [17]).
If neurons are electrotonically coupled then it is more difficult to obtain their passive
electrical constants since current leaks through the gap-junctions. Earlier modelling
using simple 'lumped parameter' neurons has shown that the electrical constants of
these neurons were modified in the presence of electrotonic coupling ([3]). As a
result there needs to be a theoretical basis by which to interpret electrophysiological
experiments which measure membrane potential (that is, voltage) changes between
the exterior and interior of coupled neurons in a neural network.

A leaky cable model of a neuron represented by a one-dimensional uniform equiv-
alent cylinder coupled to a lumped (isopotential) soma, is developed in order to
incorporate the leakage of current in the dendrites and the soma, that occurs for elec-
trotonically (that is, electrically) coupled neurons. The novelty in the model is that a
leak resistance at both the soma (RL) and at the terminal-end of the equivalent cylinder
(/?c) is included, to represent the effects of somatic and dendritic coupling between
neurons respectively.

Cable models with leaky boundary conditions started with Rail [12] and Jack and
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FIGURE 1. A network of electronically coupled neurons each represented by an equivalent cylinder
for the dendritic tree (and axon), and a RC-circuit for the cell body (soma). Each neuron is coupled to
another neuron at the soma by a resistance {RL) and in the dendrites by a resistance

Redman [5], and continued with advances in new experimental techniques of recording
the voltage responses from single neurons ([14], [19]).

A mathematical model of a network of coupled neurons (shown in Figure 1) is based
on the assumption that the soma of each neuron is isopotential; that the neuronal
membrane is passive; that the dendritic and somatic membrane resistivity are both
equal in all neurons; that the cytoplasmic resistivity is constant in all the neurons; that
the axon and dendritic tree of each neuron can be reduced to an equivalent cylinder;
and that the somatic membrane resistivity of each neuron is equal.

Our main goal will be to determine the effect of electrotonic coupling on the passive
cable parameter estimates of single neurons using the leaky cable model approach of
Figure 1 as an approximation to the network of coupled neurons. The reader not
familiar with mathematical modelling of neurons may wish to consult [18] for an
introduction to the techniques, and [10] for a more recent overview of techniques,
methods and applications in neuroscience modeling.

2. Voltage response to be used at relatively short times

At relatively short times the current has not as yet 'seen' the terminal-end of the
axon anddendrite and thus the equivalent cylinder of the neuron is taken to be infinitely
long. This approach was advocated in single neuron cable modelling by Redman. The
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FIGURE 2. Electrophysiological experiment consisting of a pulse of current injected into the soma of
a single neuron and a measure of the voltage response (at early times) in the coupled neuron, recorded
in a system of two electronically coupled neurons. An emphasis on the somatic coupling between each
neuron is given, since the dendritic terminals are assumed to be at an infinite electronic distance from the
soma.

same assumption holds for the neighbouring neuron that is coupled via a gap-junction
at the cell body. Therefore since the voltage response to a current step applied at
the soma at early times is assumed to be influenced relatively little by the effects of
current 'reflecting' from the terminal-end of the equivalent cylinder, we may replace
the finite length of the equivalent cylinder shown in Figure 1 by an infinite equivalent
cylinder attached to a lumped-soma (RC-circuit), coupled to another neuron of the
same representation, as shown in Figure 2.

In the model depicted in Figure 2, the voltage in the neuron with the current step
injection (/0) is denoted by V, while the voltage response in the adjacent neuron is
denoted by U. Both neurons are assumed to have the same somatic resistance value
(/?*), and the resistivity of the dendrites in both neurons is assumed to be equal to the
somatic resistivity.

The aim will be to obtain an exact expression for the time course of V, that has only
the leakage resistance (RL) as the unknown parameter. By matching this theoretical
voltage response for different RL values to the actual experimental voltage response,
an estimate of RL is obtained.

The initial range of the different RL values to be selected could be determined
from a morphological estimate of RL under the assumption that it corresponds to the
resistance for current flow through the somatic gap-junction. Such a morphological
estimate of the junctional resistance between coupled neurons can be expressed by

RL ^ (rch/ech) [ W (echn) + 1/2] /N (2.1)

where N is the number of open-channels in the gap-junction, tch and ech are the length
and radius of a single channel or pore respectively, and rch is the resistivity of the
single channel or pore.
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Consider the following boundary-value problem depicting the voltage response of
a neuron to current injection at the soma:

VXx-V = rmV,, (2.2a)

(1 + R)V(O, t) + y Vx(0, t) + xm V,(0, t) = 1ORS + RU(0, t), (2.2b)

V(-oo, t) = 0, V(X, 0) = 0, (2.2c)

together with the following boundary-value problem depicting the voltage in the
coupled neuron:

Uxx-U = vmU,, (2.3a)

(1 + R)U(0, t) - yUx(0, t) + TmU,(0, t) = RV(0, t), (2.3b)

U(oo, 0 = 0, U(X,0)=0, (2.3c)

where X = x/X is the dimensionless position variable normalised in terms of the
length constant; t is the time; V = V(X, t) is the electrotonic potential in the activated
(injected) neuron, and U = U(X, t) is the electrotonic potential in the coupled neuron;
fm = RmCm = RsCs is the membrane time-constant; Io is the magnitude of the
applied current step; Rs is the somatic input resistance; y = RS/RDOO is the dendritic
to somatic conductance ratio for a semi-infinite equivalent cylinder; and R = RS/RL

is the ratio between the somatic and leakage input resistance. (Note that subscripts t
and X indicate partial derivatives with respect to these variables.)

The solution of the first boundary-value problem can be written in terms of the
Green's function G:

V(X, t) = IORS f G(X, t-n)dr) + R f U(0, r,)G(X, t-r,)dr) (2.4)
Jo Jo

where G* = Gexp(r/rm) satisfies

xmG* = Gxx, (2.5a)

RG*(0, t) + yGx(0, t) + rmG;(0, t) = S(t) exp(f/rm), (2.5b)

G*(-oo, t) = 0, G*(X, 0) = 0. (2.5c)

Define G*L(X, s) to be the Laplace transform of G*(X, t). Then the subsidiary equation
corresponding to the above boundary-value problem is

G * " - * r m G * = 0 , (2.6a)

to be solved with

RG*L(0, s) + yG*'(0, s) + srmG*L(0, s) = 1, (2.6b)
G* (-oo, s) = 0, (2.6c)
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where 5 is the Laplace transform variable and the prime denotes differentiation with
respect to X. The solution in the Laplace transform space is readily found to be

,2.7)L ' (R + y y/sxZ + sxm)'

The solution of the second boundary-value problem can be written in terms of
another Green's function H:

U(X, t) = R f V(0, ri)H(X, t-tfdr, (2.8)
Jo

where H* = H exp(r/rm) satisfies

rmH; = Hxx, (2.9a)

RH*(0, t) - yHx(0, t) + rm#;(0, t) = 5(r)exp(r/rm), (2.9b)

tf* (oo, f )=0, H*(X,0) = 0. (2.9c)

Define H[(X, s) to be the Laplace transform of H*(X, t). Then the subsidiary
equation corresponding to the above boundary-value problem is

HZ"-sTmHZ = 0, (2.10a)

to be solved with

RHZQO, s) - yHZ'(p, s) + srmH*L(0, s) = 1, (2.10b)

HZ(oo,s)=0, (2.10c)

where s is the Laplace transform variable and the prime denotes differentiation with
respect to X. Consequently the solution in the Laplace transform space is readily
found to be

HHX,s)= " " ' f ? ' • 0.10

Now taking the Laplace transform of the convolution integral between V and G we
have

VL(X, s) = IORSG*L(X, s + l/rm)/s + RUL(0, s)G*L(X, s + l/rm), (2.12)

where UL and VL represent the Laplace transforms of U and V respectively. Similarly,
by taking the Laplace transform of the convolution integral between U and H we have

UL(X, s) = RVL(0, s)H*L(X, s + l/rm), (2.13)
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and substituting (2.13) into (2.12) yields

Vt(0. s) = - , W W + l/O
{1 (
{ t (0, s + l/rm) G£ (0,5 + l/rm)}

But since G£(0, s + l/rm) = #2(0, s + l/rm) the above expression reduces to

vdQs) = /oM* + x ( ^ + l)'/2 + fa + D] (215)
s {[y (Tms + l)l/2 + ( + l)][2R + ( + l)l/2 + ( + l)]Y

The denominator of VL (0, 5) will be zero when s = 0,5 = —l/rm,s = [—\ + \y2+
{y(y2 - 8/?)1/2 - 2R]/rm, and s = [-1 + | y 2 - ^ ( y 2 - 8/?)'^2 - 2R]/tm. Hence,
by the use of the residue theorem from complex variable theory (see for example,
McLachlan [8]) it can readily be shown that V(0, t) is given by

ya\12

i? + ya2
/2 + a2) /f(a2) exp[-{l - a2)(t/Tm)]

) (2.16)

where ax = \y2 + \y(y2 - 8/?)1'2 - 2R, a2 = \y2 - \y{y2 - %R)l/2 - 2R, and

f(a) = [a2 + 2ya3/2 + (2R + y2)a + 2yRal/2]

+ (a - 1) [2a + 3ya1/2 + 2R + y2 + yRa~1/2] /xm.

It is not difficult to show that the time-course of the voltage response measured in
the coupled neuron U(X,t) satisfies

1/(0,0 =

(2.17)

Analytical solutions for the voltage time-course is more difficult to obtain when
both neurons are assumed to be biophysically non-identical. This is because it is
not clear when the denominator of VL(0, s) will be zero, apart from the obvious
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X=0 X=L
Rc

FIGURE 3. Electrophysiological experiment consisting of a pulse of current injected into the soma of
a single neuron and a measure of the voltage response recorded. The effects of current leakage due to
somatic and dendritic gap-junctions have been approximated with resistances RL and Rc respectively.

choice of 5 = 0 from which the residue theorem yields an expression that is time
independent and therefore not useful in the estimation of RL. However in a recent
series of papers by Major et al. [7], detailed analytical solutions for the voltage
time-course in a multiple equivalent cylinder model of a single neuron, were found.
Each cylinder corresponded to a biophysically non-identical branch segment of the
neuron's dendritic tree. Thus it may be possible to extend this type of analysis to the
coupled neuron problem (J. D. Evans, personal communication).

3. Voltage response to be used at relatively long times

The voltage response to a current step applied at the soma of the neuron represented
by the leaky cable model (see Figure 3) can be depicted by the following initial-
boundary value problem:

Vxx - V = VT (0 < X < L, T > 0),

V(X,0) = 0,

(3.1a)

(3.1b)

(3.1c)

(3.Id)

where L is the electrotonic length of the equivalent cylinder, T = t/rm is the nor-
malised time, and /? = RDo0/Rc is the ratio of the leakage conductance at the terminal
end of the equivalent cylinder to the input conductance of an infinite equivalent cylin-
der.

The solution of the above boundary-value problem can be found by the classical
separation of variables method and is similar to the solution obtained by Poznanski [9]
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and Redman el al. [14], excepting that the resistivity of the dendrites is assumed to
be equal to the somatic resistivity:

V(X, T) = H(X) - J^ Bncf>n (X; £,) exp [- (l + |n
2) (3.2)

n=\

where the steady-state component satisfies

- 1OKOKS

the eigenfunctions are given by

with the eigenvalues £„(« = 1,2,
equation

R) + y]sinh(L) J '

]cos(l;nX) + sm($nX), | n ^ 0 (3.4)

) representing the roots of the transcendental

and the Fourier coefficients are given by

where

\fr2 = cosh(L) - cos (^L) ,

^ 3 = ?„ cosh(L) - £„ cos (^nL) + /8KB sinh(L) - sin (fB

^ 4 = cosh(L) + /J sinh(L),

i/r5 = cosh(L) [i + R + yfi] + sinh(L) [^ + ^ R + y],

sin(2j.Z.) , L

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

< 3 1 3 )

Solution (3.2) consists of an infinite summation of exponential terms of which
the largest time-constant of exponential decay is smaller than the membrane time-
constant (rm) due to the presence of current leakage through the gap-junction. The
solution exhibits characteristics of the somatic-shunt cable model (cf. [9]). Strictly
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speaking, RL could also reflect the leakage of current caused by the sharp electrode
penetrating the somatic membrane, which may in fact be larger than the leak associated
with the gap-junction. To overcome this caveat, the somatic-shunt parameter should
be incorporated into the equations, or alternatively, if tighter seal patch electrodes
are used, then an access resistance of the pipette under the patch-clamp recording
technique should be included in the model [6]. A theory has recently been developed
for neurons with dendro-dendritic gap-junctions under the patch-clamp recording
technique [10].

4. Estimating the passive electrical constants

Apart from the classical work of Jack and Redman [5] there appears to be no
quantitative method of estimating parameters for cable models of neurons with leaky
terminations.

The leaky cable model shown in Figure 3 is characterized by the following param-
eters:

(i) input resistance at the soma (RN),
(ii) input leak resistance at the soma (RL),

(iii) membrane time-constant (rm),
(iv) input coupling resistance (Re),
(v) equivalent electrotonic length (L), and

(vi) dendritic to somatic input conductance (p).

The input resistance (RN) is measured for intrasomatic penetrations and can be
written as a combination of the somatic, dendritic and leakage resistances in parallel,
that is, \/RN = l/Rs + l/RD + I/RL- The input resistance of the cell at the
impalement site (assumed to be the soma) is given by the experimentally measured
input resistance and is expressed by the relation

RN =
 R±MR . (4.1)

RR + R(R + R)

For the present purpose the specific membrane resistivity (Rm) and hence the mem-
brane time-constant (rm) can be obtained from the experimental values of RN using
the following approximation to the above formula:

+ RL(RS +

where RDoo = (;^_)(7?,/?m)l/2 is the input resistance of a semi-infinite equivalent
cylinder ([4]), /?, is the resistivity of the cytoplasm (interior fluid), and D is the
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diameter of the equivalent cylinder. The above relation provides an estimate of Rm

from the solution of a quadratic equation in RlJ2,

and hence the corresponding values for RDoo and Rs may be obtained:

( ?j?l/2\

Ife) "•' <44)

and

where Rs is the input resistance of the soma and dso^ is the diameter of the soma.
It should be noted that all the above parameters (Rm, Rs, RDOO) are dependent

on the unknown leakage resistance at the soma (RL) which can be found from the
experimentally observed voltage transients at relatively short times (see Section 2). For
example, using the determined values of Rs and /?Doo, the relations (2.16) and (2.17)
can be used to determine the leakage resistance (RL) by observing the magnitude of
the somatic potential and scaling the response in terms of the input current magnitude

(/o).
The cytoplasmic resistivity (/?,-) is a function of internal electrolyte composition

and in most instances is difficult to estimate (see, for example, [16]). The value may
be increased by the presence of a large concentration of organic solutes and by binding
of some of the intracellular organic anions.

This method of estimating the specific membrane resistivity from the input resis-
tance of a neuron was first developed for the electrical constants of the motoneuron
membrane by Coombs et al. [2].

It should be noted that the standard procedure of estimating the membrane time-
constant from the slope of the semi-logarithmic plot of the voltage transients at the
soma, cannot apply if the end-termination of the equivalent cylinder is not sealed (see
[12]) or if the cable length exceeds two length-constants (see [3]). Thus, if the specific
capacitance of the membrane (Cm) is a biological constant taken to equal 1/n.F/cm2

[1], then the membrane time-constant (xm) can be found from rm = RmCm (see [13]).
If the neuron showed evidence of membrane folding or any other abnormal membrane
morphology, this would justify assuming the capacitance was other than l/xF/cm2.

The decay of voltage response from the steady-state value at the soma has been
shown in Section 3 to be governed by an infinite series of exponential terms:

V(T) = C, exp(-»/T,) + C2 exp(-r/r2) + C3 exp(-r/r3) + . . . , (4.6)
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where C, = B,yf,/(i? - §,2), C2 = B2y$2/(R - # ) , C3 = B3y$3/(R - g )
are constants representing each component's amplitude (independent of time), and
Ti, r2, T3) . . . represent time-constants whose relation to the membrane time-constant
(rm) can be shown to be

£2). (4.7)

On plotting the experimentally derived voltage transients against time on a logarithmic
scale and fitting a regression line to averaged voltage records, a straight line would
indicate that the charging curve is well described by a single exponential. The slope of
this line yields an estimate of the time-constant (ij) that is shorter than the membrane
time-constant (rm) and is expressed by the relation

£2). (4.8)

The electrotonic length parameter (L) can now be estimated from the transcendental
equation for the eigenvalues using the above relation (since the ratio (rm/x\) is known).
Unfortunately the exact value of the electrotonic length (L) can only be found if the
coupling resistance (/?) is known. Hence, we follow the procedure adapted by Jack
and Redman [5] and obtain an estimate of the electrotonic length parameter (L*) from
the assumption that the end-termination is short-circuited, and by putting /J = 0 in the
transcendental equation for the eigenvalues to yield

V = (1/$,) tan"1 {(R -1 2 ) / (/£,)}. (4.9)

The coupling resistance (/?c) can now be determined from (3.5) with the electro-
tonic length parameter (L*) used as an initial approximation for the electrotonic length
parameter of the neuron (L):

In a recursive manner the electrotonic length parameter (L) can be estimated more
accurately from (3.5) given that the value of fi = RDoo/Rc is known, and at the same
time a better estimate of Rc can be found by replacing L* with L.

Finally, the dendritic to somatic conductance ratio parameter (p = RS/RD) can be
obtained from the following relation for RD (c/. [14]):

„ „ / [ l+exp( -2L)J + / ? [ l - exp ( -2L) ] \
Ro - RDOO {{l _ e x p ( _ 2 L ) ] fi[l ( 2 L ) ] ; •
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5. Summary and conclusions

In this paper a theoretical analysis was presented to interpret cable parameter
estimates for neurons that are electrotonically coupled. It provides the experimenter
with a way of interpreting the electrophysiological data that is obtained in situations
when the neuron in question is known to be coupled to other neurons. The present
theory can also be extended to incorporate neurons with dendritic trees that are not of
the equivalent cylinder class (see [11]). Of course, with any theory, its usefulness lies
in its correct validation of the experimental data.

The effect of electrotonic coupling on passive membrane parameters (RN, rm, L)
was recently examined for immature rat neocortical-pyramidal neurons by Rorig et
al. [15]. It was shown that the influence of gap-junction coupling decreases the
input resistance (R\), decreases the membrane time-constant (rm), and increases the
electrotonic length (L). Unfortunately, Rorig et al. [15] used a simple expression
for L, originally derived by Rail [12] which applies only to uncoupled neurons with
sealed-ends. However, the influence of gap-junction coupling on L can be shown
from the theory presented herein to produce a less compact neuron due to an increase
of L for coupled neurons, in agreement with the experimental results of [15].

Acknowledgement

The author was supported by a Monbusho research fellowship, and also wishes to
thank Dr J. D.Evans for reading the manuscript and Prof. J. Gani for his encouragement.

References

[1] K. S. Cole, Membranes, ions and impulses, (Univ. of California Press, Berkeley, 1968).
[2] J. S. Coombs, D. R. Curtis and J. C. Eccles, "The electrical constants of the motoneurone mem-

brane", / Physiol. (Lond.) 145 (1959) 505-528.
[3] M. A. B. Deakin, R. A. R. Bywater and S. J. Redman, "Determination of time-constants in cables

of finite length", Bull. Math. Biol. 54(1992) 673-686.
[4] J. J. B. Jack, D. Noble and R. W. Tsien, Electric current flow in excitable cells (Clarendon Press,

Oxford, 1975).
[5] J. J. B. Jack and S. J. Redman, "The propagation of transient potentials in some linear cable

structures", J. Physiol. (Lond.) 215 (1971) 283-320.
[6] M. B. Jackson, "Cable analysis with the whole-cell patch clamp: theory and experiment", Biophys.

7.61(1992)756-766.
[7] G. Major, J. D. Evans and J. J. B. Jack, "Solutions for transients in arbitrarily branching cables",

Biophys. J. 65 (1993) 423^191.
[8] N. W. McMachlan, Complex variable theory and transform calculus (2nd ed.) (Cambridge Uni-

versity Press, Cambridge, 1963).

https://doi.org/10.1017/S0334270000012364 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012364


[13] Electrophysiology of a leaky cable model for coupled neurons 71

[9] R. R. Poznanski, 'Transient response in a somatic shunt cable model for synaptic input activated
at the terminal", J. Theoret. Biol. 127 (1987) 31-50.

[10] R. R. Poznanski, Modeling in the neurosciences: from ionic channels to neural networks (Harwood
Academic Publishers, New York, 1998).

[11] R. R. Poznanski, W. G. Gibson and M. R. Bennett, "Electrotonic coupling between two CA3
hippocampal pyramidal neurons: a distributed cable model with somatic gap-junction", Bull.
Math. Biol. 57 (1995) 865-881.

[12] W. Rail, 'Time constants and electrotonic length of membrane cylinders and neurons", Biophys.
7.9(1969)1483-1508.

[13] W. Rail, "Core conductor theory and cable properties of neurons", in Handbook of physiology, the
nervous system, (ed. I. Kandal), (MD: American Physiological Society, Bethesda, 1977) 39-97.

[14] S. J. Redman, E. M. McLachlan, and G. D. S. Hirst, "Nonuniform passive membrane properties
of rat lumbar sympathetic ganglion cells", J. Neurophysiol. 57 (1987) 633-644.

[15] B. Rorig, G. Klausa and B. Sutor, "Intracellular acidification reduced gap junction coupling between
immature rat neocortical pyramidal neurones", J. Physiol. (Lond.) 490 (1996) 31-49.

[16] O. F. Schanne, "Measurement of cytoplasmic resistivity by means of the glass microelectrode", in
Glass Microelectrodes (eds. M. Lavallee, O. F. Schanne and N. C. Herbert) (John Wiley and Sons,
New York, 1969)299-321.

[17] D. C. Spray and R. Dermietzel, Gap junctions in the nervous system (R. G. Landes Publisher,
Austin, 1996).

[18] H. C. Tuckwell, Introduction to theoretical neurobiology. Vol. 1, linear cable theory and dendritic
structure (Cambridge University Press, New York, 1988).

[19] R. L.Winslow and R. F. Miller, "A theoretical and experimental study of the effects of non-uniform
membrane resistance on the shape of single-cell charging curves", Neurosci. 29 (1989) 761-771.

https://doi.org/10.1017/S0334270000012364 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012364

