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Abstract
Dementia is a significant public health priority with approximately 55 million cases worldwide, and this number is predicted to quadruple by
2050. Adherence to a healthy diet and achieving optimal nutritional status are vital strategies to improve brain health. The importance of this area
of research has been consolidated into the new term ‘nutritional psychiatry’. Dietary nitrate, closely associated with the intake of fruits and
vegetables, is a compound that is increased in dietary patterns such as the Mediterranean andMIND diets and has protective effects on cognition
and brain health. Nitrate is characterised by a complex metabolism and is the precursor of the nitrate–nitrite–nitric oxide (NO) pathway con-
tributing to systemic NO generation. A higher intake of dietary nitrate has been linked to protective effects on vascular outcomes including blood
pressure and endothelial function. However, the current evidence supporting the protective effects of dietary nitrate on brain health is less
convincing. This article aims to provide a critical appraisal of the current evidence for dietary nitrate supplementation for improving brain health
and provide suggestions for future research.
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The brain is an energetically expensive organ despite its small
size (approximately 1·3–1·4 kg), accounting for approximately
20 % of resting energy expenditure(1). From the moment of con-
ception and through the various developmental stages, an opti-
mal intake of energy and nutrients is essential for normal brain
formation and neurocognitive development(2). Environmental
and/or genetic factors can affect nutritional status, especially if
occurring during the early stages of development, and can
often lead to various degrees of neurocognitive impairment(3).
Although rare, examples of genetic disorders include Prader–
Willi syndrome, phenylketonuria and inherited metabolic disor-
ders(4). Examples of environmental factors include deficiencies
of minerals (i.e. I, Fe) and vitamins (i.e., folic acid, vitamin A)(5).
This is particularly common in developing countries and still
represents a public health concern.

Similar to other physiological parameters such as bone
mass(6) and lung function(7), the trajectory of neurocognitive
function is typically represented by the shape of a Maxwell–
Boltzmann distribution curve(8). This defines a maximum
peak that is typically reached during early adulthood followed

by progressive decline in performance with ageing(9).
Characterising the typical cognitive profile associated with a
healthy ageing trajectory is fundamental for identifying key
risk and protective factors and the development of interven-
tion and risk reduction strategies. Indeed, factors influencing
neurocognitive trajectories could be compared with vectorial
forces shaping the direction and velocity of a given trajectory,
which would represent the cumulative result of the forces
applied by protective and risky factors at each time point dur-
ing the life course of an individual. Fig. 1 provides a graphical
model of this concept applied to a healthy (left graph) and
abnormal (right graph) cognitive trajectory. The model illus-
trates the complex and dynamic interaction that may happen
at any point in an individual’s lifetime, which could shape the
direction and velocity of the cognitive trajectory. The net bal-
ance between protective and modifiable/non-modifiable risk
factors would determine the ascent rate and peak of the cog-
nitive potential of an individual in early life; the subsequent
rate of decline would be the result of the net effect of the age-
ing process, non-modifiable and modifiable protective and
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risk factors. In the context of dementia risk, a greater down-
trend of the trajectory would be given by a greater negative
net balance leading to accelerated cognitive decline, cognitive
impairment and, if protracted, development of dementia.
The reversibility of the stages of cognitive impairment is a
contentious area, but the general consensus is for interven-
tions to follow the simple rule of thumb ‘the earlier, the better’
as irreversibility may be difficult, if not impossible, once the
onset of clinical dementia occurs(10).

Adherence to a healthy diet and achievement and mainte-
nance of an optimal nutritional status are vital strategies to
improve brain and cognitive health as captured in the term
‘nutritional psychiatry’(11,12). Research in this area has greatly
expanded in the last two decades(13) with observational and
interventional studies testing the influence of various nutrients
(i.e. caffeine(14), polyphenols(15), PUFA(16), B vitamins(17),
vitamin D(18), dietary nitrates(19)) and dietary patterns (i.e.
Mediterranean Diet (MedDiet)(20), Dietary Approach to Stop
Hypertension (DASH) and MIND diet(21)) on brain health
alone or as part of multimodal interventions (i.e. Finger
trial(22), Encore study(23)). While the evidence has been overall
modest and conflicting on the protective effects of single
nutrients, more convincing evidence has emerged from the
investigation of holistic, nutritional approaches based on pro-
moting a greater adherence to healthy dietary patterns(24).
Shannon et al.(25) demonstrated that a higher MedDiet adher-
ence, defined by the Pyramid MedDiet score, was associated
with better global cognition, memory and executive func-
tion in older (i.e. ≥ 60 years) UK adults recruited from the
European Prospective Investigation into Cancer and Nutrition–
Norfolk (EPIC-Norfolk). Further, the Predimed intervention
trial showed that a MedDiet supplemented with olive oil or

nuts was associated with improved composite measures of
cognitive function after 4 years of follow-up in adults aged
55–80 years(26).

While these studies certainly have great potential for public
health prevention, the mechanistic insights provided are limited
as effects are likely to be derived from the synergy of different
nutritional factors.

A compound that is increased in healthy dietary patterns,
as it is closely associated with fruit and vegetable intake, is
dietary nitrate(27). It is estimated at the population level, in
Western countries, that dietary nitrate intake is approximately
110mg/d(28). A previous review(27) estimated that the nitrate con-
tent of healthy dietary patterns, such as the MedDiet or DASH
diet, could be 10-fold higher (approximately 1000–1200 mg/d)
than the estimated average nitrate intake ofWestern populations
(approximately 110 mg/d)(28) and considerably higher than the
level of nitrate intake currently recommended by the WHO
(3·7 mg/kg of body weight (corresponding to approximately
280mg/d for a personwith a body weight of 70 kg))(29). The pro-
tective effects of higher levels of nitrate intake (approximately
400–800 mg/d) on cardiometabolic and neurocognitive health
have been consistently reported in randomised trials(19,30).
Some studies have also suggested an interaction with ageing
such that older individuals may need higher nitrate doses to
elicit similar effects on vascular outcomes to those observed in
younger groups(31,32).

Dietary nitrate and brain health

Inorganic nitrate is a water-soluble compound that can be found
naturally in water and soil and is a fundamental component of

Fig. 1. This graph has been created based on the ‘pendulum’ model of disease risk(72). The graph expands the concept by adding a vectorial dimension to the non-
modifiable andmodifiable factors that can shape the trajectories of cognition across the life course of an individual. First, a description of the key elements of the graph is
needed. Arrows indicate vectorial forces resulting from the cumulative influences of protective (green) and risky (blue) modifiable risk factors. Black arrows indicate
influence of modifiable risk factors on life course cognitive trajectories. The size of the arrows indicates the cumulative magnitude of the effects on the factors on
the cognitive trajectories. The direction of the arrows indicates the applied cumulative force applied by factors to the cognitive trajectories. In a health trajectory, cognitive
function achieves the greatest individual potential during the early life and starts to gradually decline as the influence of the ageing process (black arrows) progressively
increases in magnitude but maintaining an overall normal cognitive function and staying well above the range of cognitive impairment (coloured areas). Influence of risky
modifiable factors (blue arrows) may also increase later in life due to, for example, reduced physical mobility and diet quality. The abnormal trajectory on the right
describes one of the possibly multiple scenarios leading to an accelerated cognitive decline that an individual may present during the life course with achievement
of a lower cognitive potential followed by an accelerated cognitive decline due to greater net negative forces derived from the balance of non-modifiable and modifiable
risky factors and modifiable protective factors. The result is an accelerated trajectory crossing into cognitive impairment and increasing the risk of developing severe
cognitive impairment (i.e. dementia) within the lifetime of an individual.
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the nitrogen cycle(29). Both nitrate and nitrite can be produced
endogenously in humans via oxidation of nitric oxide (NO).
Nitrate can be formed directly from the reaction between NO
and oxy-Hb(33), while nitrite can be produced through auto-oxi-
dation of NO, which is catalysed by plasma protein ceruloplas-
min(34). Both are considered end products of endogenous NO
metabolism(35). In animal studies, NO can be formed under aci-
dotic conditions by the reduction of the large pool of systemic
nitrite, and this formation is not blocked even after NO synthase
(NOS) inhibition(36). These findings have also been observed in
humans after the infusion of 75mg of sodium nitrite into the fore-
arms of healthy individuals, resulting in blood flow increasing by
175 %. Interestingly, similar to the animal studies, the generation
of NO was not blocked after NOS inhibition by the infusion of
NG-monomethyl-L-arginine (NOS inhibitor). Therefore, it
appears that systemic nitrite represents a storage pool for NO
generation(37). It has also been reported that nitrate can be used
as a substrate for systemic nitrite formation after observing a
significant increase in plasma nitrate and nitrite following a
nitrate load(38). All aforementioned studies have suggested that
nitrate and nitrite can be recycled physiologically in tissues to
synthesise NO independently of the enzymatic NOS pathway
and are heavily dependent on the entero-salivary circulation
of the nitrate pathway(35). This pathway offers a backup system
to promote NO production when endogenous NO generation
via the NOS pathway is impaired(39).

NO is the biological effector of the putative protection that
dietary nitrate exerts on brain function, and it has been found
to be involved in learning andmemory processes(40). NO is a gas-
eous and highly reactivemolecule that can diffuse quickly to sur-
rounding tissues(41). NO can be synthesised in neurons following
the activation of N-methyl-D-aspartate receptors via the amino
acid glutamate, and the first to observe this mechanism was
Garthwaite et al.(42). This activation leads to the influx of Caþþ

into the nerve cell, thus activating NOS via Caþþ/calmodulin
binding, which ultimately generates NO(43). NOS is expressed
in all brain cells, including vascular, neuronal and glial cells; thus,
there is NO production in the brain(44), which has been impli-
cated in cerebrovascular regulation. One of the mechanisms that
underlie the regulation of cerebral blood flow (CBF) is neurovas-
cular coupling(43). There is also a growing body of evidence
suggesting that NO plays substantial roles in various physiologi-
cal processes, including the regulation of vascular resistance,
neuromodulation and neurotransmission(45). The neurotransmit-
ter action of NO is achieved by stimulating soluble guanylate
cyclase and forming a second messenger molecule, cyclic
guanosine monophosphate(46). NO is also involved in the modu-
lation of synaptic functions, and the enhancement of synaptic
activity has been shown to be mediated by the activation of
soluble guanylate cyclase(47). The loss of eNOS-generated NO
via the NOS inhibitor has been shown to be related to the
up-regulation of amyloid precursor protein expression, and an
increase in Aβ, demonstrating the importance of endothelial
NO inmodulating amyloid precursor protein within the brain(48).
The NO-cyclic guanosine monophosphate pathway could be an
essential therapeutic target in preventing neurocognitive
impairment(48).

Dietary nitrate therefore has the mechanistic potential
to influence brain functions; however, observational and clini-
cal trials, overall, have contrasting results(19,49). A meta-analy-
sis conducted in 2018 exploring the effects of dietary nitrate
supplementation on cognition and CBF(19) found a lack of evi-
dence for the benefits of dietary nitrate on both outcomes. The
review also highlighted the limitations of the studies (small
sample size, short duration and use of healthy populations),
which could have contributed to the limited efficacy of the
dietary nitrate interventions. Since the publication of the
review, additional studies(50,51,52,53,54,55,56) have been pub-
lished on the topic; we have summarised in Fig. 2 a selection
of studies that have investigated the effects of dietary nitrate
on neurocognition and CBF following supplementation for
at least 1 week and conducted in subjects at greater risk of cog-
nitive impairment. Only two studies have concomitantly mea-
sured both neurocognition, CBF or brain metabolites(50,51),
which was measured by magnetic resonance spectroscopy(51)

and near-infrared spectroscopy(50). Five studies(50,51,53,55,56)

assessed changes in cognitive function, and three(51,55,56)

reported significant changes in executive function, vigilance
and motor skills. Four studies measured CBF or changes in
brain metabolites(50,51,52,54) and the two studies reporting sig-
nificant effects on CBF measured by MRI(54) and near-infrared
spectroscopy(52) were conducted in participants with cardio-
vascular conditions suggesting greater benefits of dietary
nitrate supplementation in individuals with reduced NO pro-
duction. Nevertheless, while some promising results have
been reported, the evidence is still contrasting. This could
be because of the short study duration (longest duration
was 13 weeks(50)), small sample size (largest sample size
was sixty-two participants(50)) and recruitment of healthy indi-
viduals with no evidence of cognitive impairment.

Implications for research and future recommendations

Research into the potential applications of dietary nitrate as an
aid to cognitive function is still in its infancy, and there is con-
siderable scope for future investigation in this area. A sche-
matic summary of the main priorities for future research is
provided in Fig. 3. One approach which is starting to attract
attention (see, e.g., Blekkenhorst et al.(57)), but could be fur-
ther exploited, is the use of existing cohort studies to explore
associations between nitrate intake with neurocognition and
the risk of neurodegenerative diseases such as dementia.
This relatively cost-effective approach could be applied to
explore associations between dietary nitrate (including total
nitrate intake and specific-nitrate-containing foods) and cog-
nitive ageing in a real-world setting with longer follow-up
durations and greater sample sizes than is typically feasibly
in randomised clinical trials(58). Such research may allow the
identification of population sub-groups who may be particu-
larly responsive to the effects of dietary nitrate and to identify
potential effect moderators (e.g. genetic variants, age, sex,
interactions with other dietary or lifestyle factors) which can
then be used to inform the design of future randomised
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clinical trials(58). While results should be interpreted with
some caution – observational studies do not allow us to infer
cause and effect and may be subject to issues such as reverse
causality and residual confounding – findings could comple-
ment those obtained from more labour-intensive randomised
clinical trials(59).

Carefully designed randomised clinical trials are also needed
to help better understand the efficacy of nitrate and mechanisms
of action through which this polyatomic ion may influence neu-
rocognitive function(19). To date, most studies exploring the
effects of nitrate on neurocognitive function are short in duration
and use a small selection of cognitive tests which assess a limited
set of cognitive domains (see Fig. 2). Larger trials with a longer
duration of follow-up, ideally including multiple, comprehen-
sive cognitive assessments over time to track cognitive trajecto-
ries, or assess hard clinical outcomes such as dementia
incidence, would provide valuable insight. In this regard, it is
possible that particularly demanding cognitive tasks are required
to ‘tease out’ the potential benefits of nitrate on cognition. Future
studies may wish to look at the potential additive or synergistic
effects of administering nitrate as part of a combined interven-
tion for improving cognitive ageing, whether alongside other
dietary compounds which have shown promise in boosting
cognition independently (e.g. n-3 fatty acids, sodium reduc-
tion(60)); dietary factors which may augment the effects of
nitrate (e.g. polyphenols, vitamin C(61)) or parallel lifestyle
interventions such as increased physical activity(62,63). Most
current trials use healthy participants, and studies are

warranted in different populations, such as those with a
degree of cognitive impairment or poor cardiovascular health
(for whom nitrate could potentially improve cognition via
direct effects on the brain and indirect effects via the improved
cardiovascular function(64)), and individuals with low baseline
NO status (e.g. older and obese individuals(65)). Such cohorts
may be more responsive to the potentially beneficial effects of
nitrate on cognition. Female participants are underrepre-
sented in the nitrate literature, and future studies should seek
to understand the effects of this polyatomic ion on cognition in
both sexes rather than assuming similar responses in males
and females(66).

Future studies may wish to exploit further use of novel imag-
ing techniques (e.g. MRI, PET, near-infrared spectroscopy) to
better understand the effects of nitrate on brain volume and func-
tion. Use of new ‘omics’ approaches (e.g. genomics, metabolo-
mics, transcriptomics, proteomics), which provide insight into
the cellular processes underpinning diet-related responses,
could also provide valuable mechanistic insight(67), and so too
could the measurement of biomarkers of neurodegenerative dis-
eases such as β-amyloid deposition following prolonged nitrate
supplementation. Animal model investigations have previously
been used to explore physiological mechanisms of nitrate, par-
ticularly at the vascular and muscle levels(68,69), and may provide
an opportunity to explicate brain-related changes occurring with
nitrate supplementation. Nevertheless, results from animal stud-
ies of neurodegeneration should be treated with caution, as
they do not fully account for the complexities of dementia in

Fig. 2. GOfER diagram (Graphical Overview for Evidence Reviews) summarising main studies testing non-acute (duration of supplementation of at least 7 d) effects of
dietary nitrate or nitrite on cognition and/or cerebral blood flow in humans. RCT, randomised clinical trial; P, parallel; CO, cross-over; BJ, beetroot juice; M, memory; E,
executive function; MS,motor skills; G, global; VS, visuo-spatial; NRIS, near-infrared spectroscopy; CT, computerised tomography; PET, positron emission tomography;
CBF, cerebral blood flow; TIA, transient ischaemic attack. The study byVanhatalo et al. measured changes in brainmetabolites usingmagnetic resonance spectroscopy.
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humans(70). Clearly, there is much work to do in this promising
research area, and time will tell if consuming nitrate to improve
cognition really is a ‘NO brainer’.

Conclusions

In 2016, the NIH workshop on dietary nitrate(71) advocated for
more epidemiological research and more robust randomised tri-
als to better define the predictive role of dietary nitrate consump-
tion in the prevention and treatment of chronic diseases.

However, the impact on cognitive function and dementia risk
was missing. The current evidence points towards the potential,
protective role of dietary nitrate on brain health. However, the
available evidence is limited. Most importantly, there are no data
from large prospective studies on the association of dietary
nitrate intake with cognitive impairment or dementia risk.
Further, there is a lack of large and prolonged randomised trials
conducted in subjects with or at risk of cognitive impairment.
These studies are urgently needed, and for now, it is ‘too much
ado about nothing’ as there is still limited evidence.
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