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In the construction of a stellarator, the manufacturing and assembling of the coil system is
a dominant cost. These coils need to satisfy strict engineering tolerances, and if those are
not met the project could be cancelled as in the case of the National Compact Stellarator
Experiment (NCSX) project (R.L. Orbach, 2008, https://ncsx.pppl.gov/DOE_NCSX_
052208.pdf). Therefore, our goal is to find coil configurations that increase construction
tolerances without compromising the performance of the magnetic field. In this paper,
we develop a gradient-based stochastic optimization model which seeks robust stellarator
coil configurations in high dimensions. In particular, we design a two-step method: first,
we perform an approximate global search by a sample efficient trust-region Bayesian
optimization; second, we refine the minima found in step one with a stochastic local
optimizer. To this end, we introduce two stochastic local optimizers: BFGS applied
to the sample average approximation; and Adam, equipped with a control variate for
variance reduction. Numerical simulations performed on a W7-X-like coil configuration
demonstrate that our global optimization approach finds a variety of promising local
solutions at less than 0.1 % of the cost of previous work, which considered solely local
stochastic optimization.

Key words: fusion plasma, plasma applications

1. Introduction

The design process of finding promising stellarator coil configurations is traditionally
split into two steps. First, one aims to find the optimal plasma shape with respect to
performance criteria such as, for example, the magnetohydrodynamic stability or alpha
particle confinement. For the second step – the coil design – one tries to reproduce the
target magnetic field confining the plasma. Construction and placement of these coils
are difficult tasks since minor errors in the fabrication or alignment can lead to major
modifications of the magnetic field and thus poor particle confinement (Andreeva et al.
2009; Lobsien, Drevlak & Pedersen 2018).

To be able to guarantee good confinement when the stellarator is in operation, stringent
engineering tolerances on the coils are required during the stellarator fabrication and
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FIGURE 1. Variety of stochastic minima derived with DTuRBO and AdamCV (D-ACV).

assembly process. Unfortunately, such stringent tolerances can increase the cost and
production timeline of a stellarator, which is what led to the cancellation of the National
Compact Stellarator Experiment (NCSX) project (Orbach 2008). During the Columbia
Non-neutral Torus (CNT) design, a stochastic perturbation analysis was used to identify
the robustness of coil-induced magnetic fields to coil alignment errors (Kremer 2007). This
allowed the reduction of engineering coil tolerances significantly (Kremer et al. 2003).
Furthermore, recent work has shown that stochastic optimization is a promising method
to improve the robustness of the generated magnetic field to fabrication and alignment
errors in the associated coils (Lobsien et al. 2020; Wechsung et al. 2021). However, all
aforementioned approaches do not globally explore the coil design space. Indeed, design
engineers are usually interested in having not only one, but multiple designs to choose
from. In addition to the magnetic field, engineers care about other physical properties such
as specific aspect ratio and rotational transforms; see figure 1 for an example of different
coils. Thus, there is a need for efficient stochastic methods for global exploration in order
to provide multiple coil configurations in the design process.

In this work, we develop an algorithm for the efficient global stochastic optimization
of stellarator coil configurations. We seek a coil set that is robust to random errors in the
coils in expectation,

min
x∈RN

E[ fstoc(x + U)] + freg(x) (1.1a)

ci(x) ≥ εi i = 1, . . . , NC − 1, (1.1b)

where x ∈ R
N defines the geometry of the coil set; U is a random error to the coils; E

is the expectation over U ; NC is the number of coils in a single field period; ε ∈ R is
a constraint value; and the functions fstoc, freg, ci : R

N → R measure the quality of the
coils and induced magnetic field. We define the components of the optimization model
precisely in § 3. Similarly to Lobsien et al. (2020), we consider fabrication errors to be
spatially correlated Gaussian perturbations to the coils. In order to optimize (1.1), we
present a two-step global-to-local algorithm for stochastic optimization. In the first step,
we perform a global exploration of the stochastic optimization model given in (1.1) using
a trust-region Bayesian optimization (BO) method based on (Eriksson et al. 2019). This
global stage finds multiple approximate minima which, in the second step, are resolved by
local stochastic optimizers. To perform local stochastic optimization we apply the BFGS
optimizer (Nocedal & Wright 2006) to the sample average approximation (SAA) (Shapiro
2001) of (1.1) as well as the Adam optimizer (Kingma & Ba 2014) enhanced by a control
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variate for variance reduction. Finally, we arrive at multiple local stochastic minima from
which one can choose the most promising configuration.

From a stellarator optimization point of view, the main new ingredients of our
optimization routine are (to the best of our knowledge) the following.

(i) A method for efficient stochastic global exploration of the design space.
(ii) A local stochastic optimization with Adam enhanced with novel control variate.

Moreover, this is the first work to perform stochastic optimization using the coil
optimization code FOCUS (Zhu et al. 2017).

This paper is organized as follows. We briefly describe FOCUS and the internal
representation of the coils in § 2. In § 3, we introduce the formulation of the stochastic
optimization model. Subsequently in § 4, we describe our global-to-local stochastic
optimization algorithm. Numerical results on a W7-X configuration are presented in § 5.
We conclude with a summary and ideas for future work in § 6.

2. FOCUS

For the second design stage of a stellarator, multiple codes are available to optimize
for coil configurations which replicate a target magnetic field. Well known examples
are NESCOIL (Merkel 1987), REGCOIL (Landreman 2017), ONSET (Drevlak 1998),
COILOPT (Strickler, Berry & Hirshman 2002), COILOPT++ (Brown et al. 2015) and
FOCUS (Zhu et al. 2017). In order to perform stochastic optimization, we decided to
use FOCUS for two reasons: first, it allows coils to move freely in space whereas the
other aforementioned coil optimization codes restrict to a so-called winding surface; and
second, FOCUS provides analytic first-order derivatives which improve efficiency in the
optimization process.

In FOCUS, the coils are described by a three-dimensional Fourier representation. As
input, FOCUS takes a vector of Fourier coefficients x = (x1, . . . , xNC) ∈ R

N describing
the geometry of NC filamentous coils. From the Fourier coefficients xi = (xi

c,0, . . . , xi
s,NF

,

yi
c,0, . . . , yi

s,NF
, zi

c,0, . . . , zi
s,NF

)T for the i-th coil, FOCUS constructs coils as a parameterized
curve with x-coordinate

xi(xi, t) = xi
c,0 +

NF∑
n=1

[xi
c,n cos(nt) + xi

s,n sin(nt)], t ∈ [0, 2π), (2.1)

with NF being the number of Fourier modes and analogous forms for the y-, z-coordinates
yi(x, t), zi(x, t).1 By X i(x, t) = (xi(x, t), yi(x, t), zi(x, t))T we denote the parametric
representation of the i-th coil filament with t ∈ [0, 2π). The number of parameters per
coil is given by 3(2NF + 1) such that the total number of parameters results in N :=
3NC(2NF + 1). Note that FOCUS only requires the description of a single field period
of coils, constructing the other coils through reflection and rotation around the stellarator.

With the Fourier representation FOCUS can, among other things, efficiently compute
coil metrics related to coil curvature, coil length, normal magnetic field, quasisymmetry,
magnetic island width and their respective gradients with respect to the Fourier
coefficients (Zhu et al. 2019). In this study, we only make use of the normal component of
the magnetic field fB and length metric fL, which we describe in the following.

The metric fB addresses deviations in the magnetic field produced by a coil set x
compared with a target magnetic field B. Given a target plasma boundary S and a target

1Note that the coil currents are held constant in this work, which is solely a design choice to avoid a toroidal flux
constraint as the focus of this work is the efficient global exploration of the design space.
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magnetic field B the normal field error fB is given by

fB(x) =
∫

S

1
2
(B · n)2 ds, (2.2)

where n is the unit normal on the target plasma boundary. Typically the target plasma
boundary is provided as an output of the first design stage of a stellarator. This first design
stage usually involves a magnetohydrodynamic equilibrium solver such as, for example,
VMEC (Hirshman & Whitson 1983) or SPEC (Hudson et al. 2012).

The metric fL is introduced to influence the length of the coils such that they are not
prohibitively long. For the i-th coil with length Li(x) ∈ R and user-specified target length
Ltarget

i , FOCUS computes the length metric

fL(x) = 1
NC

NC∑
i=1

1
2

(Li(x) − Ltarget
i )2(

Ltarget
i

)2 . (2.3)

In the next section, we detail how we design our stochastic optimization model using the
introduced FOCUS metrics.

3. Optimization model formulation

In this section we describe our stochastic optimization model for finding a set of coils
which generate a target magnetic field and simultaneously hedge against errors in the coil
fabrication. The decision variables x ∈ R

N for our problem are the N = 3NC(2NF + 1)

Fourier coefficients defining the geometry of the NC coils, see § 2. The stochasticity is
motivated by fabrication errors in the coils and modelled as spatially correlated Gaussian
perturbations as described in § 3.1. In § 3.2 we detail the stochastic and non-stochastic parts
of the objective function. We design a coil-to-coil separation constraint and formulate the
final optimization problem used in the numerical simulations in § 3.3.

3.1. Coil fabrication uncertainty
Errors during coil fabrication can alter the shape of the coil and in turn lead
to modifications of the magnetic field. Mathematically, we model coil fabrication
errors as spatially correlated Gaussian perturbations. Numerically, the perturbations are
independent of the coil discretization by considering additive perturbations modelled
by Gaussian processes (GPs), with a periodic kernel. Similar approaches to model coil
perturbations for stellarators have been presented in Lobsien et al. (2020) and Wechsung
et al. (2021). As in Wechsung et al. (2021), the perturbation of the coils is independent
from the discretization of the coils. Moreover, the perturbations themself do not need
to preserve stellarator symmetry – but for simplicity we restricted the simulations to
the stellarator symmetry-preserving case. Preserving the stellarator symmetries leads to
systematic errors in the stellarator design, as the error is assumed to be the same for each
coil identical in construction. Breaking the stellarator symmetry would lead to statistical
errors, as for each coil, the error would be modelled separately. For the ease of notation,
we omit the dependency on i as the i-th coil in this subsection as without loss of generality
we consider the derivation for one coil.

Let X (x, t) = (x(x, t), y(x, t), z(x, t))T be a parametric representation of a coil filament
with t ∈ [0, 2π). We consider the distribution of the fabrication’s errors to be smooth along
the entirety of the coil. As such we model them by zero-mean Gaussian random variables
that affect every point on the coil. Equivalently, the coil filament X (x, t) is perturbed by a
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zero-mean GP,

(gx(t), gy(t), gz(t))T =: g(t) ∼ GP(0, κper(t, t′)), t, t′ ∈ [0, 2π), (3.1)

with a 2π-periodic kernel κper. We assume that g(t) is an isotropic GP, i.e. the kernel κper is
only a function of distance of t, t′, and that gx(t), gy(t), gz(t) are independent of each other.
Then the perturbed coil filament X P(x, t) is again a GP with mean X (x, t),

X P(x, t) := X (x, t) + g(t) ∼ GP(X (x, t), κper(t, t′)), t, t′ ∈ [0, 2π). (3.2)

To compute relevant properties of the perturbed coil X P(x, t) in FOCUS, we need a Fourier
representation xP(t) of X P(x, t). As we already know the Fourier representation of X (x, t),
we only need to calculate the Fourier representation of g(t). The k-th cosine and sine
Fourier coefficients of the x-coordinate of the GP gx(t), are denoted x̂ck, x̂sk, and can be
calculated with

x̂ck = 1
π

∫ 2π

0
gx(t) cos(kt) dt, x̂sk = 1

π

∫ 2π

0
gx(t) sin(kt) dt, (3.3a,b)

with analogous forms for the y-, z-coordinates using gy(t), gz(t). We collect these Fourier
coefficients into the vector U . As g(t) is a GP and integration is a linear operation, it
follows that U is a normally distributed random vector, see Parzen (1999). The mean of U
is zero, i.e. E[U] = 0 and the covariance can be written in terms of the Fourier coefficients
of the GP kernel κper, Parzen (1999), i.e.

Cov[x̂ck, x̂sj] = 1
π2

∫ 2π

0

∫ 2π

0
κper(s, t) cos(kt) sin(js) ds dt. (3.4)

From the assumption that the gx(t), gy(t), gz(t) are independent of each other, it follows
that their Fourier coefficients are independent as well. Thus, the covariance matrix C
of the perturbation Fourier coefficients U is block diagonal, where each diagonal block
has entries from (3.4). Due to (3.2), a randomly perturbed coil can then be described in
FOCUS’ Fourier representation by xP = x + U , where U ∼ N (0, C).

3.1.1. The kernel and hyperparameters
To ensure the GP perturbations are periodic, we use the exponential sine squared kernel

(also known as the periodic kernel) with 2π periodicity

κper(t, t′) = h exp

⎛
⎜⎜⎝−

2 sin2
( |t − t′|

2

)
�2

⎞
⎟⎟⎠ , t, t′ ∈ [0, 2π), (3.5)

where h > 0 denotes the size of the perturbations and � > 0 is the length scale of the
GP. While other choices of periodic kernels are available, this periodic analogue of
the squared exponential kernel ensures smoothness and rapidly decaying correlations.
We set the hyperparameters h, � such that at any point the mean norm squared of the
multioutput GP equals the desired mean perturbation size p squared, i.e. E[||g(t)||22] = p2.
As gx(t), gy(t), gz(t) all have identical moments and a first moment of zero we simplify the
equality to 3Var[gx(t)] = p2 which yields h = p2/3.

The length scale � determines the frequency of the perturbations, as depicted in figure 2.
If data on manufacturing errors is available, the length scale � can be selected by fitting
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(a) (b) (c)

FIGURE 2. Random perturbations of a circular coil generated from a GP with length scale � =
0.1 (a), � = 0.5 (b) and � = 1.0 (c). Note that perturbations generated from a GP with a larger
length scale have lower frequency oscillations.

the error model to the data. In the absence of data we manually selected �, finding � = 0.5
to balance high-frequency perturbations and low-frequency translational and rotational
perturbations. As shown in figure 2, a length scale of � = 0.1 would not be an interesting
case as the perturbations are realized as ‘small wiggles’ which may not significantly affect
the magnetic field. In contrast, the case � = 1.0 seemed to capture larger translational and
rotational perturbations which we would expect for an assembly error, which we do not
take into account here. Thus, � = 0.5 seems most appropriate for our study, and is used in
our numerical simulations.

Note that due to the non-uniqueness of the Fourier representation of coils, the GP
perturbations to the coil do not necessarily have a fixed speed ‖(d/dt)g(t)‖. Thus the
perturbation length scale � may be distorted along the length of the coil. Nonetheless,
figure 2 still provides a reliable depiction of the perturbations and can be used to estimate
a desirable value for �.

3.2. Objectives
The primary goal of the second stage of stellarator optimization is to find a set of coils
which reproduce a target magnetic field while satisfying engineering targets, such as
reasonable coil length and separation between coils. To this end, we chose our objective
function f to penalize the normal component of the magnetic field produced by the coils
fB (2.2) and regularize the coil length fL (2.3) to discourage excessively long coils. We find
that adding a simple penalty fL to the objective is sufficient to regularize coil length. While
additional coil regularization functions such as curvature are available in FOCUS, using a
length regularization proved to be sufficient.

Not only do we seek a set of coils which generates the target magnetic field B, we
simultaneously want to hedge against errors in the coil fabrication. To this end, we
formulate the following stochastic objective:

f (x) = E[ωBfB(x + U)] + ωLfL(x), x ∈ R
N, (3.6)

where ωB, ωL ∈ R are weights of the respective objective, U ∼ N (0, C) is a multivariate
normal random variable described in § 3.1 and E denotes the expectation over U . Referring
to (1.1), we set the stochastic and the regularizing part of the objective to

fstoc(x) := ωBfB(x), freg(x) := ωLfL(x). (3.7a,b)
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Note that we only penalize perturbations in the magnetic field penalty and not
perturbations in the length penalty as fabrication errors that minorly increase coil length
are not necessarily problematic from an engineering perspective.

3.3. Coil-to-coil separation constraint
Engineering requirements state that a reasonable configuration must have sufficient
spacing between all pairs of coils, see for example Beidler et al. (1990). In order to ensure
that this condition is satisfied we include it as a constraint in our optimization model.
The implication is that the coil-to-coil distance for adjacent coils is now bounded from
below, but any larger distance is allowed and will not add unnecessary penalties to the
optimization model. We find that without enforcing this constraint coils come too close
during numerical simulations. This constraint is particularly important as FOCUS models
coils as infinitely thin filaments, which may not intersect even when their finite width
counterparts do. We model the minimum distance between coils i and i + 1 by

ci(x) = min
s,t∈[0,2π]2

‖X i(x, s) − X i+1(x, t)‖2
2. (3.8)

Thus, for our optimization model in (1.1), we enforce the constraint

min
s,t∈[0,2π]2

‖X i(x, s) − X i+1(x, t)‖2
2 ≥ ε2

c i ∈ {1, . . . , NC − 1}. (3.9)

To handle the constraints (3.9) we discretize our coils into Nseg segments and compute the
minimum across a total of N2

seg discrete points for any adjacent coil pairs. Moreover, as we
are constraining the minimum distance between adjacent coils, it might happen, that, for
example, coil i and i + 3 get too close to each other. We did not encounter such a behaviour
in our numerical simulations, but additional constraints of the same type could easily be
added to prevent this scenario.

In order to continue to use derivative-based optimization techniques we calculate the
minimum distance and the derivative between a pair of coils with a smooth approximation
to the minimum function, the so-called α-quasimax function, see Lange et al. (2014) (also
known as LogSumExp function). The α-quasimax function approximates the minimum
min(x1, . . . , xn), xi ∈ R, i = 1, . . . , n, by

Qα(x1, . . . , xn) := 1
−α

log

(
n∑

i=1

exp (−αxi)

)
, (3.10)

with α > 0. Therefore, in the limit Qα(x1, . . . , xn) → min(x1, . . . , xn) for α → ∞ and the
following bound holds:

min(x1, . . . , xn) − log(n)

α
≤ Qα(x1, . . . , xn) < min(x1, . . . , xn). (3.11)

Thus, we arrive at the final optimization model considered in this paper: we seek x ∈ R
N

such that

min
x∈RN

E[ωBfB(x + U)] + ωLfL(x), (3.12a)

min
s,t∈[0,2π]2

‖X i(x, s) − X i+1(x, t)‖2
2 ≥ ε2

c , i = {1, . . . , Nc − 1}. (3.12b)

In the next section, we present our efficient global optimization algorithm for the stochastic
optimization of (3.12). In order to continue to use derivative-based optimization techniques
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8 S. Glas, M. Padidar, A. Kellison and D. Bindel

we calculate the minimum distance between coils with a smooth approximation to the
minimum function, the LogSumExp function Qα (Lange et al. 2014).

4. Two-stage global stochastic optimization

In this section, we introduce our global-to-local stochastic optimization algorithm for
solving (3.12). To this end, we modify two methods, the global trust-region BO TuRBO
(Eriksson et al. 2019) method and the Adam (Kingma & Ba 2014) algorithm. The
Bayesian derivative-free optimization routine TuRBO is designed to efficiently globally
optimize a nonlinear function in a high-dimensional bound constrained space. As FOCUS
provides derivative information we use DTuRBO (Padidar et al. 2021), which is a further
development of TuRBO incorporating derivative information. To prioritize efficient
exploration, DTuRBO does not resolve minima to high orders of accuracy. Therefore, we
apply a stochastic local optimization starting from the points we get from the final stage of
DTuRBO. Thus our approach can be summarized in two stages:

(i) perform an approximate global optimization with DTuRBO and select a set of
promising solution points;

(ii) resolve these solution points locally utilizing a stochastic optimizer.

In order to provide choices for prospective future users of this two-stage approach, we
introduce two options for a local stochastic optimizer, the SAA method and the Adam
algorithm enhanced with a novel control variate (AdamCV) for variance reduction. This
two-stage approach makes efficient use of the computational budget as the local optimizer
will resolve the minima much more efficiently than DTuRBO. We start by describing the
global optimization.

4.1. Stage 1: efficient global exploration of design space
In this section, we detail the global optimization by first describing TuRBO and
subsequently commenting on the modifications made to arrive at DTuRBO.

The TuRBO algorithm is a derivative-free method for global optimization of a nonlinear
function across a high-dimensional hypercube Ω = [lb, ub]N with lb, ub ∈ R

N being a
vector of lower and upper bounds for the design space variables. The TuRBO algorithm
starts by performing a Latin hypercube sampling on Ω receiving a sample Xinit =
[x1, . . . , xnsample ] of size nsample ∈ N and then evaluates the objective function f for each
x ∈ Xinit. Subsequently, M local BO runs are started at the M best points from Xinit by
building local GPs within M distinct rectangular trust-regions. At each iteration Thompson
sampling (see Thompson (1933)) is performed within each trust region to generate a set
of candidate points. A batch of the most promising of these candidate points is evaluated
by the function f and these function values are used to update the GP surrogates. Note,
that the batch of evaluations is chosen from the union of candidate points across the trust
regions. Therefore, the evaluations are distributed to each trust region by the region’s
predicted success through Thompson sampling. The trust regions are centred around the
best point found in the evaluation history, and are expanded or contracted by a factor of
2 depending on consecutive successes/failures of decreasing the function value. A local
BO will terminate after the trust region reaches a minimum size. This indicates that the
local BO is no longer making an improvement and is near an optima. Precisely these
approximate minima are gathered and passed on to the second stage of our approach for
further refinement with the local optimizer. Then, a new Latin hypercube sampling of Ω is
performed and a local BO is again started at the best point. The algorithm terminates when
the computational budget, i.e. the maximum number of function evaluations, is reached.
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The success of TuRBO in high dimensions is found in its ability to leverage
multiple local surrogates and simultaneously efficiently distribute the computational
budget across the local BO runs. While the common BO can only be used up to
approximately 20 dimensions (see e.g. Frazier (2018)), TuRBO is designed for significantly
higher-dimensional problems. Also, DTuRBO further improves on TuRBO by equipping
it with a scalable method of incorporating derivatives into the GP models, which yields
several advantages. For example, gradients encode the local descent direction ensuring
that the surrogate is locally accurate and a decreasing direction can be found more easily.
Internally DTuRBO uses a stochastic variational GP (Hensman, Matthews & Ghahramani
2015; Jankowiak, Pleiss & Gardner 2020) to scalably incorporate the high-dimensional
gradient data by approximating it with a low-dimensional representation, see Padidar
et al. (2021). For practical use, DTuRBO takes in a pair of noisy function and gradient
evaluations rather than only noisy function evaluations of f . The approximate minima
gathered from DTuRBO are passed as starting points for the local stochastic optimizers to
be resolved further.

4.2. Stage 2: local stochastic optimization
Approximate minima found in stage one by the DTuRBO algorithm can further be
refined by local stochastic optimizers. The benefit of using local stochastic optimization
techniques is that they will converge to the minima faster than global optimizers as their
main focus is on exploitation rather than exploration. Additionally, some of those methods
provide convergence guarantees. Common choices for first-order techniques are variants of
the stochastic gradient method (Spall 2005) or the application of non-stochastic optimizers
within the SAA method, which has also been used in Lobsien et al. (2020) and Wechsung
et al. (2021). The SAA approximation determines a fixed-accuracy approximation to the
true stochastic objective, where the error in the approximation decays with the square
root of the number of samples. However, this approximation can be optimized in a
relatively small number of steps of an algorithm like BFGS. In contrast, stochastic gradient
descent methods, including our AdamCV approach, converge to the optimum of the true
stochastic objective using a large number of relatively inexpensive steps. Which method is
most appropriate depends strongly on how accurately the stochastic optimization problem
should be solved.

In the following, we give an introduction to the Adam algorithm used in this work for
the stochastic local optimization. Subsequently, we enhance Adam with a novel control
variate, which is a variance reduction technique to improve convergence. Additionally, we
give a brief overview over the SAA method.

4.2.1. Adam algorithm
In order to efficiently arrive at a well-refined solution, we use a variant of the Adam

algorithm (Kingma & Ba 2014). The Adam algorithm is a popular stochastic optimization
method in machine learning due to its improved performance over traditional stochastic
gradient methods. The success of Adam is largely due to the inclusion of a raw second
moment estimator vk of the stochastic gradient. At each iteration Adam evaluates a small
number NA (also called batchsize) of gradients and averages to form a gradient estimator,

gk = 1
NA

NA∑
i=1

∇f (xk + uk,i), k = 1, . . . , Nmax, (4.1)

where Nmax is the maximum number of iterations and uk,i are NA realizations of the random
variable U . To stabilize gradient estimates, Adam employs exponential moving averages
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of the first and second raw moments of the stochastic gradient mk, vk ∈ R
N in each step k,

mk = β1mk + (1 − β1)gk, k = 1, . . . , Nmax, (4.2)

vk = β2vk + (1 − β2)g2
k, k = 1, . . . , Nmax, (4.3)

where the parameters β1, β2 ∈ [0, 1] are usually set close to unity. The first and second
moments estimators mk, vk are biased as they are initialized as the vector of all zeros. To
correct the bias, the estimators mk, vk are divided by (1 − βk

1) and (1 − βk
2) to create the

bias corrected estimators m̂k, v̂k ∈ R
N , as follows:

m̂k = mk

(1 − βk
1)

, v̂k = vk

(1 − βk
2)

, k = 1, . . . , Nmax, (4.4a,b)

where with βk
1 , βk

2 we denote β1, β2 to the power of k. Utilizing these estimators Adam
converges to a local minima of (3.12) with the following step sequence:

xk+1 = xk − ηkm̂k/(
√

v̂k + εA), (4.5)

where εA ∈ R
+ is a small parameter to improve conditioning. To improve the convergence

rate we use the decreasing step size sequence ηk = η/(1 + √
kγ ) where η, γ are tunable

parameters. It is essential that the learning rates for Adam are well-tuned for good
convergence.

4.2.2. AdamCV
When the variance of the perturbations U becomes large it is beneficial to use variance

reduction techniques to reduce the variance of the gradient estimate gk. We follow Wang
et al. (2013) in developing such a variance estimator for gk with control variates. By
using a Taylor expansion of the FOCUS objective function we can derive an approximate
stochastic gradient to f with moments that are easy to calculate. This approximate gradient
can be combined with the true gradient to create an unbiased estimator for gk with a
reduced variance. The first-order Taylor expansion of ∇f is ∇f (z) ≈ ∇f (x) + H(z − x)

where H denotes the Hessian matrix of f . Evaluating the Taylor expansion at z = x + U
yields the control variate g̃(x), as follows:

g̃(x) = ∇f (x) + HU, (4.6)

which is an estimator for E[g̃(x)] = ∇f (x), which can be found using linearity of the
expectation and E[U] = 0. Combining the estimator g̃ (4.6) with our original gradient
estimator gk (4.1) leads us to an unbiased gradient estimator with lower variance,

g(x) = ∇f (x + U) + A(g̃(x) − E[g̃(x)]), (4.7)

where the choice of the diagonal matrix A ∈ R
N×N is detailed in the following. This

unbiased gradient estimator with lower variance can be applied to (4.1) as a replacement
for ∇f (x + U) to accelerate the convergence of the Adam routine. By following this
approach, we ensure that the control variate is highly correlated with ∇f (x + U), such
that we obtain the variance reduction with respect to the gradient estimates.
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As shown in Wang et al. (2013), the optimal diagonal matrix A ∈ R
N×N is chosen in

order to minimize the trace of the variance of g(x), i.e.

A = diag (Cov(HU,∇f (x + U)) + Cov(∇f (x + U), HU))

2diag
(
HCH T) , (4.8)

where we use diag to indicate the diagonal entries of a matrix. By using the optimal A in
(4.7) we arrive at a reduced variance for g̃(xk) given by

Var[g̃(xk)] = (1 − ρ2)Var[gk], (4.9)

where ρ ∈ R
N has entries ρ i = Corr(∂xi f (x + U), g̃(xk)i), i = 1, . . . , N. As the analytic

Hessian H of f is not available in FOCUS we use an approximate Hessian H k in
optimization step k according to the BFGS Hessian approximation (Nocedal & Wright
2006)

yk−1 := ∇f (xk) − ∇f (xk−1), (4.10)

sk−1 := xk − xk−1, (4.11)

H k = H k−1 + yk−1yT
k−1

yT
k−1H k−1sk−1

− H k−1sk−1(H k−1sk−1)
T

sT
k−1H k−1sk−1

, (4.12)

with H 0 initialized as the N × N identity matrix. We find that equipping Adam with the
control variate approach leads to rapid convergence rates in practice, particularly when
warm-starting our optimization from a solution from stage one. We call the combination
of the Adam algorithm enhanced with the control variate ‘AdamCV’.

4.2.3. SAA
The SAA method (see Shapiro (2001), Kim, Pasupathy & Henderson (2015) and

Kleywegt, Shapiro & Homem-de Mello (2002)), is a method of forming a non-stochastic
approximation to a stochastic problem by using the Monte Carlo method. For instance, in
order to approximate the stochastic component

E[ fstoc(x + U)], (4.13)

of the objective (3.12) with fstoc given as in (3.7a,b), we draw NSAA ∈ N independent
realizations of the random variable U , i.e. {ui}NSAA

i=1 . These realizations {ui}NSAA
i=1 are taken to

form the approximation

fSAA(x) = 1
NSAA

NSAA∑
i=1

fstoc(x + ui), (4.14)

with analogous form for the gradient approximation. This objective is straightforward to
implement and can be minimized efficiently with standard non-stochastic optimizers such
as BFGS (Nocedal & Wright 2006) since the samples ui are kept fixed.2 Solving the SAA
comes with large sample size guarantees. In the limit as the sample size NSAA approaches
infinity, the order of convergence is O(1/

√
NSAA) as for standard Monte Carlo methods.

For a finite batchsize NSAA, the minima of the SAA may not converge to minima of the
stochastic problem. So it is recommended that any minima to the SAA is re-evaluated
under the stochastic objective to estimate the ‘out-of-sample’ performance, i.e. draw values
ui different from the ones used in the optimization and re-evaluate (4.14).

2This is in contrast to AdamCV, which incorporates randomness in every step.
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5. Numerical results

In this section, we present numerical results for a W7-X configuration. In the following,
we detail our model data and perform the global-to-local stochastic optimization described
in § 4 to find multiple stochastic minima. To better differentiate between the global and
the local optimizer, we perform a comparison of the local optimizers SAA and AdamCV
initialized at equispaced circular coils in § 5.2. Then, in § 5.3, we use our two-step global
optimization method to find multiple promising stochastic minima.

5.1. Model data
We perform simulations on a W7-X configuration, see e.g. Klinger et al. (2019) for a
description of W7-X. In particular, we use the same high-mirror configuration as in
Lobsien et al. (2020), which is detailed in Nührenberg (1996). A half-module of W7-X
consists of five distinct modular coils, such that after applying the stellarator symmetry,
i.e. making use of the point symmetry of each module and the five-fold symmetry of
W7-X, we arrive at a total of 50 coils. For this study, we find NF = 6 Fourier modes to
be sufficient for both describing sufficiently complex coils and capturing the perturbation
distribution. To ensure six modes did not truncate the effects of the perturbations, we
verified that the mean E[ fstoc(x + U)] is only altered by a relative error of 4.3 × 10−4

when increasing the number of Fourier modes to 12 and when x is the 1.5 m circular
coils (FOCUS’ default initialization). Using NF = 6 modes results in a state dimension of
N = 195. The weights used in our simulations as well as other optimization parameters for
FOCUS can be found in table 1. Heuristically, we found that these weights struck a nice
balance between minimizing the field error and finding smooth coils. Moreover, we used
Nseg = 64 segments per coil as well as Ntheta = Nzeta = 64 nodes in either discretization
direction of the plasma boundary. In order to enforce a reasonable coil-to-coil constraint
for all pairs of adjacent coils, we have to take a minimum distance and the width of the
coils into account. The latter is crucial as FOCUS models coils as infinitely thin filaments.
Therefore, we motivate the value of εc by coil separation distances for the W7-X candidate
configurations HS-5-7 and HS-5-8 given in Beidler et al. (1990). The minimum distance
between the coils for the candidate configurations were 0.06 m and 0.04 m, respectively.
The average lateral coil width of the coils was 0.18 m, such that we chose the coil-to-coil
separation to be at least εc = 0.23 = 1

2(0.04 + 0.06) + 0.18 m in all of our simulations.
The coil-to-coil separation constraints were included in the model via a quadratic penalty
method, see Nocedal & Wright (2006). Thus all optimizations were performed on the
penalty objective with λ ∈ R

+:

fpen(x) := f (x) + λ
NC−1∑
i=1

min[ci(x) − ε2
c , 0]2, (5.1)

with f (x) given in (3.6) and ci(x) (3.8). A λ value of 100 was found to be sufficient
in consistently achieving constraint satisfaction. Moreover, we set α = 10 000 for the
α-quasimax function in (3.10).

5.2. Numerical results for local optimization
We compare the AdamCV algorithm described in § 4.2.2 with the BFGS algorithm applied
to SAA § 4.2.3. We initialized the local optimization of (3.12) from a configuration of
equispaced circular coils using the perturbation size p = 10 mm for all simulations in this
section. We ran this experiment for the different perturbation sizes p = 2 mm, p = 5 mm,
p = 20 mm and made similar observations.
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Parameter ωB ωL εc Ltarget
i �

Value 100.0 0.5 0.23 8.0 0.5

TABLE 1. Optimization parameter used in numerical simulations: weights in FOCUS objective
function ωB, ωL; target length Ltarget

i ; coil-to-coil separation width εc; and length scale �.

(a) (b)

FIGURE 3. Final coil configuration of local stochastic optimization: optimized with (a) SAA
p = 10 mm and (b) with AdamCV p = 10 mm.

In order to compare the two algorithms as fairly as possible, we set the number of
gradient evaluations per step to 10 and the maximum number of gradient evaluations to
50 000. The remaining parameters of AdamCV are set to η = 0.04, γ = 0.1, β1 = β2 =
0.95, εA = 10−10. The SAA approximation was optimized with the deterministic SciPy
optimizer BFGS (Virtanen et al. 2020) and was restarted with new sample values ui once
a minimum for a fixed sample set had been reached. Due to the restarting, we find that a
sample size of 10 is indeed enough for the SAA algorithm, as we find very similar values,
for example, batchsize 100. We plot the final coil sets found by SAA and AdamCV in
figure 3 and find the coils to be similar. Additionally, the BFGS needs to evaluate the
objective function as many times as the gradient such that we have an additional 50 000
function evaluations adding to the cost.

We measure the quality of the coil sets by looking at three measures: the stochastic
objective function f (x) (3.12a); the normal field error fB(x) (2.2); and the stochastic normal
field error E[ fB(x + U)]. We provide an overview of our findings in table 2. We find that
when optimizing with the AdamCV algorithm we arrive at a similar stochastic function
value, with the AdamCV algorithm providing a 0.4 % smaller value than the SAA. When
we evaluate the stochastic component of the objective function, i.e. the stochastic normal
field error, AdamCV finds a 2.1 % smaller stochastic field error value than SAA.

We find that AdamCV arrives at slightly lower stochastic function values/field error, at
an improved computational expense as it does not need to evaluate the function values
additionally to the gradient evaluations. This success is in part due to proper selection
of the learning rate parameters η, γ , which we find through a grid search across the
parameters on short duration runs. The SAA procedure performs similarly well, is easy
to implement, and works well with only having to choose the sample size. We recommend
restarting the SAA optimization with a new batch of samples after a run converges, as we
see an improvement throughout the subsequent runs. In our experience, both methods
can work well in the local refinement step of our two-stage approach. We choose to
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Coil Configuration Stochastic Obj. Function Field Error Stochastic Field Error

SAA 10 mm 4.728 × 10−1 ± [1.10 × 10−2] 1.472 × 10−3 1.972 × 10−3 ± [1.10 × 10−4]
AdamCV 10 mm 4.707 × 10−1 ± [1.05 × 10−2] 1.424 × 10−3 1.930 × 10−3 ± [1.05 × 10−4]

TABLE 2. Values of stochastic objective function (3.12a), normal field error (2.2) and stochastic
normal field error E[ fB(x + U)] for W7-X. The stochastic values are computed using
perturbation size p = 10 mm and we are averaging over 1000 realizations of U . For the stochastic
values we include the 95 % confidence interval after the function value.

use the AdamCV algorithm due to the ability to converge to the true minimum and the
incorporation of randomness in every step over the SAA approach.

5.3. Numerical results for global optimization
In this section, we describe the global stochastic optimization of a W7-X configuration
with model data given in § 5.1. We first describe the global optimization results and then
provide an analysis of the optimized magnetic fields.

5.3.1. Global optimization
For our two-stage approach detailed in § 4, we use the pair D-ACV for the efficient

global search and local refinement steps, respectively. In our numerical simulations, we set
the average perturbations amplitudes to p = 5 mm and p = 10 mm. The global exploration
algorithm DTuRBO was given a maximum number of 100 000 evaluations, a batchsize of
100 and 200 initial evaluations.

The bounding boxes for DTuRBO should be set large enough such that there is enough
flexibility in the design space, while not so large as to capture poor regions of the design
space. As the design variables are Fourier coefficients the box constraints should get
narrower for higher-order Fourier modes. To this end, the lower and upper bounds were
computed using the variance of the perturbations as an approximate length scale. We set
the bounding boxes for DTuRBO to be centred around x0, which denotes circular coils
of radius 1.5 m, resulting in lb, ub = x0 ± δVar[U]. The scalar δ = 1.5/2Var[U0] resizes
the box width such that the translational modes have perturbations bounded by 1.5/2 m,
where Var[U0] is the perturbation variance to the translational mode.

Using this optimization setting, DTuRBO finds around 15 approximate stochastic
minima, which were subsequently resolved with the minimizer AdamCV with a maximum
number of 2000 iterations with a batchsize of 10 and parameters η = 0.001, γ = 0.01,
β1 = β2 = 0.95, εA = 10−10. Using this optimization setting, on average, the combined
optimization routine D-ACV found eight approximate minima within 116 000 evaluations,
which had low enough stochastic objective value/field error to use them for further study
of physical properties.3 We monitored the change in objective value over iterations of
the optimization, towards the end of which the change in objective value was at least
two to three points past the first significant digit, less than the standard deviation of
f (x + U). In other words, a typical perturbation will more negatively affect a solution than
an optimization step can improve. The final configurations arrived at a relative gradient
tolerance of 10−3 for all but one run, which had a gradient tolerance of the order of 10−2,

3Due to the short duration runs for hyperparameter tuning for η, γ , we found the number of function evaluations
needed for the hyperparameter tuning to be fewer than for one local AdamCV run, which is why we did not include this
number in our comparison.
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(a) (b)

FIGURE 4. Final coil sets for the optimization with D-ACV: (a) p = 5 mm; (b) p = 10 mm.
Corresponding field error can be found in table 3. For each plot, we sorted and coloured the coils
according to their stochastic objective value with respect to table 3: low (red); medium (blue);
high (black). In panel (a), the two rightmost blue coils appear to be very close. This is deceptive
as the rightmost coil extends outward while the other passes behind it.

Coil Configuration Stochastic Obj. Function Field Error Stochastic Field Error

D-ACV-5 (red) 4.360 × 10−1 ± [2.86 × 10−3] 1.472 × 10−3 1.599 × 10−3 ± [2.86 × 10−5]
D-ACV-5 (blue) 4.795 × 10−1 ± [2.78 × 10−3] 1.635 × 10−3 1.758 × 10−3 ± [2.78 × 10−5]
D-ACV-5 (black) 4.811 × 10−1 ± [3.19 × 10−3] 1.584 × 10−3 1.723 × 10−3 ± [3.19 × 10−5]
D-ACV-10 (red) 4.701 × 10−1 ± [1.06 × 10−2] 1.419 × 10−3 1.925 × 10−3 ± [1.06 × 10−4]
D-ACV-10 (blue) 5.102 × 10−1 ± [1.17 × 10−2] 1.638 × 10−3 2.155 × 10−3 ± [1.17 × 10−4]
D-ACV-10 (black) 5.157 × 10−1 ± [9.78 × 10−3] 1.549 × 10−3 2.082 × 10−3 ± [9.78 × 10−5]

TABLE 3. Values of stochastic objective function (3.12a), normal field error (2.2) and stochastic
normal field error E[ fB(x + U)] for six different coil configurations for W7-X shown in figure 4.
The stochastic values are computed using the respective perturbation size, and averaged over
1000 realizations of U . For the stochastic values we include the 95 % confidence interval after
the function value. The colour adjacent to the coil configuration denotes the corresponding
coloured coil set in figure 4. All coils have been optimized with D-ACV and the number in
the coil configuration indicates the perturbation size.

resulting in a reduction of at least three orders of magnitude. Using the relative gradient
tolerance ‖∇f (x)‖/(wB + wL) rather than an absolute tolerance reduces the effect that the
weights in the objective have on rescaling the gradient, i.e. increasing the weights by a
factor of 10 will increase the norm of the gradient by a factor of 10 as well. In figure 4, we
show three final coil sets found by the global optimization for the different perturbation
sizes. Although it seems like the coils are close in the plots, the minimum distance is
satisfied in all configurations. All of these coil sets achieved a low normal field error
fB(x) and stochastic normal field error E[ fB(x + U)], as seen in table 3. We also compute
the 95 % confidence interval of each coil configuration and find the size to be at least
a magnitude smaller than the respective value, varying slightly with respect to the coil
configuration.

Comparing with the available literature we find that our total costs for arriving at an
approximate stochastic global minimum is less than 0.1 % compared with the evaluation

https://doi.org/10.1017/S002237782200023X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782200023X


16 S. Glas, M. Padidar, A. Kellison and D. Bindel

budget in Lobsien et al. (2020), where solely local stochastic optimization has been
used. Here, we assume that function evaluations in the respective codes take a similar
amount of time/resources and we use a 5-to-1 conversion factor to convert the time for
gradient evaluations to the time for function evaluations.4 We attribute this improvement in
efficiency to a judicious choice of algorithms and the availability of gradients in FOCUS.

REMARK 5.1 (The need for global exploration). The global exploration stage of the
optimization routine is critical to finding many distinct local minima. To gauge the
value, we randomly initialized ten stochastic optimization runs per perturbation size
(p = 5, 10 mm) by randomly perturbing the default starting point (circular coils), i.e.
xinit := x0 + U, U ∼ N (0, C). We then compared the result with a stochastic optimization
initialized directly from the default starting point. All 11 runs for each perturbation size
converged to the same local minimum, thus lacking the benefits of global exploration. One
could, of course, extend this local search by running more randomly initialized stochastic
runs per perturbation size – or – increasing the magnitude of the resulting perturbation
after a fixed number of ‘unsuccessful’ runs. This would lead to higher (and potentially
very large) computational costs. Therefore, we employ our efficient surrogate-based global
exploration in the first step to find promising regions at low computational cost.

5.3.2. Analysis of magnetic field
In this section, we provide an analysis of the magnetic field of configurations optimized

through our two-stage approach. We perform a perturbation analysis to showcase the
resilience of the optimized configurations’ magnetic fields in 5.3.1 to perturbations in in
the coils for the 5 mm case.5 Additionally, we provide a Poincaré plot of one configuration
to show the magnetic surfaces.

For the perturbation analysis, we followed the setting in Lobsien et al. (2020), where
each coil configuration is perturbed 200 000 times. A histogram of the field error is
presented in figure 5. The colour of the respective histogram is consistent with the coloured
coil set in figure 4 and with the name convention in table 3. Despite having a lower
stochastic function value than D-ACV-5 (black), the coil configuration D-ACV-5 (blue)
has a slightly higher field error on average. We observe that all field error histograms have
a small standard deviation and hence small tails, verifying that the stochastic optimization
found three solutions that are robust to errors in the coils.

To show the quality of the magnetic field, we include a Poincaré plot of the best
coil configuration in the 10 mm case, i.e. D-ACV-10 (red), and compare it with an
approximated target magnetic field6 in figure 6. To create the Poincaré plots, field lines
are followed for multiple times around the stellarator and a point is set whenever the field
line intersects with a fixed plane. For the Poincaré plots in figure 6(a), we follow 25 field
lines for 3000 rotations and chose the toroidal angle φ = 0. For a better comparison, we
plot the upper half of the approximated target magnetic field in blue and the stochastic
optimized magnetic field in the lower half in red. We observe that both, the magnetic
field of the approximated target configuration and the stochastic minimum, have nested
flux surfaces. In the outer part, we see the characteristic W7-X island chain with five
islands. The inner surfaces of the Poincaré plots align well and the outer surfaces have
minor differences. In addition, we compare the rotational transform profile ι for both

4We run our numerical simulations on an Ubuntu 20.04 cluster with MPI using 14 cores. Across 104 calls to FOCUS,
the mean time for the function evaluations is around 0.1 s and for the gradient evaluations is around 0.5 s.

5We received similar results for the 10 mm case.
6To generate an approximation to the target magnetic field, we run FOCUS with ωB = 1.0 × 1010 and arrive at a

minimum field error of 5.3 × 10−6.
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FIGURE 5. Perturbation analysis for the three D-ACV-5 coil configurations of W7-X in
figure 4(a) and values in table 3. The colour of the field error histogram is consistent with the
colour of the coil in figure 4(a). All coil sets were perturbed 200 000 times with a perturbation
size of 5 mm.

(a) (b)

FIGURE 6. (a) Poincaré plot for the best (with respect to stochastic field error) D-ACV-10 coil
configuration (red, lower half) of W7-X in figure 4(b) (red) and values in table 3 compared
with the Poincaré plot of the approximated target magnetic field (blue,upper half). (b) Rotational
transform ι profile for the best D-ACV-10 coil configuration (red) and for approximated target
magnetic field (blue).

configurations, where we assume the rotational transform profile for the approximated
target magnetic field yields a good approximation to the true target rotational transform
profile. For a quantitive comparison, we compute the maximum and average deviation
for the rotational transform profile from the stochastic minimum to the approximated
target rotational transform profile. The maximum deviation yields 4.2 %, and the average
deviation is 1.0 %, such that the rotational transform profile of the stochastic minimum
yields a good approximation to the approximated target configuration, despite this was not
an optimization target.
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Thus, we conclude that our optimization arrives at a good magnetic field in the sense that
it is close to the (approximated) target magnetic field, resembles the known characteristics
of the W7-X magnetic field, has nested flux surfaces and approximates the target rotational
transform profile.

6. Conclusion and future work

In this paper we develop a stochastic optimization model for stellarator coil
configurations in order to hedge against fabrication errors in the construction. Our
model considers the effects of normally distributed coil fabrication uncertainties on
the normal field error, a length regularization and a coil-to-coil separation distance
constraint. Our novel global-to-local approach leverages the efficient high-dimensional
derivative-based Bayesian optimizer DTuRBO, as well as SAA and the Adam algorithm
equipped with control variates to perform an efficient global exploration. In our numerical
simulations for a W7-X-like configuration, we found many satisfactory minima at a
low computational expense, approximately less than 0.1 % of previous work. Note, that
previous work only addresses local stochastic optimization, whereas we perform global
stochastic optimization.

Possible further directions for work include the investigation of other objective functions
which show high sensitivity to coil errors. For instance, Andreeva et al. (2015) and
Kremer (2007) showed the magnetic island width to be a quantity highly affected by
errors in the coils. Another direction might be to perform this global-to-local approach
with, for example, different physical properties such as rotational transform, alpha particle
confinement, etc. using different codes such as SIMSOPT (Landreman et al. 2021) or
PyPlasmaOpt (Wechsung et al. 2021). Both of these codes include derivative information,
which has been indispensable in this work. Furthermore, the model posed here only
considers fabrication uncertainties whereas coil placement and alignment uncertainties,
considered in Kremer (2007), are yet another source of error with a distinct distribution.
Future work could investigate the distributional assumptions of the models.
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