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Abstract

We demonstrate that every difference set in a finite Abelian group is equivalent to a certain ‘regular’
covering of the lattice An = {x ∈ Zn+1 :

∑
i xi = 0} with balls of radius 2 under the �1 metric (or,

equivalently, a covering of the integer lattice Zn with balls of radius 1 under a slightly different metric). For
planar difference sets, the covering is also a packing, and therefore a tiling, of An. This observation leads
to a geometric reformulation of the prime power conjecture and of other statements involving Abelian
difference sets.
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52C17, 52C22.
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1. Introduction

Let G be a finite Abelian group of order |G| = v, written additively. A subset D ⊆ G
of cardinality k is said to be a (v, k, λ)-difference set [2] if every nonzero element
of G can be expressed as a difference di − dj of two elements from D in exactly λ
ways. The parameters v, k, λ then necessarily satisfy the identity λ(v − 1) = k(k − 1).
Difference sets with parameter λ = 1 are called planar. These objects appeared first
in the work of Singer [8] and have attracted the interest of mathematicians ever since.
The ensuing research has produced numerous beautiful results at the crossroads of
algebra, combinatorics and geometry [2, 7], and has also found several applications,
for example in coding theory [4]. The purpose of this note is to contribute to this line
of work by providing another geometric and combinatorial interpretation of difference
sets, more precisely, by showing that difference sets can be represented in a simple
and natural way as sublattices of Zn having certain packing/covering/tiling properties.
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FIGURE 1. Ball of radius 1 in (A2, d) (hexagon) and in (A3, d) (cuboctahedron).

Consequently, many statements involving difference sets, in particular those dealing
with existence questions, can be reformulated in purely geometric terms.

The An lattice under the �1 metric. A lattice in Rn is a discrete subgroup of (Rn,+).
The An lattice is

An =

{
(x0, x1, . . . , xn) ∈ Zn+1 :

n∑
i=0

xi = 0
}
,

where Z denotes the integers, as usual. In particular, A1 is equivalent to Z, A2 to the
hexagonal lattice and A3 to the face-centred cubic lattice [3].

The metric on An that we consider is essentially the �1 (also termed Manhattan or
taxi) distance,

d(x, y) =
1
2
‖x − y‖1 =

1
2

n∑
i=0

|xi − yi|,

where x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn); the constant 1/2 is adopted for conve-
nience because ‖x − y‖1 is always even for x, y ∈ An. The metric d also represents the
graph distance in An. If Γ(An) is a graph with the vertex set An and with edges joining
neighbouring points (points at distance 1 under d), then d(x, y) is the length of the
shortest path between x and y in Γ(An). The ball of radius 1 around x ∈ An contains
2
(

n+1
2

)
+ 1 = n2 + n + 1 points of the form x + f i,j, where f i,j is the vector having 1

at the ith coordinate, −1 at the jth coordinate and zeros elsewhere (by convention,
f i,i = 0) (see Figure 1). The convex interior of the points in this ball forms a highly
symmetrical polytope with the property that the distance between any vertex and the
centre is equal to the distance between any two neighbouring vertices.

REMARK 1.1. For the purpose of studying packing and covering problems, it is
sometimes more convenient to visualise Zn instead of an arbitrary lattice. In our case,
there is a simple mapping that makes the transition to Zn and back very easy, namely
x = (x0, x1, . . . , xn) �→ x′ = (x1, . . . , xn). If we define the following metric on Zn:

d+(x′, y′) = max
{ n∑

i=1
xi>yi

(xi − yi),
n∑

i=1
xi<yi

(yi − xi)
}
,
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then it is not difficult to show that the above mapping is an isometry between (An, d)
and (Zn, d+) [6, Theorem 4]. Consequently, packing and similar problems in (An, d) are
equivalent to those in (Zn, d+).

2. (v, k, λ)-difference sets and coverings of An

In the following, when using notions from graph theory in our setting, we have in
mind the graph representation Γ(An) of An, as introduced in Section 1. An (r, i, j)-cover
in a graph Γ = (V , E) [1] is a set of its vertices S ⊆ V having the property that every
element of S, respectively V \ S, is covered by exactly i, respectively j, balls of radius
r centred at elements of S. Special cases of such sets, namely (1, i, j) covers, have
also been studied in the context of domination in graphs [10]. Note also that an
(r, 1, 1)-cover is a tiling of V with balls of radius r (in coding theory, this is known as
an r-perfect code). An independent set in a graph Γ = (V , E) is a subset of its vertices
I ⊆ V , no two of which are adjacent in Γ.

We now state our main result. The proof is a generalisation of the connection
between lattice packing/tiling and so-called group splitting [9].

THEOREM 2.1. There exists an Abelian (v, n + 1, λ)-difference set if and only if the
lattice An contains a (1, 1, λ)-covering sublattice.

PROOF. Suppose that D = {d0, d1, . . . , dn} is a (v, n + 1, λ)-difference set in an Abelian
group G and consider the sublattice

LD =

{
x ∈ An :

n∑
i=0

xidi = 0
}
, (2.1)

where xidi denotes the sum in G of |xi| copies of di, respectively −di, if xi > 0,
respectively xi < 0. Let us show that LD is a (1, 1, λ)-cover of An. Consider a point
y = (y0, y1, . . . , yn) � LD, meaning that

∑n
i=0 yidi = a ∈ G, a � 0. The neighbours of y

are of the form y + f i,j, i � j (recall that f i,j denotes the vector having 1 at the ith
coordinate, −1 at the jth coordinate and zeros elsewhere). Because D is a difference
set, −a ∈ G can be written as a difference of two elements from D in exactly λ
ways, meaning that there are λ different pairs (s, t) for which ds − dt = −a, ds, dt ∈ D.
For every such pair, consider the point zs,t = y + f s,t. Note that zs,t ∈ LD because∑n

i=0 zidi =
∑n

i=0 yidi + ds − dt = a − a = 0. Therefore, there are exactly λ points in the
latticeLD that are adjacent to y, that is, such that balls of radius 1 around them cover y.
To show that the elements of LD are covered only by the balls around themselves (that
is,LD is an independent set in Γ(An)), note that if there were two points at distance 1 in
LD, then, by the same argument as above, we would obtain ds − dt = 0, that is, ds = dt
for some s � t, which is not possible if |D| = n + 1.

For the other direction, assume that L is a (1, 1, λ)-covering sublattice of An.
Consider the quotient group G = An/L and take DL = {d0, d1, . . . , dn} ⊆ G, where di =

[ f i,0] ≡ f i,0 +L are cosets (elements of G). Let us first check that all the di terms are
distinct. Suppose that ds = dt for some s � t. This implies that ds − dt = [ f s,t] = [0],
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FIGURE 2. A (1, 1, 2)-covering sublattice of A2, representing the difference set D = {0, 1, 2} ⊂ Z4.

which means that f s,t ∈ L. However, because 0 ∈ L and 0 and f s,t are at distance 1, this
would contradict the fact that L is an independent set in Γ(An). Hence, |DL| = n + 1.
Now take any nonzero element of G, say [ y], y � L. By assumption, y is covered
by exactly λ elements of L, that is, y + f s,t ∈ L for exactly λ vectors f s,t. Because
f s,t = f s,0 − f t,0, this means that dt − ds = [ f t,0] − [ f s,0] = [ y] for exactly λ pairs
(s, t). Therefore, DL is a (v, n + 1, λ)-difference set. �

Note that we have not specified the order of the elements of D when defining the
corresponding latticeLD in (2.1) because it would only affect it in an insignificant way.
Note also that if we write d′i = zdi + g instead of di in (2.1), where z is a fixed integer
coprime with v and g is a fixed element of G, the same lattice is obtained because

n∑
i=0

xidi = 0 ⇔
n∑

i=0

xid′i = 0,

which follows from
∑n

i=0 xi = 0 and gcd(z, v) = 1. (Recall that two difference sets D
and D′ in an Abelian group G are said to be equivalent [2, Remark 1.11, page 302] if
D′ = {zd + g : d ∈ D}, for some z ∈ Z coprime with v = |G| and some g ∈ G.)

Geometrically, the theorem states that balls of radius 1 around the points of the
sublattice LD overlap in such a way that every point that does not belong to LD is
covered by exactly λ balls. (The points in LD (centres of the balls) are covered by one
ball only, and hence this notion is different from multitiling [5].) Note that increasing
λ increases the density of the lattice LD in An. The densest such lattice is therefore
obtained for λ = n + 1 (which is the maximum value because λ(v − 1) = n(n + 1) and
n ≤ v − 1). It corresponds to the trivial (v, v, v)-difference set D = G in an arbitrary
Abelian group G.
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FIGURE 3. A (1, 3, 2)-covering sublattice of A2.

EXAMPLE 2.2. D = {0, 1, 2} is a (4, 3, 2)-difference set in the cyclic group Z4. A
(1, 1, 2)-covering sublattice LD ⊂ A2 corresponding to this difference set (see (2.1))
is illustrated in Figure 2. Points in LD are depicted as black and those in A2 \ LD as
white dots. For illustration, Figure 3 shows an example of a (1, 3, 2)-covering sublattice
of A2, which does not represent any difference set.

3. Planar difference sets and tilings of An

A (v, k, 1)-difference set D ⊆ G is called planar (or simple). The condition λ = 1
means that every nonzero element of the group G can be expressed as a difference
of two elements from D in a unique way. In this case, we necessarily have v = |G| =
k2 − k + 1. The order of a planar difference set D of cardinality k is defined as k − 1.
These objects are very well-studied, and a large body of literature is devoted to their
constructions and investigation of their properties [2]. One of the most well-known
problems in the area concerning the existence of planar difference sets for specific sets
of parameters is the so-called prime power conjecture [2, Conjecture 7.5, page 346],
which states that a planar difference set of order n exists if and only if n is a prime
power (counting n = 1 as a prime power). Existence of such sets for n = pm, p prime,
m ∈ N, was demonstrated by Singer [8], but the necessity of this condition remains an
open problem for over eight decades.

As we noted earlier, a (1, 1, 1)-cover of An is in fact a tiling of (An, d) with balls of
radius 1, meaning that every point in An is covered by exactly one ball. If the centres
of the balls form a sublattice of An, then this is said to be a lattice tiling. We can now
state what Theorem 2.1 reduces to in the special case λ = 1.

COROLLARY 3.1. There exists an Abelian planar difference set of order n if and only
if the space (An, d) admits a lattice tiling with balls of radius 1.
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FIGURE 4. Lattice tiling of (A3, d) corresponding to the difference set D = {0, 1, 3, 9} ⊂ Z13.

Existence of such tilings when n is a prime power follows from the existence of the
corresponding planar difference sets [8], but the necessity of this condition is open and
is equivalent to the prime power conjecture.

CONJECTURE 3.2 (Prime power conjecture). The space (An, d) admits a lattice tiling
with balls of radius 1 if and only if the dimension n is a prime power.

A stronger conjecture would claim the above even for nonlattice tilings.

EXAMPLE 3.3. Consider a planar difference set D = {0, 1, 3, 9} ⊂ Z13. The corre-
sponding lattice tiling of (A3, d) is illustrated in Figure 4(a). The figure shows the
intersection of A3 with the plane x0 = 0; the intersections of a ball of radius 1 in (A3, d)
with the planes x0 = const. are shown in Figure 4(b) as a clarification.

Corollary 3.1 and Example 3.3 were also stated in [6] by using coding theoretic
terminology.

Another important unsolved problem in the field is the following: all Abelian planar
difference sets live in cyclic groups [2, Conjecture 7.7, page 346]. Because the group
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G containing a difference set D which defines a latticeLD is isomorphic to An/LD, the
statement that G is cyclic, that is, that it has a generator, is equivalent to the following
statement.

CONJECTURE 3.4 (All Abelian planar difference sets are cyclic). Suppose a lattice
L ⊂ An defines a lattice tiling of (An, d) with balls of radius 1. Then the period of L
in An along the direction f i,j is equal to n2 + n + 1 for at least one vector f i,j, (i, j) ∈
{0, 1, . . . , n}2.

The cyclic case. To conclude the paper, let us consider briefly the case of cyclic planar
difference sets of order n, where it is assumed that the group we are working with
is Zv, v = n2 + n + 1. As mentioned above, the restriction to cyclic groups might not
be a restriction at all. So let D = {d0, d1, . . . , dn} ⊂ Zv be a difference set and assume
that d0 = 0, d1 = 1. (This is not a loss in generality because if D is a difference set,
then there exist two elements, say d0, d1 ∈ D, such that d1 − d0 = 1, so one can instead
consider the equivalent difference set D′ = {di − d0 : di ∈ D}which obviously contains
0 and 1.) Let LD ⊂ Zn be the lattice defined as in (2.1), but with the 0-coordinate of
all vectors left out (the latter is done for convenience, because d0 = 0). Leaving out
the 0-coordinate essentially transforms the space (An, d) to (Zn, d+) (see Remark 1.1).
The generator matrix of the lattice LD can then be written in the following simple and
explicit form:

B(LD) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v 0 0 · · · 0
−d2 1 0 · · · 0
−d3 0 1 · · · 0

...
...

...
. . .

...
−dn 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

that is, the elements of the lattice are the vectors x = ξ · B(LD), ξ ∈ Zn. The generator
matrix of the dual lattice L∗D is

B(L∗D) = B(LD)−T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/v d2/v d3/v · · · dn/v
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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