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IN MEMORY OF ROBERT A. RANKIN

Abstract. Page 188 in Ramanujan’s lost notebook is devoted to a certain class
of infinite series connected with Euler’s pentagonal number theorem. These series are
represented in terms of Ramanujan’s famous Eisenstein series P, Q, and R. The purpose
of this paper is to prove all the formulas on page 188 and to show that one of them
leads to an interesting, new recurrence formula for σ (n), the sum of the positive divisors
of n.
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1. Introduction. On page 188 of his lost notebook, in the pagination of [9],
Ramanujan examines the series,

T2k := T2k(q) := 1 +
∞∑

n=1

(−1)n{(6n − 1)2kqn(3n−1)/2 + (6n + 1)2kqn(3n+1)/2}, |q| < 1.

(1.1)

Note that the exponents n(3n ± 1)/2 are the generalized pentagonal numbers.
Ramanujan records formulas for T2k, k = 1, 2, . . . , 6, in terms of the Eisenstein series,

P(q) := 1 − 24
∞∑

k=1

kqk

1 − qk
, (1.2)

Q(q) := 1 + 240
∞∑

k=1

k3qk

1 − qk
, (1.3)

and

R(q) := 1 − 504
∞∑

k=1

k5qk

1 − qk
, (1.4)

where |q| < 1. Ramanujan’s formulations of these formulas are cryptic. The first is given
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by Ramanujan in the form

1 − 52q − 72q2 + · · ·
1 − q − q2 + · · · = P.

In succeeding formulas, only the first two terms of the numerator are given, and in two
instances the denominator is replaced by a dash —. At the bottom of the page, he gives
the first five terms of a general formula for T2k.

The purpose of this paper is to prove these seven formulas and one corollary. Keys
to our proofs are the pentagonal number theorem [2, p. 36, Entry 22 (iii)]

(1 − q)(1 − q2)(1 − q3) · · · =: (q; q)∞ = 1 +
∞∑

n=1

(−1)n{qn(3n−1)/2 + qn(3n+1)/2}, (1.5)

where |q| < 1, and Ramanujan’s famous differential equations [6], [7, p. 142]

q
dP
dq

= P2 − Q
12

, q
dQ
dq

= PQ − R
3

, and q
dR
dq

= PR − Q2

2
. (1.6)

We now state Ramanujan’s six formulas for T2k followed by a corollary and his
general formula.

THEOREM 1.1. If T2k is defined by (1.1) and P, Q, and R are defined by (1.2)–(1.4),
then

(i)
T2(q)

(q; q)∞
= P,

(ii)
T4(q)

(q; q)∞
= 3P2 − 2Q,

(iii)
T6(q)

(q; q)∞
= 15P3 − 30PQ + 16R,

(iv)
T8(q)

(q; q)∞
= 105P4 − 420P2Q + 448PR − 132Q2,

(v)
T10(q)
(q; q)∞

= 945P5 − 6300P3Q + 10080P2R − 5940PQ2 + 1216QR,

and

(vi)
T12(q)
(q; q)∞

= 10395P6 − 103950P4Q + 221760P3R − 196020P2Q2

+ 80256PQR − 2712Q3 − 9728R2.

The first formula has an interesting arithmetical interpretation.

COROLLARY 1.2. For n ≥ 1, let σ (n) = ∑
d|n d, and define σ (0) = − 1

24 . Let n denote
a non-negative integer. Then

−24
∑

j+k(3k±1)/2=n
j,k≥0

(−1)kσ ( j) =




(−1)r(6r − 1)2, if n = r(3r − 1)/2,

(−1)r(6r + 1)2, if n = r(3r + 1)/2,

0, otherwise.

(1.7)
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Since σ ( j) is multiplicative, we note that σ ( j) is even except when j is a square
or twice a square. Thus, from Corollary 1.2, we see that, unless n = r(3r ± 1)/2,
the number of representations of n as a sum of a square or twice a square and
a generalized pentagonal number k(3k ± 1)/2 is even. For example, if n = 20, then
20 = 8 + 12 = 18 + 2.

THEOREM 1.3. Define the polynomials f2k(P, Q, R), k ≥ 1, by

f2k(P, Q, R) := T2k(q)
(q; q)∞

. (1.8)

Then, for k ≥ 1,

f2k(P, Q, R) = 1 · 3 · · · (2k − 1)
{

Pk − k(k − 1)
3

Pk−2Q + 8k(k − 1)(k − 2)
45

Pk−3R

− 11k(k − 1)(k − 2)(k − 3)
210

Pk−4Q2

+ 152k(k − 1)(k − 2)(k − 3)(k − 4)
14175

Pk−5QR + · · ·
}
. (1.9)

The statement of Theorem 1.3 is admittedly incomplete. The missing terms
represented by + · · · contain all further products PaQbRc, such that 2a + 4b + 6c = 2k.
It would be extremely difficult to find a general formula for f2k(P, Q, R) which would
give explicit representations for each coefficient of P2aQ4bR6c.

In Section 2 we provide proofs of the two theorems and corollary. In the third
section, we offer remarks and related references.

2. Proofs. Important in our proofs are the simple identities

(6n ± 1)2 = 24
n(3n ± 1)

2
+ 1. (2.1)

Proof of Theorem 1.1. Observe that

P(q) = 1 + 24q
d

dq

∞∑
n=1

log(1 − qn)

= 1 + 24q
d

dq
log(q; q)∞

= 1 + 24q
d

dq (q; q)∞
(q; q)∞

.

Thus, using (1.5) and (2.1), we find that

(q; q)∞P(q) = (q; q)∞ + 24q
d

dq

(
1 +

∞∑
n=1

(−1)n{qn(3n−1)/2 + qn(3n+1)/2})

= (q; q)∞ + 24
∞∑

n=1

(−1)n
{

n(3n − 1)
2

qn(3n−1)/2 + n(3n + 1)
2

qn(3n+1)/2
}
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= (q; q)∞ +
∞∑

n=1

(−1)n{((6n − 1)2 − 1)qn(3n−1)/2 + ((6n + 1)2 − 1)qn(3n+1)/2}

= (q; q)∞ +
∞∑

n=1

(−1)n{(6n−1)2qn(3n−1)/2 + (6n+1)2qn(3n+1)/2}− (q; q)∞ +1

= T2(q). (2.2)

This completes the proof of (i).
In the proofs of the remaining identities of Theorem 1.1, in each case, we apply

the operator 24q d
dq to the preceding identity. In each proof we also use the identities

24q
d

dq
T2k(q) = T2k+2(q) − T2k(q), (2.3)

which follows from differentiation and the use of (2.1), and

24q
d

dq
(q; q)∞ = T2(q) − (q; q)∞, (2.4)

which arose in the proof of (2.2).
We now prove (ii). Applying the operator 24q d

dq to (2.2) and using (2.3) and (2.4),
we deduce that

P(q)(T2(q) − (q; q)∞) + (q; q)∞24q
d

dq
P(q) = T4(q) − T2(q).

Employing (i) to simplify and using the first differential equation in (1.6), we arrive at

P2(q)(q; q)∞ + 2(P2(q) − Q(q))(q; q)∞ = T4(q),

or

T4 = (3P2 − 2Q)(q; q)∞, (2.5)

as desired.
To prove (iii), we apply the operator 24q d

dq to (2.5) and use (2.3) and (2.4) to deduce
that

T6 − T4 = 24
(

6Pq
dP
dq

− 2q
dQ
dq

)
(q; q)∞ + (3P2 − 2Q)(T2 − (q; q)∞)

= (12P(P2 − Q) − 16(PQ − R))(q; q)∞ + (3P2 − 2Q)(P − 1)(q; q)∞,

where we used (1.6) and (i). If we now employ (2.5) and simplify, we conclude that

T6 = (15P3 − 30PQ + 16R)(q; q)∞.

In general, by applying the operator 24q d
dq to T2k and using (2.3) and (2.4), we

find that

T2k+2 − T2k = 24q
d

dq
f2k(P, Q, R)(q; q)∞ + f2k(P, Q, R)(P − 1)(q; q)∞,
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where we have used the notation (1.8). Then proceeding by induction while using the
formula (1.8) for T2k, we find that

T2k+2

(q; q)∞
= 24q

d
dq

f2k(P, Q, R) + Pf2k(P, Q, R).

Thus, in the notation (1.8),

f2k+2(P, Q, R) = 24q
d

dq
f2k(P, Q, R) + Pf2k(P, Q, R). (2.6)

With the use of (2.6) and the differential equations (1.6), it should now be clear
how to prove the remaining identities, (iv)–(vi), and so we omit further details. �

Proof of Corollary 1.2. By expanding the summands of P(q) in (1.2) in geometric
series and collecting the coefficients of qn for each positive integer n, we find that

P(q) = 1 − 24
∞∑

n=1

σ (n)qn = −24
∞∑

n=0

σ (n)qn,

upon using the definition σ (0) = − 1
24 . Thus, by (1.5), Theorem 1.1 (i) can be written

in the form

−24
∞∑

j=0

σ ( j)q j ·
(

1 +
∞∑

k=1

(−1)k{qk(3k−1)/2 + qk(3k+1)/2})

= 1 +
∞∑

n=1

(−1)n{(6n − 1)2qn(3n−1)/2 + (6n + 1)2qn(3n+1)/2}. (2.7)

Equating coefficients of qn, n ≥ 1, on both sides of (2.7), we complete the proof. �

Proof of Theorem 1.3. We apply induction on k. For k = 1, 2, the assertion (1.9) is
true by Theorem 1.1 (i), (ii). Assume therefore that (1.9) is valid; we shall prove (1.9)
for k replaced by k + 1. Our proof employs (2.6).

The terms involving Pk−6, which are not displayed on the right side of (1.9), are
of the forms c1Pk−6R2, c2Pk−6Q3, and c3Pk−6RQ2, for certain constants c1, c2, and c3.
If we differentiate each of these expressions and use the differential equations (1.6),
we can easily check that no terms like the five displayed forms in (1.9) arise. Thus,
when applying (2.6) along with induction on k, we need only concern ourselves with
the derivatives of the five displayed terms in (1.9); no further contributions are made
by the derivatives of undisplayed terms to the five coefficients with k replaced by
k + 1.
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By (2.6), (1.6), and induction, we find that

f2k+2(P, Q, R) = 1 · 3 · · · (2k − 1)
{

kPk−1 · 2(P2 − Q)

− k(k − 1)(k − 2)
3

Pk−3Q · 2(P2 − Q) − k(k − 1)
3

Pk−2 · 8(PQ − R)

+ 8k(k − 1)(k − 2)(k − 3)
45

Pk−4R · 2(P2 − Q)

+ 8k(k − 1)(k − 2)
45

Pk−3 · 12(PR − Q2)

− 11k(k − 1)(k − 2)(k − 3)(k − 4)
210

Pk−5Q2 · 2(P2 − Q)

− 11k(k − 1)(k − 2)(k − 3)
210

Pk−4 · 2Q · 8(PQ − R)

+ 152k(k − 1)(k − 2)(k − 3)(k − 4)(k − 5)
14175

Pk−6QR · 2(P2 − Q)

+ 152k(k − 1)(k − 2)(k − 3)(k − 4)
14175

Pk−5R · 8(PQ − R)

+ 152k(k − 1)(k − 2)(k − 3)(k − 4)
14175

Pk−5Q · 12(PR − Q2) + · · ·
}

+ 1 · 3 · · · (2k−1)
{

Pk+1 − k(k−1)
3

Pk−1Q + 8k(k−1)(k−2)
45

Pk−2R

− 11k(k − 1)(k − 2)(k − 3)
210

Pk−3Q2

+ 152k(k − 1)(k − 2)(k − 3)(k − 4)
14175

Pk−4QR + · · ·
}
.

The remaining task is to collect coefficients of the five terms, Pk+1, Pk−1Q,

Pk−2R, Pk−3Q2, and Pk−4QR. Upon completing this routine, but admittedly tedious,
task, we complete the proof of the theorem as stated by Ramanujan in [9]. �

3. Further remarks. Beginning with his paper [6] and notebooks [8], Ramanujan
devoted considerable attention to Eisenstein series, most notably to P, Q, and R, defined
by (1.2)–(1.4). In particular, see [1, pp. 318–333], [2, Chapters 16, 17], and [3, Chapter
33]. The identities in [2, pp. 59, 61–65] are particularly related to the ones proved here.
His lost notebook [9] contains several new results on P, Q, and R, including those
proved in this paper. A survey of Ramanujan’s work on Eisenstein series, especially the
claims in his lost notebook, has been written by the authors [4].

The functions Q and R can be represented or evaluated in terms of parameters
prominent in the the theory of elliptic functions [2, pp. 126–127]. The function P
does have one representation in terms of elliptic function parameters [2, p. 120,
Entry 9 (iv)], but it is in terms of dz/dx, where z := z(x) := 2F1( 1

2 , 1
2 ; 1; x), and where

q := exp(−πz(1 − x)/z(x)). The appearance of dz/dx greatly decreases the formula’s
usefulness. Evaluations of Q and R can be given in terms of z; dz/dx does not appear.
Perhaps the representation of P given in Theorem 1.1 (i) will prove to be more useful
than the aforementioned representation for P. While Q and R are modular forms, P is
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not, and for this reason it does not share many properties and representations that Q
and R possess.

Besides Corollary 1.2, other identities of Ramanujan can be reformulated in terms
of divisor sums σk(n) := ∑

d|n dk. In particular, see [1, pp. 326–329] and the references
cited there. However, by far, the most comprehensive study of identities of this sort
has been undertaken by J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams
[5], where many references to the literature can also be found. On the other hand,
R. A. Rankin [10] used elementary identities for divisor sums to establish relations
between Eisenstein series. In particular, he proved Ramanujan’s differential equations
(1.6) along these lines.

ACKNOWLEDGEMENT. The authors thank Heng Huat Chan for helpful remarks
and Alexandru Zaharescu for the observation after Corollary 1.2.

REFERENCES

1. B. C. Berndt, Ramanujan’s Notebooks, Part II (Springer-Verlag, 1989).
2. B. C. Berndt, Ramanujan’s Notebooks, Part III (Springer-Verlag, 1991).
3. B. C. Berndt, Ramanujan’s Notebooks, Part V (Springer-Verlag, 1998).
4. B. C. Berndt and A. J. Yee, Ramanujan’s contributions to Eisenstein series, especially in

his lost notebook, in Number theoretic methods – future trends (eds. C. Jia and S. Kanemitsu),
(Kluwer, Dordrecht, 2002), 31–53.

5. J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary evaluation
of certain convolution sums involving divisor functions, in Number Theory for the Millennium,
Vol. 2 (eds. M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand, and
W. Philipp), (AK Peters, 2002), 229–274.

6. S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22
(1916), 159–184.

7. S. Ramanujan, Collected papers, Cambridge University Press, Cambridge, 1927;
reprinted by Chelsea, New York, 1962; reprinted by the American Math. Soc., Providence,
RI, 2000.

8. S. Ramanujan, Notebooks (2 volumes) (Tata Institute of Fundamental Research,
Bombay, 1957).

9. S. Ramanujan, The lost notebook and other unpublished papers (Narosa, New Delhi,
1988).

10. R. A. Rankin, Elementary proofs of relations between Eisenstein series, Proc. Roy. Soc.
Edinburgh Sect. A 76 (1976), 107–117.

https://doi.org/10.1017/S0017089502001076 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502001076

