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Abstract

The coronavirus disease 2019 (COVID-19), with new variants, continues to be a constant pan-
demic threat that is generating socio-economic and health issues in manifold countries. The
principal goal of this study is to develop a machine learning experiment to assess the effects of
vaccination on the fatality rate of the COVID-19 pandemic. Data from 192 countries are ana-
lysed to explain the phenomena under study. This new algorithm selected two targets: the
number of deaths and the fatality rate. Results suggest that, based on the respective vaccination
plan, the turnout in the participation in the vaccination campaign, and the doses adminis-
tered, countries under study suddenly have a reduction in the fatality rate of COVID-19 pre-
cisely at the point where the cut effect is generated in the neural network. This result is
significant for the international scientific community. It would demonstrate the effective
impact of the vaccination campaign on the fatality rate of COVID-19, whatever the country
considered. In fact, once the vaccination has started (for vaccines that require a booster, we
refer to at least the first dose), the antibody response of people seems to prevent the probabil-
ity of death related to COVID-19. In short, at a certain point, the fatality rate collapses with
increasing doses administered. All these results here can help decisions of policymakers to
prepare optimal strategies, based on effective vaccination plans, to lessen the negative effects
of the COVID-19 pandemic crisis in socioeconomic and health systems.

Introduction

The coronavirus disease 2019 (COVID-19) is an infectious illness caused by the novel severe
acute respiratory syndrome coronavirus 2, which appeared in late 2019 [1–4]. COVID-19 is
still circulating in 2022 with mutations of the novel coronavirus that generate new variants
of concern1 driving continuous infections and deaths in manifold countries [5–7]. Seligman
et al. [8] show some characteristics of people that are significantly associated with
COVID-19 mortality, such as mean age of 71.6 years, non-white race/ethnicity, income
below the median, and less than a high school level of education. High numbers of
COVID-19-related infected individuals and deaths worldwide have supported the develop-
ment of different types of vaccines from 2020 based on viral vector, protein subunit and
nucleic acid [9–12]. In the presence of the COVID-19 pandemic crisis, the investigation of vac-
cination plans is a crucial aspect to determine how the novel infectious disease can be con-
trolled and/or eradicated in the population [13]. Vaccination has the potential effect to
reduce the diffusion of COVID-19, relaxing non-pharmaceutical measures, and maintain
low basic reproduction number; nevertheless, an important point to clarify is the optimal strat-
egy of administering the vaccines during the pandemic evolution wave, to reduce negative
effects in society [14]. Akamatsu et al. [15] argue that the vital role of governments is directed
to implement an efficient campaign of vaccination to substantially reduce infections and mor-
tality in society and avoid the collapse of the healthcare system. Aldila et al. [13] maintain that
higher levels of vaccination rate can eradicate COVID-19 in the population by approaching
herd immunity to protect vulnerable individuals [16–19]. Rosen et al. [20] describe socio-
economic and organisational factors associated with the success of the vaccination campaign
in Israel as well as they show some aspects of misinformation that can reduce the effectiveness
of a fruitful vaccination plan over time [21]. In this context, a vital problem in the current
COVID-19 pandemic crisis is the effective level of vaccination that supports a drastic reduction
of infected individuals and deaths.

The present study confronts this problem by developing a machine learning (ML) algo-
rithm to empirically assess the effects of vaccination on deaths and the fatality rate of the
COVID-19 pandemic. The application of ML approaches can provide a new perspective to
support appropriate policy responses of policymakers directed contrast the outbreaks of
new variants of COVID-19 and similar infectious diseases in the future [22–29].

1SARS-CoV-2 variants of concern until July 2022: Omicron BA.1, BA.2, BA.4, and BA.5 [59].
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The goal of this paper is to show the role of ML experiments as
one of the significant methods in the research arena for predicting
and assessing the effects of vaccination on health and improving
crisis management of the COVID-19 pandemic. The results can
suggest best practices of optimisation in the vaccination strategy
to guide effective and timely policy responses for combatting
the novel virus and constraining the negative effects of the
COVID-19 pandemic crisis and future epidemics of similar infec-
tious diseases in society. The findings of this study could be also
of benefit to countries as they grapple to plan their vaccine plans
for the COVID-19 pandemic crisis to minimise the negative
effects of the pandemic crisis on the environment and socio-
economic systems. This study is part of a large body of research
projects directed to explain the drivers of transmission dynamics
of COVID-19 and design effective policy responses to cope with
and/or prevent pandemic threats [30–36].

The rest of the paper is organised as follows: Section ‘Literature
review on artificial intelligence (AI) studies on COVID-19 vac-
cines effects’ presents the literature on studies that employed AI
techniques to explore the effects of COVID-19 vaccines. In
Section ‘Materials and methods’ we describe the methodologies
applied and the dataset. Section ‘Empirical results’ presents the
empirical findings. Finally, Section ‘Conclusions and policy impli-
cations’ concludes and gives the limitations of the study together
with some policy recommendations.

Literature review on artificial intelligence studies on
COVID-19 vaccines effects

Several studies analysed the effects of vaccination campaigns on
COVID-19 diffusion through AI approaches.

Several papers have been devoted in the more recent years to
provide surveys on literature reviews or systematic reviews regard-
ing the COVID-19 pandemic. Abd-Alrazaq et al. [37] elaborated
an extensive bibliometric analysis to offer a comprehensive over-
view of the literature on COVID-19. Lv et al. [38] showed an
extensive survey on the application of AI and ML to defeat the
COVID-19 pandemic. Wang et al. [39] performed a systematic
review of the application of AI techniques related to
COVID-19. The results showed that AI obtained high perform-
ance in diagnosis, prognosis evaluation, epidemic prediction
and drug discovery for the virus. De Felice and Polimeni [40]
conducted a bibliometric analysis using an ML bibliometric meth-
odology. Zyoud and Al-Jabi [41] run a bibliometric analysis to get
a plausible scenario of the COVID-19 pandemic crisis.

Lincoln et al. [42] investigated the willingness to get a vaccine
over a sample of five advanced countries using an ML algorithm.
Vaccination conspiracy belief was found to represent the most
relevant predictor.

Many AI applications analysed the public sentiments towards
vaccines using social media data. Xue et al. [43] analysed 4 million
Twitter messages regarding the COVID-19 pandemic. The Latent
Dirichlet Allocation (LDA) findings revealed the anticipation that
measures can be taken as the dominant sentiment for the virus
spread. Liew and Lee [44] used social media data to understand
public sentiments about COVID-19 vaccines through an unsuper-
vised ML approach (structural topic modelling). They found that
tweets with negative feelings were about emotional reactions. Lyu
et al. [45] identified the main topics present in the public discus-
sion of the COVID-19 vaccines on social media by applying an
LDA for topic modelling. The emotion analysis showed the
main emotion was trust, followed by anticipation, fear and

sadness. Kwok et al. [46] built an LDA topic model to reveal
topics and sentiments on COVID-19 vaccination on Twitter in
Australia. Three topics emerge: attitudes toward COVID-19 and
its vaccination; advocating infection control measures against
COVID-19; misconceptions and complaints about COVID-19
control. Lian et al. [47] developed an ML and Natural Language
Processing (NLP) approach to discover COVID-19 vaccine
adverse events using data from Twitter. The results show that
the four most populous states in the US (California, Texas,
Florida and New York) recorded the most discussions on
Twitter, highlighting a strong correlation between Twitter discus-
sions and vaccination campaigns.

A different strand of literature used AI approaches to inspect
the effect of contact tracing apps. Cresswell et al. [48] explored
public perceptions of COVID-19 contact tracing apps in the UK
using a deep learning (DL) approach, revealing 76% positive sen-
timents. Hussain et al. [49] analysed public sentiments on social
media towards COVID-19 vaccines in the UK and the US by
applying NLP and DL-based techniques. The results show a
majority of the overall averaged positive sentiments in both coun-
tries. Weiß et al. [50] developed an item set to monitor nationally
issued COVID-19 contact tracing apps using an Open-Source
Intelligence approach. Empirical findings highlighted differences
among the countries in the sample.

Bagabir et al. [51] tried to highlight the advantages of AI appli-
cations to identify the genomic sequences as well as the develop-
ment of drugs and vaccines for COVID-19. Monteleone et al. [52]
investigated the impact of AI on drug repurposing of therapies for
the treatment of COVID-19.

Materials and methods

Source and sample

The sample of this study is based on N = 192 countries worldwide.
The period under study is from March to May 2021, using data on
vaccines, confirmed cases, and the fatality rate of COVID-19. The
list of countries under study is in the Appendix.

Measures
– Doses of vaccines administered × 100 inhabitants on 15 March

2021 with N = 114 countries; on 14 April 2021 with N = 154
countries and on 26 April 2021 with N = 190 countries. The
number of samples tends to increase over time with the diffu-
sion of vaccines across countries worldwide. Doses of vaccines
refer to the total number of vaccine doses, considering that an
additional dose may be obtained from each vial (e.g. six
doses for Pfizer BioNTech® Comirnaty), whereas the number
of doses administered refers to any individual receiving any
dose of the vaccine [53, 54]. The data here considers all
types of COVID-19 vaccines used in different countries, i.e.
vaccines by Johnson & Johnson, Oxford/AstraZeneca,
Pfizer/BioNTech, Sinopharm/Beijing, Sinovac, Sputnik V
and Moderna [55]. Of course, every country has been using
a different combination of these COVID-19 vaccines to
protect the population [56–58]. Source of data: Our World
in Data [59].

– Number of COVID-19 infected individuals (%) is measured
with confirmed cases of COVID-19 divided by the population
of countries under study on 20 March 2021 (N = 192 coun-
tries), 25 April 2021 (N = 192) and 19 May 2021 (N = 216
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countries). Source of data: Johns Hopkins Center for System
Science and Engineering [5].

– Number of COVID-19 deaths is measured with case fatality rate
(%) given by deaths on 25 April 2021 divided by the total
infected individuals in each country. Source of data: Johns
Hopkins Center for System Science and Engineering [5].

Data analysis procedure

Once we have collected the data and postulated it according to a
rigid regime consistent with the ML hypotheses framework, we
search for the best algorithm to optimise the dataset. The data
computerisation process aims to train the machine to process
results without any further intervention by the operator. In
other words, the initial computer programming instructions are
only necessary for it to carry out an autonomous but at the
same time specific behaviour in the processing of data and results.
Among the numerous approaches that an ML process can use, we
have chosen to use the Artificial Neural Networks (ANNs). The
empirical analyses are conducted in Oryx, and for the analysis
of the neural network (NN) AD-Designer is used. The choice
to use an NN process coincides with the assumption of discrim-
ination. In general, we can say that a discriminant function is a
function that receives the input data as input and whose output
represents the classification of such data. Furthermore, the dis-
criminant function can be generalised by transforming the result
through a non-linear function called the activation function.

So, our experiment began with the activation function. It is
responsible for updating the status of the i-th neuron as it transi-
tions from one moment to the next:

si(t) � si(t + 1) (1)

Thus, the stimulation input of the neuron i of the σ-layer with
respect to our n-layer feed-forward network was given by the
potential Ps

i :

Ps
i =

∑i

j

[wijs
s−1
j (t)− ui], with s = 2, . . . , n (2)

The threshold θi has been dropped, while an emulated input
sk = 1 is added, to which we have assigned the relative connection
weight:

wik = −ui � Ps
i =

∑i

j

[wijs
s−1
j (t)−], with s = 2, . . . , n

(3)

The subsequent state of the neuron i, si(t + 1), is computed by
an appropriate function of the potential Pi, called the activation or
transfer function:

ssi = f (Ps
i ) (4)

The function f can take various forms, but the one used here is
the hyperbolic function of the type: sine, cosine and secant.

Then, the training phase is activated. In the training phase, the
NN starts from an initial state characterised by the assignment of
arbitrary values for the synaptic weights. It dynamically evolves
towards a final equilibrium state corresponding to the learning

of the problem in question. In the context of the connectionist
paradigm, learning assumes a fundamental importance: it is gen-
erally not possible to fix in advance the weights of the connections
between neurons, depending on the task that the NN has to per-
form. These weights must be learned and the NN must behave like
an adaptive system. The learning phase is very long. It requires the
presence of a set of input vector values with known output (super-
vised training). This dataset forms the set of examples (training set)
that the NN must learn and emulate. The adaptation of the weights
of the links was done by using iterative procedures; here retroactive
procedures are chosen. They consist in comparing the values com-
puted by the network with those to be emulated. Then, the weights
of the connections are modified to minimise the difference in this
comparison. This procedure is repeated for each example, i.e. for
each vector of the training set. For the NN to reach its final struc-
ture, a single training cycle is not sufficient: many iterations are
needed for this experiment to reach a satisfactory approximation.
Our algorithm for the backpropagation of faults finds a place in
numerous applications due to its generalisation ability. However,
it has the limitation that it is very slow in the learning process. It
requires many cycles before it reaches a sufficiently small global
error. However, we have accelerated the algorithm with the follow-
ing modification of the weight update law:

wij(t + 1) = wij(t)− Dwij + b(wij(t)− wij(t − 1)) (5)

The error function obtained is considered as a function of the
energy of the system. The state of minimum energy corresponds
to the equilibrium state of the same. The error function, when
the transfer (or activation) function is linear, is represented by a
hyper paraboloidal surface with an absolute minimum. Learning
corresponds to reaching the configuration with minimum energy
and is guaranteed since the hyper paraboloid has only an absolute
minimum. When the activation function is non-linear but mono-
tonic, like the sigmoid function, it is represented by a deformed
hyper paraboloid characterised by the presence of relative
minima. Thus, once the best estimation model is defined and
its activation function is specified, we can develop a prediction
process capable of estimating the number of deaths and the
mortality rate with respect to a set of inputs attributable to
seven variables: Total Cases, Cases/Population, Vaccine Dose
(April), Vaccine Dose per 100 Population (April), Vaccine
Dose (15–21 March), Vaccine Dose per 100 Population (15–
21 March), Total Vaccination (15–21 March). Since the
algorithm needs to read a large dataset with numerous observa-
tions, we extended the dataset using various mathematical
transformations. In particular, for each variable, we created its
logarithm and the first difference transforms. We then trained
the machine to generate an NN based on a combination of
6 nodes distributed according to the following scheme:
12-10-7-5-7 and 2 output layers. Therefore, the neural series
analysis process is defined through the following scenario:
Scaling Layer methods: Mean Standard Deviation; Unscaling
layer: Minimum-Maximum; Bounding layer: no apply bounding
layer; Maximum iterations: 100 000; Maximum time (hh: mm):
01:00; Maximum failures: 1.

Empirical results

After demonstrating the mathematical results of the newly con-
structed algorithm, in this section we show the results obtained
with the NN. The dataset includes n + 1 countries (i.e. 192)
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distributed according to the seven variables (plus their mathem-
atical transformations): The architecture of the derived NN is
shown in Figure 1. We can see that the NN is of multivariate
type. Two targets attributable to the variables deaths (April)
and mortality rate (April) were isolated.

Now, we analyse the ANNs results. In total, the experiment
consists of 25 inputs and 2 targets (Fig. 2).

Through the pie chart in Figure 3, we can observe in detail the
use of all instances in the dataset.

The total number of instances is 192. The number of training
instances is 116 (60.4%), the number of selection instances is 38
(19.8%), the number of testing instances is 38 (19.8%), and the
number of unused instances is 0 (0%). These results can be
explained as follows: the training instances designed the best pro-
cess for the neural algorithm. It has a design accepted 60 times
out of 100 and its value is higher than another algorithm (selec-
tion instance) and the same value as the testing instance.

Before analysing the results obtained on the target variables,
we observe the behaviour of the data within our NN structure.
We interrogate the algorithm to illustrate how the real signals
among the numerous nodes are compatible with the predicted
ones. The underlying hypothesis is that the NN prediction process
coherently reflects the environment and thus the reality of the
data with respect to an unsupervised approach. The results are
shown in Figure 4.

The algorithm starts from a signal optimisation process that
one can imagine coinciding with a dated time 1. Subsequently,

as the signal (and therefore the data distribution) is different
from the respective weights between the nodes, the algorithm
begins to choose the best signal optimisation process. This proced-
ure is an automatic learning process resulting from 1796 strings of
commands that leave the machine in a situation of quasi-controlled
autonomy. Therefore, the figures named with numbers from 2 to 4
result from the signal optimisation process. In fact, we can observe
how at time 4 (top left panel) the predicted data coincide perfectly
with the predicted ones. The methodological summary of graphs 1–
4 is represented in the last figure below. Thus, it is easy to see how
the NN model can perfectly predict data coming from the real
world. Once we have observed that our NN is able to generate
highly reliable predictive values, we estimate which input might
explain the desired targets. To this end, according to Mele et al.
[4], we use the ‘Plot Directional Output’ function. In other words,
we implement the new algorithm through what is commonly called

Fig. 1. Constructed ANN.
Source: our elaborations in Oryx.

Fig. 2. Variables bars chart.
Source: our elaborations in Oryx.
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the ‘cut effect’ of the NN. Hence, the following commands into the
algorithm have been introduced:

Core commands:

subplot (x,y,z)

hold on

plot (data1(1, f:f + length));

plot (data2(1, f:f + length));

plot (data3(1, f:f + length));

plot (data4(1, f:f + length));

plot (data4 + n(1, f:f + length));

hold off

%%computation

angle(2, f: f + length), detal (3, f:f + length)….frequency);

f2 )fft (sig1);

f3 )fft (sig2);

fn )fft (sig n);

[‥, p1] = max(abs(f1)

[‥, p2] = max(abs(f2)

[‥, p3] = max(abs(f3)

bearing = ata((t3-t2)

end

The results of the ‘cut effect’ analysis in the NN are illustrated in
Figure 5. In general, the ‘Plot Directional Output’ function analyses
numerous combinations of inputs on the outputs, automatically
choosing the one that can influence the most network signal process.

Figure 5 shows the vital result of the experiment here. The cut-
off signal in the transmission of the nodes generated the following
propagation: from the input ‘D.Total Vaccinated 15 March 21’ to
the target ‘Fatality Rate April’ it has been identified at point 12.8
regarding the ordinate y-axis (target) and level 26079511.3 con-
cerning the abscissa x-axis (input). This result requires an inter-
pretation of the data that has been cut during the signal
propagation. In particular, considering 192 countries under
study here, the respective vaccination plan, the turnout in the par-
ticipation in the vaccination campaign, and the doses

Fig. 3. Instances pie chart.
Source: our elaborations in Oryx.

Fig. 4. Fit model process.
Source: our elaborations in Oryx.

Fig. 5. ‘Cut Effect’ based on a new ML algorithm.
Source: our elaborations in Oryx and AD-Designer 2021.
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administered, these countries suddenly saw a reduction in the
Case Fatality Rate of COVID-19 precisely at the point where
the cut effect was generated in our NN.

This result is significant for the international scientific com-
munity. It would demonstrate the effective impact of the vaccin-
ation campaign on the Case Fatality Rate from COVID-19,
whatever the country considered. Indeed, once the vaccination
has started (for vaccines that require a booster, we refer to at
least the first dose) the antibody response seems to prevent the
probability of death from COVID-19. The graph of the cut effect
is clear: at a certain point, the Case Fatality Rate collapses with
increasing doses administered. To be able to understand the
delay effect in the activation of neutralizing antibodies (14 days
of the activation of IgG antibodies), we have used a signal ampli-
fication process (Fig. 6).

According to the Qiagen experiment (Valencia 2007) and the
Siemens approach (Tarrytown 2006), our algorithm simulates the
signal amplification process used in virology. This technique was
introduced to overcome the limitation of polymerase chain reac-
tion tests. However, unlike the signal test in virology, since we did
not use the enzyme rotation techniques, we simulated that the
neural weights can be amplified in n + 1 cycles, to make the
underlying factors more visible.

It was built through a new algorithm implementation that gen-
erated the cutting effect. In other words, through this analysis, we
have interrogated the machine to illustrate time delays in the
propagation of the signal before the algorithm detects the cut
effect. Thus, with this methodology, we have created a hypothet-
ical premise to grasp the 14 days of delay necessary for the human
body to produce immunity. The result is really interesting, as we
can see that the signal undergoes a significant amplification even
before the cut relative to Figure 5. Therefore, this observation allows
us to limit the gap between those who start vaccination (but imme-
diately produce the IgM) and colours who within and beyond 14
days acquire protective immunity from COVID-19.

Finally, to check for errors in the prediction process, we test
our model through two different tools: the Conjugate gradient
errors history and the Quasi-Newton method (Fig. 7).

Both methods follow the belief that the best training strategy is
the one that allows the best possible loss of information as inter-
actions or epochs grow. The conjugate gradient is used for train-
ing. In this algorithm, the search is performed with conjugate
directions, which generally leads to faster convergence than the
gradient descent directions. The initial value of the training

error (orange line) is 49.6111, while the final value after 569 itera-
tions is 0.279563. The initial value of the selection error (blue
line) is 4.2048 and the final value after 5 ITE is 0.000243. The
analysis of this test confirms that the error in our prediction the
error decreases as the iterations increase, and this result confirms
the goodness of the selected model.

Instead, the Quasi-Newton method computes an approxima-
tion to the inverse Hessian at each iteration of the algorithm
using only the gradient information. The blue line represents
the training error, and the orange line represents the selection
error. The initial value of the training error is 0.065332 and the
final value after 1000 epochs is 0.0005. The initial value of the
selection error is 112.0454 and the final value after 1000 epochs
is 0.0004. This analysis, which confirms the previous one, also
shows that the whole selection and training process of our NN
has almost no error as the epoch increases.

Conclusions and policy implications

COVID-19 and future epidemics of novel influenza viruses pose
more and more a serious threat to the security and public health
of nations [1, 6, 30, 31, 32, 34, 35]. The global response to the
COVID-19 pandemic has pushed the research for detecting fac-
tors and aspects associated with a rapid pandemic response in
several areas, including vaccine development, distribution, alloca-
tion and administration. This study suggests efficient strategies of
vaccination for reducing the impact of the novel viral agent that
might not disappear in the short-term because of new variants
[60]. We demonstrated, through a new ML algorithm, that the
vaccination campaign significantly reduced the negative effects of
the COVID-19 pandemic, with a sharp decrease in the fatality
rate. In particular, results suggest that, based on the respective vac-
cination plan, the turnout in the participation in the vaccination
campaign, and the doses administered, countries under study sud-
denly have a reduction in the fatality rate of COVID-19 precisely at
the point where the cut effect is generated in the NN. This result is
significant for the international scientific community. These results
here can help policymakers to design satisfying goals to cope with
current infectious diseases with effective vaccination strategies to
prevent future outbreaks of new variants of COVID-19 and similar
infectious diseases in the future.

Although this study has provided some interesting results, that
are of course tentative, it has several limitations. First, a limitation
of the study is the lack of data about doses administered and total
vaccinations in several countries, mainly in the spring season of
the year 2021, and also the difficulty of production and distribu-
tion of COVID-19 vaccines worldwide; moreover, country-
specific health norms may affect the gathering and transmission
of data, such that unreported doses of vaccines and deaths in
manifold countries may be present in the database under study
here. Antony et al. [61] explained that the similarity in presenta-
tion between COVID-19 and influenza can have generated under-
reported data across countries. Second, not all the possible
confounding factors that affect the efficacy of vaccinations are
taken into consideration (such as non-pharmaceutical measures
applied, health expenditures, numbers of ICUs, equipment of
medical ventilators in hospitals, hesitancy to vaccination, etc.)
and in the future, they deserve to be controlled for reinforcing
results here. Third, the lack of integration of data with the age
of vaccinated people among countries (the priority given in
many countries to elderly subjects, with a more compromised
immune system) may have influenced the results of infected

Fig. 6. Signal amplification process.
Source: our elaborations in Oryx and AD-Designer 2021.
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individuals and deaths across countries. Fourth, new variants of
COVID-19 may reduce the effectiveness of current vaccines and
vaccination campaigns and these aspects have to be considered
in the future development of this study. Thus, generalizing the
results of this research should be done with caution. Despite
these limitations, the results presented here clearly illustrate the
critical level of vaccination rollout that has significantly reduced
the negative effects of the COVID-19 pandemic in terms of a
sharp decrease in the case of fatality rates across countries.
These findings can better support the strategies for prevention
and/or reduction of negative effects of the pandemic crisis in soci-
ety [30, 33]. Future research should consider new data when avail-
able, and when possible, also examine time series of variables
within countries to explain more dynamic relations of the phe-
nomena and relationships under study here over time and
space. In fact, as the vaccination campaign progresses around
the world, it would be interesting to repeat the analysis conducted
here to check if the results we have presented are confirmed

through a larger sample. Moreover, the empirical analysis may
be conducted using a different AI algorithm or a completely
diverse approach [27].

To conclude, there is a need for much more detailed research
on these topics and this study encourages further investigations
for supporting optimal strategies of vaccination plans, using les-
sons learned from COVID-19, also considering the interaction
between the evolution of pandemics with new variants and vac-
cination campaigns, and different factors between countries that
are not only parameters related to medicine but also to public
governance that can clarify results and improve the preparedness
of countries to face next pandemic crisis and control negative
impact on public health, economy and society.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268822001418.

Data availability statement. The data that support the findings of this
study are available on request from the authors.

Fig. 7. ML diagnostic tests.
Source: our elaborations in Oryx.
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Appendix

A. Core Mathematical Results
The mathematical expression represented by the NN is written below. It takes the inputs Total Cases, Cases/popolo, Doses Admistrated April, Doses vaccine

per 100 inhab April, Doses Admistrated 15 March 21, Doses vaccine per 100 inhab 15 March 21, Total Vaccinated 15 March 21, L.Total Cases, L.Cases/popolo,
L.Deaths April, L.Fatality Rate April, L.Doses Admistrated April, L.Doses vaccine per 100 inhab April, L.Doses Admistrated 15 March 21, L.Doses vaccine per 100
inhab 15 March 21, L.Total Vaccinated 15 March 21, D.Total Cases, D. Cases/popolo, D.Deaths April, D.Fatality Rate April, D.Doses Admistrated April, D.Doses
vaccine per 100 inhab April, D.Doses Admistrated 15 March 21, D.Doses vaccine per 100 inhab 15 March 21, D.Total Vaccinated 15 March 21 to produce the
outputs Deaths April, Fatality Rate April. For function regression problems, the information is propagated in a feed-forward fashion through the scaling layer, the
perceptron layers and the unscaling layer.

B. Construction of the activation function

scaled_TotalCases = (TotalCases−597 159)/1 804 230;
scaled_Cases_popolo = (Cases_popolo−3.44109)/3.21659;
scaled_DosesAdmistratedApril = (DosesAdmistratedApril−3 704 380)/16 144 900;
scaled_Dosesvaccineper100inhabApril = (Dosesvaccineper100inhabApril−14.2995)/19.781;
scaled_DosesAdmistrated15March21 = (DosesAdmistrated15March21−1 631 560)/5 219 560;
scaled_Dosesvaccineper100inhab15March21 = (Dosesvaccineper100inhab15March21−6.96745)/13.6092;
scaled_TotalVaccinated15March21 = (TotalVaccinated15March21−381 143)/827 631;
scaled_L.TotalCases = (L.TotalCases−10.7509)/3.03837;
scaled_L.Cases_popolo = (L.Cases_popolo−4.33326)/3.07371;
scaled_L.DeathsApril = (L.DeathsApril−6.64982)/3.01081;
scaled_L.FatalityRateApril = (L.FatalityRateApril−0.676115)/0.53493;
scaled_L.DosesAdmistratedApril = (L.DosesAdmistratedApril−12.4364)/2.67888;
scaled_L.Dosesvaccineper100inhabApril = (L.Dosesvaccineper100inhabApril−1.82228)/1.34842;
scaled_L.DosesAdmistrated15March21 = (L.DosesAdmistrated15March21−9.35586)/5.58977;
scaled_L.Dosesvaccineper100inhab15March21 = (L.Dosesvaccineper100inhab15March21−1.10013)/1.1876;
scaled_L.TotalVaccinated15March21 = (L.TotalVaccinated15March21−7.15042)/6.02766;
scaled_D.TotalCases = (D.TotalCases−2536.84)/20 038;
scaled_D.Cases_popolo = (D.Cases_popolo−140.452)/340.351;
scaled_D.DeathsApril = (D.DeathsApril−781.714)/5538.99;
scaled_D.FatalityRateApril = (D.FatalityRateApril−0.444522)/2.12994;
scaled_D.DosesAdmistratedApril = (D.DosesAdmistratedApril−127.31)/657.291;
scaled_D.Dosesvaccineper100inhabApril = (D.Dosesvaccineper100inhabApril−3.0988)/10.2835;
scaled_D.DosesAdmistrated15March21 = (D.DosesAdmistrated15March21−56 908)/410 565;
scaled_D.Dosesvaccineper100inhab15March21 = (D.Dosesvaccineper100inhab15March21−1.27779)/3.76081;

C. Final mathematical results
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tanh
(−1.42065 + (y_1_1 ×−3.39404) + (y_1_2 ×−4.73707) + (y_1_3 × 8.95406) + (y_1_4 ×−3.94323) + (y_1_5 ×−6.82661) + (y_1_6 ×−1.7329) + (y_1_7 ×
−1.63566) + (y_1_8 × 3.88688) + (y_1_9 ×−2.34527) + (y_1_10 × 2.33409) + (y_1_11 ×−6.0983) + (y_1_12 ×−1.45215));

y_2_2 = tanh
(−2.14609 + (y_1_1 × 0.136623) + (y_1_2 × 2.73299) + (y_1_3 ×−3.49886) + (y_1_4 × 2.21296) + (y_1_5 ×−1.13925) + (y_1_6 × 2.72466) + (y_1_7 × 2.44443) +
(y_1_8 × 3.7965) + (y_1_9 × 4.03604) + (y_1_10 × 2.07138) + (y_1_11 × 4.26635) + (y_1_12 ×−2.61202));

y_2_3 = tanh
(0.571144 + (y_1_1 × 0.885384) + (y_1_2 × 8.44042) + (y_1_3 × 5.2873) + (y_1_4 ×−1.76974) + (y_1_5 × 0.706614) + (y_1_6 × 5.89512) + (y_1_7 ×−1.40191) +
(y_1_8 ×−6.25772) + (y_1_9 ×−5.32905) + (y_1_10 ×−2.06345) + (y_1_11 ×−4.01104) + (y_1_12 ×−1.31832));

y_2_4 = tanh
(1.47304 + (y_1_1 ×−9.41355) + (y_1_2 ×−3.54629) + (y_1_3 × 0.245785) + (y_1_4 × 5.5926) + (y_1_5 ×−8.12707) + (y_1_6 × 4.30913) + (y_1_7 × 5.65796) +
(y_1_8 × 1.87443) + (y_1_9 × 5.30923) + (y_1_10 ×−1.79709) + (y_1_11 × 3.23201) + (y_1_12 × 0.0419988));

y_2_5 = tanh
(3.10152 + (y_1_1 ×−2.23974) + (y_1_2 ×−1.37414) + (y_1_3 ×−2.56631) + (y_1_4 × 0.420232) + (y_1_5 × 2.6237) + (y_1_6 ×−2.10451) + (y_1_7 × 4.5227) +
(y_1_8 ×−8.65126) + (y_1_9 × 1.78936) + (y_1_10 ×−3.66684) + (y_1_11 × 2.90734) + (y_1_12 × 7.43724));

y_2_6 = tanh
(0.560944 + (y_1_1 ×−5.57786) + (y_1_2 × 0.986413) + (y_1_3 ×−0.738111) + (y_1_4 ×−1.95099) + (y_1_5 × 0.829621) + (y_1_6 × 1.45241) + (y_1_7 ×
−2.89629) + (y_1_8 × 2.03976) + (y_1_9 × 5.16157) + (y_1_10 ×−1.60565) + (y_1_11 ×−0.814266) + (y_1_12 ×−4.6738));

y_2_7 = tanh
(0.594457 + (y_1_1 × 5.05969) + (y_1_2 ×−8.16641) + (y_1_3 ×−0.835004) + (y_1_4 × 5.93846) + (y_1_5 ×−2.92998) + (y_1_6 × 0.472404) + (y_1_7 ×
−4.16513) + (y_1_8 ×−3.71026) + (y_1_9 ×−1.05414) + (y_1_10 × 2.50229) + (y_1_11 ×−1.9919) + (y_1_12 × 2.71732));

y_2_8 = tanh
(4.30013 + (y_1_1 ×−5.42082) + (y_1_2 ×−1.7049) + (y_1_3 × 3.86285) + (y_1_4 ×−3.49551) + (y_1_5 ×−1.38505) + (y_1_6 × 5.31073) + (y_1_7 × 1.28879) +
(y_1_8 × 1.53534) + (y_1_9 × 2.92565) + (y_1_10 ×−4.6453) + (y_1_11 ×−4.55057) + (y_1_12 ×−3.19376));

y_2_9 = tanh (−3.39936 + (y_1_1 ×−2.78159) + (y_1_2 ×−7.09474) + (y_1_3 × 2.17625) + (y_1_4 × 1.32365) + (y_1_5 ×−6.56213) + (y_1_6 × 2.69674) +
(y_1_7 × 4.87133) + (y_1_8 ×−4.79233) + (y_1_9 × 2.97694) + (y_1_10 × 2.77616) + (y_1_11 × 0.397988) + (y_1_12 ×−0.136498));

y_2_10 = tanh (−2.32782 + (y_1_1 ×−0.98874) + (y_1_2 × 5.12131) + (y_1_3 × 2.8198) + (y_1_4 × 7.51709) + (y_1_5 ×−4.07128) + (y_1_6 × 2.71003) +
(y_1_7 ×−2.83528) + (y_1_8 ×−4.85167) + (y_1_9 ×−0.409918) + (y_1_10 × 3.68647) + (y_1_11 × 3.31492) + (y_1_12 × 2.97374));

y_3_1 = tanh (1.39119 + (y_2_1 × 7.12212) + (y_2_2 × 2.54375) + (y_2_3 × 2.7966) + (y_2_4 × 0.125616) + (y_2_5 ×−4.1964) + (y_2_6 ×−4.77784) + (y_2_7 ×
−6.34753) + (y_2_8 ×−0.0837408) + (y_2_9 × 6.11543) + (y_2_10 ×−5.83674));

y_3_2 = tanh
(−1.504 + (y_2_1 ×−7.85682) + (y_2_2 ×−6.53737) + (y_2_3 × 0.748975) + (y_2_4 × 2.07492) + (y_2_5 ×−1.22556) + (y_2_6 × 1.97351) + (y_2_7 ×−0.89566)
+ (y_2_8 ×−0.367512) + (y_2_9 × 3.88914) + (y_2_10 × 5.25445));

y_3_3 = tanh
(4.25206 + (y_2_1 × 2.25461) + (y_2_2 × 3.32096) + (y_2_3 × 5.48112) + (y_2_4 ×−0.294713) + (y_2_5 × 4.69679) + (y_2_6 ×−3.03318) + (y_2_7 × 3.72398) +
(y_2_8 × 4.99578) + (y_2_9 × 3.27348) + (y_2_10 ×−0.24331));

y_3_4 = tanh
(5.56335 + (y_2_1 ×−4.57575) + (y_2_2 ×−5.57908) + (y_2_3 ×−8.18809) + (y_2_4 × 7.38807) + (y_2_5 × 1.92916) + (y_2_6 × 5.85921) + (y_2_7 ×−6.42909)
+ (y_2_8 × 1.03946) + (y_2_9 ×−2.60374) + (y_2_10 × 10.4997));

y_3_5 = tanh
(−0.804268 + (y_2_1 × 4.45784) + (y_2_2 × 1.03842) + (y_2_3 ×−1.59496) + (y_2_4 × 12.9812) + (y_2_5 ×−4.6989) + (y_2_6 × 6.61949) + (y_2_7 ×−5.95164)
+ (y_2_8 × 4.69671) + (y_2_9 × 5.57528) + (y_2_10 ×−4.6567));

y_3_6 = tanh
(−7.42 + (y_2_1 ×−4.68621) + (y_2_2 ×−4.68574) + (y_2_3 ×−3.45686) + (y_2_4 × 3.90072) + (y_2_5 ×−9.04524) + (y_2_6 ×−1.83576) + (y_2_7 × 3.69017) +
(y_2_8 × 7.30282) + (y_2_9 ×−5.94748) + (y_2_10 ×−0.125969));

y_3_7 = tanh
(4.13143 + (y_2_1 ×−1.70416) + (y_2_2 ×−3.93817) + (y_2_3 × 6.44481) + (y_2_4 ×−3.57214) + (y_2_5 × 3.52104) + (y_2_6 ×−5.98477) + (y_2_7 ×−3.52718)
+ (y_2_8 ×−5.20738) + (y_2_9 × 4.03708) + (y_2_10 × 2.49501));

y_4_1 = tanh
(5.59629 + (y_3_1 ×−0.169289) + (y_3_2 × 4.72624) + (y_3_3 ×−5.26795) + (y_3_4 × 4.30637) + (y_3_5 ×−4.98808) + (y_3_6 × 2.80358) + (y_3_7 × 1.47525));

y_4_2 = tanh
(−4.56394 + (y_3_1 × 11.2667) + (y_3_2 × 3.36337) + (y_3_3 ×−7.04849) + (y_3_4 ×−11.4603) + (y_3_5 × 4.59576) + (y_3_6 ×−9.33503) + (y_3_7 × 5.08033));

y_4_3 = tanh
(6.95199 + (y_3_1 ×−6.86011) + (y_3_2 ×−4.36792) + (y_3_3 × 3.40104) + (y_3_4 ×−11.7852) + (y_3_5 × 12.1614) + (y_3_6 × 4.34408) + (y_3_7 ×−13.2492));

y_4_4 = tanh
(5.01676 + (y_3_1 ×−3.78135) + (y_3_2 ×−5.67526) + (y_3_3 × 2.34227) + (y_3_4 ×−8.2123) + (y_3_5 × 4.20318) + (y_3_6 ×−14.1666) + (y_3_7 × 2.23312));

10 Cosimo Magazzino et al.

https://doi.org/10.1017/S0950268822001418 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268822001418


y_4_5 = tanh
(−6.53588 + (y_3_1 ×−5.03423) + (y_3_2 ×−5.34327) + (y_3_3 ×−5.58299) + (y_3_4 ×−4.09033) + (y_3_5 ×−5.42264) + (y_3_6 ×−1.05588) + (y_3_7 ×
−1.83719));

y_5_1 = tanh
(1.84566 + (y_4_1 ×−2.5998) + (y_4_2 × 0.0872705) + (y_4_3 ×−3.38745) + (y_4_4 × 12.681) + (y_4_5 ×−5.77164));

y_5_2 = tanh
(1.82072 + (y_4_1 ×−3.00937) + (y_4_2 ×−9.32762) + (y_4_3 ×−1.06101) + (y_4_4 ×−3.57497) + (y_4_5 × 5.42249));

y_5_3 = tanh
(0.929102 + (y_4_1 ×−7.35493) + (y_4_2 ×−11.5461) + (y_4_3 × 9.13327) + (y_4_4 × 3.11303) + (y_4_5 × 5.28057));

y_5_4 = tanh
(−0.327379 + (y_4_1 ×−10.9707) + (y_4_2 ×−7.26578) + (y_4_3 × 17.5456) + (y_4_4 × 2.52181) + (y_4_5 ×−6.04749));

y_5_5 = tanh
(−5.19209 + (y_4_1 × 6.30455) + (y_4_2 × 2.20143) + (y_4_3 ×−0.381196) + (y_4_4 ×−19.6165) + (y_4_5 ×−0.986056));

y_5_6 = tanh
(1.52476 + (y_4_1 ×−3.5201) + (y_4_2 × 7.39273) + (y_4_3 ×−9.6574) + (y_4_4 ×−1.32885) + (y_4_5 × 3.68376));

y_5_7 = tanh
(−0.0014946 + (y_4_1 ×−0.783583) + (y_4_2 ×−5.31838) + (y_4_3 ×−2.04202) + (y_4_4 ×−5.78655) + (y_4_5 × 0.0888508));
scaled_DeathsApril = (−0.789209 + (y_5_1 ×−10.5257) + (y_5_2 ×−0.139852) + (y_5_3 ×−0.508132) + (y_5_4 × 1.26922) + (y_5_5 ×−11.2899) + (y_5_6 ×
0.723576) + (y_5_7 × 0.952592));

scaled_FatalityRateApril = (−0.874703 + (y_5_1 × 5.79615) + (y_5_2 ×−0.0328672) + (y_5_3 ×−7.27996) + (y_5_4 × 13.8602) + (y_5_5 ×−2.39408) + (y_5_6 ×
6.62376) + (y_5_7 × 8.21696));

(DeathsApril, FatalityRateApril) = (0.5 × (scaled_DeathsApril + 1.0) × (386 416-1) + 1,0.5 × (scaled_FatalityRateApril + 1.0) × (25-1) + 1).

D. List of countries

Afghanistan Ghana Oman

Albania Greece Pakistan

Algeria Grenada Palestine

Andorra Guatemala Panama

Angola Guinea Papua New Guinea

Antigua and Barbuda Guinea-Bissau Paraguay

Argentina Guyana Peru

Armenia Haiti Philippines

Australia Honduras Poland

Austria Hungary Portugal

Azerbaijan Iceland Qatar

Bahamas India Romania

Bahrein Indonesia Russia

Bangladesh Iran Rwanda

Barbados Iraq Saint Kitts and Nevis

Belgium Ireland Saint Lucia

Belize Israel Saint Vincent and Grenadine

Benin Italy Salomon Islands

Bhutan Ivory Coast Samoa

Bolivia Jamaica San Marino

Bosnia Herzegovina Japan Sao Tome and Principe

Botswana Jordan Saudi Arabia

Brazil Kazakhstan Senegal

Brunei Kenya Serbia
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Bulgaria Kirghizstan Seychelles

Burkina Faso Kosovo Sierra Leone

Burundi Kuwait Singapore

Byelorussia Laos Slovakia

Cambodia Latvia Slovenia

Cameroon Lebanon Somalia

Canada Lesotho South Africa

Cape Verde Liberia South Korea

Central African Republic Libya South Sudan

Chad Liechtenstein Spain

Chile Lithuania Sri Lanka

China Luxembourg Sudan

Colombia Madagascar Suriname

Comoros Malawi Swaziland

Congo Malaysia Sweden

Costa Rica Maldives Switzerland

Croatia Mali Syria

Cuba Malta Taiwan

Cyprus Marshall Islands Tajikistan

Czech Republic Mauritania Tanzania

Democratic Republic of Congo Mauritius Thailand

Denmark Mexico Timor Est

Diamond Princess Micronesia Togo

Djibouti Moldavia Trinidad and Tobago

Dominica Monaco Tunisia

Dominican Republic Mongolia Turkey

Ecuador Montenegro Uganda

Egypt Morocco Ukraine

El Salvador Mozambique United Arab Emirates

Equatorial Guinea MS Zaandam United Kingdom

Eritrea Myanmar United States

Estonia Namibia Uruguay

Ethiopia Nepal Uzbekistan

Fiji Netherlands Vanuatu

Finland New Zealand Vatican City

France Nicaragua Venezuela

Gabon Niger Vietnam

Gambia Nigeria Yemen

Georgia North Macedonia Zambia

Germany Norway Zimbabwe
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