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Summary

Pleiotropy, the effect of one variant on multiple traits, is widespread in complex diseases. Joint analysis of
multiple traits can improve statistical power to detect genetic variants and uncover the underlying genetic
mechanism. Currently, a large number of existing methods target one common variant or only rare variants.
Increasing evidence shows that complex diseases are caused by common and rare variants. Here we propose a
region-based method to test both rare and common variant associated multiple traits based on variable reduc-
tion method (abbreviated as MULVR). However, in the presence of noise traits, the MULVR method may
lose power, so we propose the MULVR-O method, which jointly analyses the optimal number of traits asso-
ciated with genetic variants by the MULVR method, to guard against the effect of noise traits. Extensive
simulation studies show that our proposed method (MULVR-O) is applied to not only multiple quantitative
traits but also qualitative traits, and is more powerful than several other comparison methods in most scen-
arios. An application to the two genes (SHBG and CHRM3) and two phenotypes (systolic blood pressure and
diastolic blood pressure) from the GAW19 dataset illustrates that our proposed methods (MULVR and
MULVR-O) are feasible and efficient as a region-based method.

1. Introduction

Genome-wide association studies (GWAS) aim to
detect genetic variants associated with complex traits.
Though GWAS have successfully uncovered a large
number of common genetic variants in human com-
plex diseases, these common variants can only explain
a small proportion of disease heritability (Bansal
et al., 2010). Research has shown that rare variants
are actually responsible for part of the heritability of
complex disease (Manolio et al., 2009). Because of
low minor allele frequency (MAF) of rare variants,
many methods for single common variants are under-
powered to detect a single rare variant. To improve
the power of rare variant association analysis, many
methods test the collective effect of rare variants in a
genomic region, including burden tests and non-
burden tests (Li & Leal, 2008; Madsen & Browning,
2009; Price et al., 2010; Neale et al., 2011; Wu
et al., 2011).

However, almost all of the aforementioned methods
have primarily focused on a single trait. In the study
of complex diseases, pleiotropy is a widespread phe-
nomenon (Sivakumaran et al., 2011), and multiple
correlated traits are usually measured, for example,
hypertension is diagnosed by systolic blood pressure
(SBP) and diastolic blood pressure (DBP); coronary
heart disease is evaluated using cytokine interleukin-6,
C-reactive protein, interleukin-1, tumor necrosis
factor-α and fibrinogen. Joint analysis of multiple
traits can improve statistical power and provide add-
itional insights into the genetic architecture of the
complex disease (Aschard et al., 2014). Currently,
there are many methods to jointly analyse multiple
traits, for example, regression methods (Korte et al.,
2012; O’Reilly et al., 2012; Zhou & Stephens, 2014),
combining test statistics from univariate analysis
(Yang et al., 2010; Van Der Sluis et al., 2013), and
variable reduction methods (Klei et al., 2008; Tang
& Ferreira, 2012; Aschard et al., 2014).

Though these methods can test association between
one common variant and multiple traits, for rare vari-
ant association studies, they may suffer loss of power.
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In addition, there is increasing evidence to show that
complex diseases are caused by both common and
rare variants (Bodmer & Bonilla, 2008; Ng et al.,
2009; Teer & Mullikin, 2010). In this article, we pro-
pose a region-based method to detect both rare and
common variants associated with multiple traits by
variable reduction method (abbreviated as
MULVR). We first used the optimal weights method
(TOW) proposed by Sha et al. (2012) to test associ-
ation between each trait and genetic variants in a gen-
omic region. Then we took the aforementioned single
TOW statistic as weight to combine the original traits.
Finally, we still used the TOW method to test associ-
ation between the linear combination of traits and
multiple variants in a genomic region. But in the pres-
ence of noise traits, our method may lose power. To
guard against the effect of the noise traits, we propose
the MULVR-O method which uses the optimal num-
ber of traits to detect both rare and common variants
by the MULVR method. Extensive simulation studies
show that our proposed method (MULVR-O) is more
powerful than several other comparison methods in
most scenarios. In addition, analysing two genes
(SHBG and CHRM3) and two phenotypes (SBP and
DBP) from the GAW19 dataset illustrates that our
proposed methods (MULVR and MULVR-O) are
feasible and efficient as region-based methods.

2. Materials and methods

Consider n unrelated individuals. Each individual has
either K correlated quantitative traits or K correlated
qualitative traits, and has been genotyped at M var-
iants (rare or common variants) in a genomic region
(a gene or a pathway). For the ith individual, yik
denotes the kth trait value, gim∈ {0, 1, 2} denotes
the number of minor alleles at the mth variant (i = 1,
2, . . ., n, m= 1, 2, . . ., M, k = 1, . . ., K). We propose
a MULVR method to test association between M var-
iants and K traits. The detailed steps of our method
are given as follows.

First, we respectively tested association between
each trait andM variants. For the kth trait, we consid-
ered generalized linear models

g(E(yik)) = βk0 + βk1gi1 + βk2gi2 + · · ·
+ βkMgiM , i = 1, . . . , n, (1)

where g( · ) is a link function, the logit function,

g(Pr(yik = 1)) = log
Pr(yik = 1)
Pr(yik = 0), for qualitative trait;

and the identity function, g(E(yik)) =E(yik), for quan-
titative trait. We used the TOW method proposed by
Sha et al. (2012) to test the null hypothesis H0:
βk1 = βk2 = · · ·= βkM = 0. Then the test statistic is

given by

Tk =
∑M
m=1

∑n
i=1

(yik − yk)(gim − gm)
( )2

(n− 1)∑n
i=1

(gim − gm)2
, k

= 1, 2, . . . ,K, (2)

where yk = 1
n

∑n
i=1

yik, gm = 1
n

∑n
i=1

gim.

Second, let yk= (y1k, y2k, . . ., ynk)
T, k= 1, 2, . . ., K.

We combined y1, y2, . . ., yK with weights T1, T2, . . .,
TK. The test statistic Tk reflects the association
between the kth trait and genotypes. The stronger
the association, the greater the value of statistic Tk,
and the larger the weight of the kth trait yk. Let

Yi =
∑K
k=1

Tkyik, i = 1, 2, . . . , n,Y = (Y1,Y2, . . . ,Yn)T.
Finally, we detected association between Y and M

variants. We considered generalized linear models

g(E(Yi)) = α0 + α1gi1 + α2gi2 + · · ·
+ αMgiM, i = 1, . . . , n, (3)

and still used the TOW method to test the null
hypothesis H0:α1 = α2 = · · · = αM= 0, and obtained
the test statistic

TT =
∑M
m=1

∑n
i=1

(Yi − Y )(gim − gm)
( )2

(n− 1)∑n
i=1

(gim − gm)2
(4)

where Y = 1
n

∑n
i=1

Yi.

However, in the presence of noise traits, the
MULVR method may lose power. To guard against
the effect of noise traits, we propose the following
MULVR-O method which uses the optimal number
of traits to test the genetic variants by the MULVR
method. In detail, we sorted test statistics T1, . . ., Tk,
. . ., TK in descending order and used T ′

k to denote
the kth largest test statistic, and accordingly denote
y′k as the trait which is used for calculating
T ′

k, k = 1, 2, . . . ,K . let Y (k) = (y′1, . . . , y′k) denote
the first k traits of y′1, . . . , y

′
k, . . . , y

′
K . For each Y(k),

we used the MULVR method to obtain the test statis-
tic TTk, and denoted the according P-value of TTk as
PTTk , k = 1, . . . ,K . The overall statistic was defined as
TP = min

1≤k≤K
{PTTk }. We used a permutation process to

evaluate the P-values of TTk and TP. In each permu-
tation, we randomly shuffled the genotypes and recal-
culated T1, . . ., TK and TT1, . . ., TTK. Suppose we
perform B times of permutations. For the bth permu-
tation, let TT (b)

k denote the value of TTk, k = 1, . . ., K,
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b= 0, 1, . . ., B, where b= 0 represents the original
data. Then, we obtained P-values by

P(b)
TTk

=

∑B
b′=1

I{TT (b′ )
k .TT (b)

k }

B
, b = 0, 1, . . . ,B, and k

= 1, . . . ,K . (5)
Let P(b)

TT = min
1≤k≤K

P(b)
TTk

for b= 0, 1, . . ., B. Then the

P-value of TP is given by

∑B
b=1

I{P(b)
TT,P(0)

TT }

B
. (6)

3. Simulation studies

(i) Simulation design

For simulation studies, we used the GAW17 dataset,
which contains genotypes of 697 unrelated individuals
on 3205 genes. Based on the simulation procedure of
Sha et al. (2012), we chose four genes: ELAVL4
(gene 1), MSH4 (gene 2), PDE4B (gene 3) and
ADAMTS4 (gene 4) with 10, 20, 30 and 40 variants,
and merged the four genes to form a super gene
(Sgene) with 100 variants. According to the genotypes

of 697 individuals in the Sgene, we generated geno-
types of n individuals.

To evaluate the type I error rate and power, we
generated K quantitative traits by the factor model
(Wang et al., 2016)

Y = ΛG + ��
ρ

√
γf +

������
1− ρ

√
ε, (7)

where Y = (y1, y2, . . ., yK)
T, G = (g1, . . . , gNc)T is the

vector of the genotype scores at the causal variants,
Nc is the number of causal variants, Λ = (β1, . . . ,
βk, . . . , βK )TK×Nc

, βk = (βk1, . . . , βkNc
)T, f= (f1, . . . ,

fR)
T ∼MVN(0, I) is a vector of R independent stand-

ard normal latent variables, I is the identity matrix,
ε= (ε1, . . ., εK)

T∼MVN(0, I) is a vector of errors, γ
is a K ×R loading matrix, and ρ is a constant number.
Therefore, Y∼MVN(ΛG, Σ), where Σ= ργγT + (1− ρ)
I. According to eqn (7), we considered two models:
(1) there is only one factor (R = 1), γ= (1, . . . , 1)T,
and Σ is a K ×K matrix whose main diagonal
elements are 1 and off-diagonal elements are 0.5; (2)
there are two factors (R = 2), γ= diag(D1, D2), where
D1 = (1, . . . , 1)T[K/2]×1,D2 = (1, . . . , 1)T(K−[K/2])×1 and
Σ= diag(Σ1, Σ2), where Σ1 is a [K/2] × [K/2] matrix
whose main diagonal elements are 1, and off-diagonal
elements are 0.5; Σ2 is a (K− [K/2]) × (K− [K/2])
matrix whose elements are similar to those of Σ1.

Table 1. The four compared methods.

Methods Definition Pros and cons Applications

MULVR-O It jointly analyses the optimal
number of traits associated with
genetic variants by variable
reduction method

Pros: it can simultaneously detect
both rare and common variants and
can be applied to not only multiple
quantitative traits but also
qualitative traits; Cons: when there
is correlation between any two
traits, it suffers loss of power for
multiple quantitative traits in the
presence of a large number of noise
traits

It can simultaneously detect both
rare and common variants
associated with multiple
quantitative traits or qualitative
traits

AWRR It uses a reverse regression model
to test association between
collapse genotypes and multiple
traits

Pros: it does not need to know the
complex distributions of the traits;
Cons: for qualitative traits, it suffers
loss of power; when causal variants
impact on all the traits, it may lose
power

It may analyse rare variants
associated with multiple
quantitative traits, qualitative traits
or mixed types of traits

CCA It is a multivariate approach for
analysing correlation between
two groups of variables by
calculating Wilk’s statistic

Pros: the asymptotical distribution of
the CCA statistic works well for
common variants without the need
for permutation testing; Cons: for
qualitative traits, it suffers
substantial loss of power; when
causal variants impact on all the
traits, it may lose power

It may separately analyse exclusively
uncommon or common variants
associated with multiple
quantitative traits

WSRR It regresses the weighted sum of
the mutation counts on multiple
traits

Pros: it does not need to know the
complex distributions of the traits;
Cons: it is not robust to the
percentage of protective variants

It may test rare variants associated
with multiple quantitative traits,
qualitative traits or mixed types of
traits
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Table 2. The type I error rates.

Sample size

500 1000 2000

Quantitative traits Model 1 α= 0.01 MULVR 0.014 0.008 0.012
MULVR-O 0.008 0.008 0.010

α= 0.05 MULVR 0.032 0.058 0.058
MULVR-O 0.036 0.044 0.048

Model 2 α= 0.01 MULVR 0.006 0.008 0.016
MULVR-O 0.012 0.006 0.002

α= 0.05 MULVR 0.038 0.048 0.044
MULVR-O 0.044 0.052 0.036

Qualitative traits Model 1 α= 0.01 MULVR 0.006 0.014 0.006
MULVR-O 0.010 0.010 0.006

α= 0.05 MULVR 0.050 0.034 0.036
MULVR-O 0.048 0.052 0.054

Model 2 α= 0.01 MULVR 0.016 0.012 0.008
MULVR-O 0.006 0.012 0.010

α= 0.05 MULVR 0.048 0.052 0.038
MULVR-O 0.036 0.054 0.046

Note: α represents the significance level.

Fig. 1. Power comparisons for different values of the total heritability in two models. Total number of traits is six and
causal variants impact on four traits. One common variant and 10% of rare variants are causal, and 20% of rare causal
variants are protective variants. The sample size is 1000 and ρ = 0.5. (a) Multiple quantitative traits under model 1 of
simulation design. (b) Multiple quantitative traits under model 2 of simulation design. (c) Multiple qualitative traits under
model 1 of simulation design. (d) Multiple qualitative traits under model 2 of simulation design.
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Based on a quantitative trait, an individual is defined
as affected if the individual’s corresponding quantita-
tive trait value is at least one standard deviation larger
than the phenotypic mean. We supposed a prevalence
of 16% for the simulated disease in the general popu-
lation. Therefore, we could generate multiple qualita-
tive traits.

For evaluating the type I error rate, let βkj= 0, k= 1,
. . ., K, j= 1, . . ., Nc; for comparing power, we consid-
ered that causal variants contain both rare and com-
mon variants, and βkj is a constant and its value
depends on the total heritability and the ratio of the
heritability of rare causal variants to the heritability
of common causal variants. Suppose that the heritabil-
ity of each rare causal variant is not always equal, and
there is one common causal variant. Without loss of
generality, our method is still applied to multiple com-
mon causal variants. We compared our proposed
method (MULVR-O) with canonical correlation ana-
lysis (CCA) (Tang & Ferreira, 2012), adaptive weight-
ing reverse regression (AWRR) (Wang et al., 2016),
and the weighted sum reverse regression (WSRR)
(Madsen & Browning, 2009; Wang et al., 2016). The
definitions, pros and cons and applications for the

four comparison methods are summarized in Table 1.
Based on the research of Wang et al. (2016), we used
permutation procedure to evaluate the P-value of the
CCA statistic instead of the asymptotical distribution
of the CCA statistic. The AWRR method was imple-
mented with its R script.

(ii) Evaluation on type I error rates

For evaluating type I error rates, P-values were esti-
mated by 1000 permutations and type I error rates
were evaluated by 500 replications. Table 2 sum-
marizes the estimated type I error rates for different
types of traits, different sample sizes, different signifi-
cance levels and two different models, and shows that
the MULVR and MULVR-O methods can control
type I error rate.

(iii) Power comparisons

For power comparisons, we considered two different
types of traits and models. For each type of trait
and each model, we considered different values of her-
itability, different percentages of protective variants,

Fig. 2. Power comparisons for different percentages of protective variants in two models. Total number of traits is six and
causal variants impact on four traits. One common variant and 10% of rare variants are causal, and the total heritability
of all causal variants is 0.03. The sample size is 1000 and ρ = 0.5. (a) Multiple quantitative traits under model 1 of
simulation design. (b) Multiple quantitative traits under model 2 of simulation design. (c) Multiple qualitative traits under
model 1 of simulation design. (d) Multiple qualitative traits under model 2 of simulation design.
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different percentages of causal variants, different
numbers of associated traits and different sample
sizes. In each simulation, P-values were estimated by
1000 permutations and powers were evaluated by
500 replications at a significance level of 0.05. We
first considered the performances of the four methods
(MULVR-O, CCA, WSRR and AWRR) in the pres-
ence of noise traits.

Power comparisons for different values of heritabil-
ity are given by Fig. 1. As shown in Fig. 1, powers of
all methods increase with the increasing heritability.
Figure 1(a) shows that AWRR is the most powerful,
followed by CCA and MULVR-O, and MULVR-O
is closely comparable to CCA. Model 1 indicates
that there is correlation between any two traits.
Because the MULVR-O method uses the weighted
combination of original traits, for quantitative traits,
this phenotypic correlation affects MULVR-O to
exclude the noise traits, and thus it suffers loss of
power. Figure 1(b) shows that MULVR-O and
AWRR perform similarly with power larger than
CCA. Figures 1(c) and (d) show that, for qualitative
traits, MULVR-O performs the best, followed by
AWRR, and CCA suffers loss of power, because it

is designed for quantitative traits. Without considering
the direction of effect of variants, WSRR performs the
worst.

Figure 2 shows power comparisons for different per-
centages of protective variants. For quantitative traits,
except for the WSRR method, the other methods are
robust to the percentage of protective variants. For
qualitative traits, the powers of all methods decrease
with the increase of the percentage of protective var-
iants. According to the researches of Wu et al. (2011)
and Wang et al. (2016), the reason is that protective
variants lower MAFs in cases and thus make observing
rare variants in cases more difficult. The decrease of
power of WSRR is due to the sensitivity to the direc-
tion of the effect of variants.

Power comparisons for different percentages of cau-
sal variants are shown in Fig. 3. As seen in Fig. 3, the
three methods (MULVR-O, CCA and AWRR) are
relatively robust to the percentage of causal variants,
while the power of the WSRR method increases
with the increasing percentage of causal variants in
most situations.

Figure 4 shows power comparisons for different
numbers of traits impacted by causal variants. As

Fig. 3. Power comparisons for different percentages of rare causal variants in two models. Total number of traits is six
and causal variants impact on four traits. One common variant is causal, 20% of rare causal variants are protective
variants, and the total heritability of all causal variants is 0.03. The sample size is 1000 and ρ = 0.5. (a) Multiple
quantitative traits under model 1 of simulation design. (b) Multiple quantitative traits under model 2 of simulation design.
(c) Multiple qualitative traits under model 1 of simulation design. (d) Multiple qualitative traits under model 2 of
simulation design.
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shown in Fig. 4, the powers of all methods increase
with increasing number of traits associated with causal
variants, until causal variants impact on all traits,
MULVR-O reaches maximum power, while the other
three methods suffer loss of power. This performance
of CCA is consistent with previous reports (Allison
et al., 1998; Evans & Duffy, 2004; Ferreira & Purcell,
2009). AWRR and WSRR use reverse regression
method in common. When causal variants affect all
traits, the performances of losing power of the two
methods coincide with that of reverse regression
method reported by Kim & Pan (2017). Figure 4(a)
shows that in model 1, AWRR and CCA are more
powerful than MULVR-O in the presence of a large
number of noise traits. For quantitative traits, the cor-
relation between any two traits affects the MULVR-O
method to exclude the noise traits, and thus it suffers
loss of power. AWRR regresses the collapse genotypes
on multiple traits, so it depends on those traits asso-
ciated with causal variants, and is robust to the inclu-
sion of noise traits. According to Tang & Ferreira
(2012), when the causal variants influence only a subset
of all traits, CCA has larger power. The other three
figures show that MULVR-O is either the most power-
ful test or comparable to the most powerful test.

Power comparisons for different sample sizes are
given in Fig. 5. This figure shows that powers of all
methods increase with increasing sample sizes.

When all traits are associated with causal variants,
we also compare the powers of the four methods
(MULVR, CCA, WSRR and AWRR) for quantita-
tive traits and qualitative traits. These results are
given by Supplementary Figures S1–S5. Figure S1
shows that powers of all methods increase with the
increasing heritability, MULVR is consistently more
powerful than the other three methods, CCA and
AWRR suffer loss of power and WSRR is the least
powerful. The variation trend of powers in Fig. S2,
S3 and S5 are similar to that in Fig. 2, 3 and 5. As
shown in Fig. S4, the power of the CCA method
decreases with the increasing number of traits, while
the powers of the other three methods do not change
relatively.

Throughout the simulations, we observed that no
method can maintain the highest power across all
scenarios, because the performance of a method
depends on the type of traits, the number of associated
traits, the phenotypic correlation, the percentage of pro-
tective variants and the percentage of causal variants. In
summary, our proposed method (MULVR-O) remains

Fig. 4. Power comparisons for different numbers of traits influenced by causal variants in two models. Total number of
traits is ten. One common variant and 10% of rare variants are causal, 20% of rare causal variants are protective variants,
and the total heritability of all causal variants is 0.03. The sample size is 1000 and ρ = 0.5. (a) Multiple quantitative traits
under model 1 of simulation design. (b) Multiple quantitative traits under model 2 of simulation design. (c) Multiple
qualitative traits under model 1 of simulation design. (d) Multiple qualitative traits under model 2 of simulation design.
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powerful across a wide range of situations, and in par-
ticular, it shows better performance for qualitative
traits.

4. Real data analysis

To explore the performance of the five methods
(MULVR, MULVR-O, CCA, WSRR and AWRR),
we respectively used them to analyse the GAW19
dataset, which includes 1943 Hispanic individuals
with whole-exome sequence data, and two pheno-
types, SBP and DBP, age, sex and anti-hypertensive
medication status. We selected the CHRM3 and
SHBG genes in GAW19, which have been reported
to be associated with the two phenotypes (SBP and
DBP) (Sun et al., 2016). We used the hg19 reference

as the annotation file to obtain the start and end posi-
tions of the two genes, and then used PLINK to
extract genotypes of SNPs from the GAW19 dataset.
Because many variants in the two genes are very
rare, possibly observed only once or twice, we
restricted analysis to only the variants that have four
or more carriers. Missing genotype values were
imputed by the corresponding variant’s MAFs. We
considered a total of 1851 individuals after removing
subjects who had one or both missing phenotypes,
and applied a log transformation to SBP and DBP
so as to eliminate skewness. Because there were too
many missing values for anti-hypertensive medication
status, we only used age and sex as covariates. To
guard against confounders caused by covariates, the
logSBP and logDBP were adjusted for age and sex

Table 3. The results of real data analysis.

P-values

Chr Gene Position SNPs MULVR MULVR-O CCA WSRR AWRR

1 CHRM3 239792372-240072717 12 0.0281 0.0164 0.0276 0.4698 0.0273
17 SHBG 7517381-7536701 44 0.0245 0.0109 0.0396 0.0049 0.0471

Note: P-values were estimated based on 104 permutations.

Fig. 5. Power comparisons for different sample sizes in two models. Total number of traits is six and causal variants
impact on four traits. One common variant and 10% of rare variants are causal, 20% of rare causal variants are protective
variants, and the total heritability of all causal variants is 0.03. ρ = 0.5.

L. Chen et al. 8

https://doi.org/10.1017/S0016672317000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672317000052


with a linear regression. The residuals of logSBP and
logDBP were treated as new phenotypes. With a sign-
ificance level of 0.05, significance of the SHBG gene
was identified by all the methods. Except for the
WSRR method, all methods showed significant asso-
ciation of the CHRM3 gene with SBP and DBP
(Table 3).

5. Discussion

In genetic association studies, joint analysis of mul-
tiple traits can increase statistical power to detect gen-
etic variants. Currently, the majority of methods are
usually suitable for a single common variant or only
rare variants. So, in this paper, we analysed associ-
ation of both rare and common variants with multiple
traits by variable reduction method. Extensive simula-
tion studies show that no method can maintain the
highest power across all scenarios. When there is cor-
relation between any two traits, the MULVR-O
method suffers loss of power for multiple quantitative
traits in the presence of a large number of noise traits;
when causal variants impact on all traits, AWRR and
CCA lose power; CCA and AWRR suffer loss of
power for qualitative traits. In summary, our pro-
posed method (MULVR-O) remains powerful across
a wide range of situations.

In our proposed method, we used the TOW method
proposed by Sha et al. (2012) to detect rare and com-
mon variants associated with a single trait. The TOW
method has three important advantages. First, TOW
is suitable for detecting both rare and common var-
iants. Second, TOW is robust to the different direc-
tions of variants and percentage of neutral variants.
Third, TOW can adjust for covariates. Then our
method can adjust for covariates according to the
TOW method.

It is known that population stratification (PS)
often causes spurious associations based on unrelated
individuals. Our method is subject to bias in the pres-
ence of PS. So we can use principal component
approach to guard against the effect of PS, which is
one of the issues that continues to need consider-
ation. In addition, we considered applying our
method to family-based design, which is robust to
PS, and efficient in detecting associations of rare var-
iants. Of course, this issue needs to be further inves-
tigated in the future.

Because the asymptotical distribution of the CCA
statistic is very conservative for rare variants (Wang
et al., 2016), based on the research of Wang et al.
(2016), we used permutation procedure to evaluate
the P-value of the CCA statistic. Thus all methods
(MULVR, MULVR-O, CCA, WSRR and AWRR)
use the permutation procedure to calculate the
P-values of test statistics. It is time-consuming for

these permutation-based methods to perform genome-
wide association studies. Hence, in consideration of
computation time, we did not carry out genome-wide
association analysis of the GAW19 dataset.
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