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HOMEOMORPHISMS ON THE SOLID DOUBLE TORUS 

DONALD MYERS 

1. Introduction. A finite set of generators for the isotopy classes of self-
homeomorphisms of closed surfaces was given by Lickorish in three papers 
[2; 3; 4]. In [5] the group of isotopy classes for a particular, well-known cube 
with holes was presented. There the structure was "tight" enough to allow 
the computation of the relators as well as the generators. In this paper we give 
a finite set of generators for the group of isotopy classes of self-homeomorphisms 
on the solid double torus, the cube with two handles. Let us remark that the 
group of isotopy classes for the solid torus is well-known. 

Most of the notation that we will use is as in [1] and [5]. A non-trivial disk 
is a properly embedded disk whose boundary is not null-homotopic in the 
manifold's boundary. 

FIGURE 1 

2. Homeomorphisms on the solid double torus. Let T be the solid 
double torus as shown in Figure 1. Let A, B, C, and E denote the properly 
embedded disks shown in Figure 1 and let G and H be the properly embedded 
annuli of Figure 2. For a properly embedded disk (or annulus) 5 we cut the 
manifold at 5 and twist one of the components of S in the cut manifold 360°, 
then glue the manifold back together again at 5. This disk (or annulus) -
homeomorphism induces a C-homeomorphism (two C-homeomorphisms, 
respectively) on dT [2]. Let b, e, g, h denote the disk and annulus-homeo-
morphisms at B, E, G, H respectively. Let R be the rotation of T in 5 3 which 
takes each of A, B, C onto themselves but interchanges the components of 
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FIGURE 2a FIGURE 2b 

T — {A \J B \J C). If we let TTI(T), the first homotopy group, have the 
presentat ion (â, b: — ) where â and b are loops hi t t ing A and B respectively 
in a single point, then R*, the induced map , takes each of â and b on to its 
inverse. 

Let V be the homeomorphism of T onto itself which is the ident i ty on the 
component of (T — E) containing B and which takes â to a~~l in wi(T). 
Geometrically this is accomplished by holding E fixed and twist ing the handle 
A 180° in Sz. Note t h a t V2 = e. 

Let N be the group of all homeomorphisms of T onto itself generated by 
g, h, b, R, V, and all homeomorphisms isotopic to the ident i ty . Two properly 
embedded disks D1 and D2 are said to be iV-equivalent if there exists an 
e l e m e n t / of N such tha.tf(Di) = D2. T h e homeomorphism g (or g~l, depending 
upon the direction of twist used to define g) along with an isotopy shows t ha t B 
and C are TV-equivalent. A and C are also iV-equivalent using the homeo
morphism h. Also it is easy to see t h a t if D is a disk which is TV-equivalent to B, 
then a disk-homeomorphism a t D is in N. I t will be shown tha t B and E 
represent the only two distinct classes of iV-equivalent properly embedded 
non-trivial disks in T. Then we will show t h a t N is precisely the group of all 
orientat ion-preserving homeomorphisms of T onto itself. 

T h e proof of Lemma 1 is well known and t h a t of L e m m a 2 is a trivial 
consequence of Lemma 1. 

LEMMA 1. Let X be a disk with three holes and let S be a set of sec's in (int X) 
with the following properties: 

(1) for any component of dX there is an element of S parallel to it in X} 

(2) for any two components of dX there is an element of S which separates 
these two components from the other two components of dX, 

(3) 5 contains a sec which bounds a disk in X. 
Let M be the group of homeomorphisms of X onto itself generated by the C-
homeomorphisms about sec's in S; each of these C-homeomorphisms is assumed 
to be the identity on dX. Also include in M those homeomorphisms of X onto 
itself which are isotopic to the identity via isotopies which are the identity on dX. 
Then any sec in (int X) can be taken to an element of S by an element of M, and 
any C-homeomorphism about a sec in (int X) is in M. 
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LEMMA 2. Let X be dT cut at dA U dB. Then the group M of Lemma 1 may 
be considered to be a subgroup of N. 

LEMMA 3. Let D be a properly embedded non-trivial disk in T which misses 
two of A, B, C. Then D is N-equivalent to E or B depending upon whether or not 
it separates T. 

Proof. Since g~lC = B and gA = A we may assume that D misses B. 
Similarly we may assume D misses A because of h. Cut dT at dA KJ dB to 
give X. Taking scc's parallel to the four components of dX arising from cuts 
at dA and dB along with dC, dE, g~1(dB)J and a sec bounding a disk in X we 
get a set S for Lemma 1. See Figure 3 for g_ 1(d5). The result follows from 
Lemmas 1 and 2. 

FIGURE 3 

THEOREM 1. Any properly embedded non-trivial disk in T is N-equivalent to 
E or B depending upon whether or not it separates T. 

Proof. Suppose not; then there is a properly embedded disk in T that hits 
at least one of A and B by Lemma 3. Apply an element of TV, if necessary, 
without increasing the number of components of D f~\ (A \J B) so that we 
may assume that B is hit. Of all such disks pick one that hits A U 5 in as few 
components as possible and is in general position with respect to A \J B. Let 
X denote dT cut at dA \J dB where A\ and A2 denote the components of dX 
coming from dA and B\ and B2 denote those from dB. No component of 
dD Pi X cuts a disk off X since otherwise we could construct an isotopy on 
dT (that is, in T) taking this arc to dA \J dB and then slightly to the other 
side. This either converts a component of {A \J B) C\ D into a sec or reduces 
the number of components of {A \J B) C\ D. Since isotopies which are the 
identity on dT can eliminate sec's in {A \J B) C\ D by starting with an 
innermost one, we have a contradiction in either case. 

Suppose no arc of dD C\ X has both endpoints in the same component of 
dX. Let TI(T) = (à, b: — ) as before. Follow dD starting at a point in dD H B\ 
and enter X. If the arc goes to B2 then a word bu (u = + 1 ) is induced for dD 
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in TTI(T). It leaves X and re-enters at B\ and it may go to B2 to give bu again 
(same u). If it continues to repeat this process a nonzero power of b is induced. 
In going from B\ to say A i, it then re-enters at A 2 and dw (w = + 1 ) is induced. 
A similar argument gives a nonzero power of â induced by dD before hitting 
one of the Bt where another nonzero power of b will be induced (the first power 
of b may have been zero). Thus nonzero powers of â and b are alternately 
induced until the sec is transversed. But TTI(T) is a free group in d and b; thus 
dD 9^ 1 in 7ri(r), a contradiction. 

For Z, Y in {̂ 4i, A2, Bu B2}, let iV(Z, Y) be the number of components of 
dD C\ X with one endpoint in Z and the other in Y, and let N(Z) be the 
number of points in Z H dZ). From the above we assume without loss of 
generality that N(BU B\) is positive (from this it will also follow that N(B2, B2) 
is also positive). Now counting the endpoints of dD C\ X in each A { and Bt 

we have the equations: 

(1) N(A1) = 2N(AU A1) + N(A1} A2) + N(AU Bx) + N(AU B2) 
(2) N{A2) = 2N(A2, A2) + N(A2, A1) + N(A2, B,) + N(A2, B2) 
(3) N(B1) = 2N(BU Bx) + N(Bh A,) + N(B1, A2) + N(Bh B2) 
(4) N(B2) = 2N(B2, B2) + N(B2, A,) + N(B2, A2) + N(B2l B,) 
(5) N(A1) = N(A2) 
(6) N(B!) = N(B2). 

Equations (5) and (6) come from the fact that dD pierces dA U dB at 
points of intersection. Combining equations (1), (2), (5) and (3), (4), (6) 
we have upon simplification (note that N(Z, Y) = N(Y, Z)) : 

(7) 2N(AU Ai) + N(A1, B,) + N(AU B2) = 2N(A2, A2) + N(A2, B{) 
+ N(A2,B2) 

(8) 2N{BU B{) + N(BltAi) + N(BU A2) = 2N(B2, B2) + N(B2,Ai) 
+ N(B2,A2). 

Now since N(Bi, B\) is positive there is an arc u in dD C\ X with both 
endpoints in B\. Since u does not cut a disk off X it separates X into an annulus 
and a disk with two holes P. Suppose first that B2 is contained in the annulus. 
Then N(AU B2) - N(A2, B2) = 0. Also N(B2, B2) = 0 since an arc with both 
endpoints in B2 lying in this annulus must cut a disk off X, a contradiction. 
Thus equation (8) becomes: 2N(BU Bx) + N(BUA{) + N(BU A2) = 0 
which implies that N(Bi, B\) — 0 since all terms in the sum are nonnegative, 
a contradiction. Thus B2 is contained in P. We may suppose A2 is also in P 
since we can apply the homeomorphism V which causes a renaming of Ai and 
A2. Thus Ai lies in the annulus and we have iV(^4i, ^42) = iV(^41, i32) = 
iV(^4i, ^4i) = 0. This allows us to solve for N(Ai, B\) in equation (7). Sub
stituting this into equation (8) we have upon simplification: N(B2, B2) — 
N(Blt Bi) + N(A2, A2) + N(A2, Bi). Thus N(B2, B2) is positive and there 
is a component v of dD C\ X with both endpoints in B2l and since v lies in P 
and can not cut a disk off X it must separate P into twx> annuli. Thus v separates 
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A2 and B\ and we have N{A2, B\) = 0. Also N(A2, A2) = 0 because of the 
annulus. Therefore N(BhBi) = N{B2, B2). We may schematically draw X 
as in Figure 4 which indicates all possible remaining choices for components 
of 3D C\X. 

By Lemma 2 we have that M is a subgroup of N. Thus by those isotopies 
which rotate components of 3X, and the homeomorphisms in M, we may 
assume that 3D C\ X lies on 3T as shown in Figures 4 and 5. All parallel arcs 

type-l 

FIGURE 4 

are considered to be "close" together. A type-l arc is a component of 3D C\ X 
with both end points in B\. A type-2 arc is one with both endpoints in B2. 
The type-3 and type-4 arcs are the two types of non-isotopic components of 
3D C\ X with one endpoint in Bi and the other in B2. The other two types of 
arcs are unnamed. We know that both type-l and type-2 arcs exist. 

Using the type-3 and type-4 arcs as a guide we can draw dG (G, the annulus 
for the annulus-homeomorphism g) so that dG P\ (3D C\ X) = 0 . See Figure 6. 
By drawing 3G we mean to apply the appropriate isotopies. 

Let B* denote the annulus in 3T bounded by Bi and B2. Now via isotopies 
and the homeomorphism b\B*, both of which are to be the identity on (3T — 
int B*), we can insist that all arcs of 3D C\ B* hit each gt at most twice and 
if twice then with algebraic intersection zero [2, p. 533]. The gt are the compo
nents of 3G as indicated in Figure 6. Since B* is an annulus, if g t is hit twice 
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type-4 

FIGURE 5 

type-: 

missed by dD 

type type-4 

FIGURE 6 
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with algebraic intersection zero there is an arc in dD which, along with an arc 
in gu bounds a disk in the disk (B* — gt). An isotopy then eliminates their 
intersection. Thus each component of dD C\ B* hits each gt at most once. 

Case 1. Some component of dD Pi B* hits both gt. Let R, Si, S2, 
and W denote the number of arcs in dD P B* hitting both gi and g2, only gu 

only g2, and neither gi nor g2, respectively. Since R is positive and one 
component of (B2 — dG) misses dD, either Si = 0 or S2 = 0. See Figure 7 

FIGURE 7a FIGURE 7b FIGURE 7C 

where the heavy arc in B2 indicates the component of (B2 — dG) missed by 
dD. Now apply the homeomorphism g if S2 = 0 and g - 1 if Si = 0. Now in T 
(that is, in dT) pull those arcs of g(dD) P 5* off B* which cut disks off B*. 
For Y = R, Si, S2j W let Y' be the number of arcs of g(D) C\ B* which arose 
from the arcs counted by Y (count Y' after the isotopies have been applied). 
See Figure 7b, 7c. Thus R' = R, S / = S2' = 0, and W = W. Thus g(D) 
will hit B* yj A and hence B KJ A in fewer components than did D unless 
R' + S / + S2' + W is greater than or equal to R + Si + S2 + W. This 
must be the case because of our original choice of D. This implies that Si = 
S2 = 0. 

Case 2. No arc of dD P\ B* hits both gt. Then all arcs are as in Figure 8a. 
Define Si, S2, W, S / , S2, and W7' as in Case 1. Again we get a disk which hits 
A KJ B in fewer components than does D unless S / + S2 + W is greater 
than or equal to Si + S2 + W. But applying g (Figure 8b) and an isotopy 
gives that Si = S2 = 0 and W = W. Again we have Si = S2 = 0. 

From Cases 1 and 2 we see that of the two components of (B* — dG) there 
is only one which contains any endpoints of the arcs dD Pi B*, that is, of 
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dD Pi X. Bu t this is impossible since we know type-1 and type-2 arcs exist 
and their endpoints are in different components of (B* — dG). This contradic
tion means t h a t we can take D off B by an element of N. This is cont rary to 
the choice of D and the theorem is established. 

T H E O R E M 2. N is the group of all orientation-preserving homeomorphisms of 

T into itself. 

Proof. Let / be an orientat ion-preserving homeomorphism of T onto itself. 
By Theorem 1, since fA is non-separat ing there is an e l e m e n t / i of N such t h a t 

fif(A) = B. Also by Theorem 1 there is an f2 in N such t h a t f2(B) = A. 
T h u s f2fif(A) = A. Now /2/1/CB) is a nonseparat ing disk which misses A. 
T h u s there is an / 3 in N such that /3/2/ i /CB) = -5 and such that fz(A) = A; 
this follows from an examination of the proof of Theorem 1 which shows t h a t 
all homeomorphisms and isotopies used there could have been taken to be 
the ident i ty on A if D, the disk in question, missed A. 

If fzfifif\dB is not orientation-preserving let f\ be R composed with a 
homeomorphism isotopic to the ident i ty so t h a t f±fzfifif\dB = 1. If i t is 
orientation-preserving then / 4 is jus t the second mentioned homeomorphism. 
Let f5 be a homeomorphism isotopic to the ident i ty composed with V, if 
necessary, so t h a t /5/4/3/2/1/I &4 = 1. Let / 6 = /5/4/3/2/1/. We now have 
fa\(dA U dB) = 1, MA) = A, a n d / 6 ( £ ) = B. I t suffices to show t h a t / 6 is 
in N. T h e appropr ia te isotopy allows us to assume t h a t f%\(A \J B) = 1. 
Since / 6 is orientation-preserving we have t h a t fe\dT is also orientat ion-
preserving. This and the fact t ha t f*\{dA \J dB) = 1 implies / 6 does not 
interchange the sides à A \J dB in dT. An isotopy then allows us to assume 
t h a t / 6 is the ident i ty in a regular neighborhood of A \J B. T h u s / 6 is the 
ident i ty on dX where X is dT cu t a t (dA W dB). Apply / 7 in M so t h a t 
fifç\T = 1 [2, p . 537, s t a tement ip(u)]. Thus fif&\dT = 1 and it is well-known 
t h a t such a homeomorphism is isotopic to the ident i ty . This proves t h a t fif§ 
(and hence / 6 ) is in N which is wha t we sought to prove. 

REFERENCES 

1. J. F. P. Hudson, Piecewise linear topology (W. A. Benjamin, Inc., New York, 1969). 
2. W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. 

76 (1962), 531-540. 
3. Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc. 59 

(1963), 307-317. 
4# A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge 

Philos. Soc. 60 (1964), 769-778. 
5. Donald Myers, Homeomorphisms on a certain cube with holes, Trans. Amer. Math. Soc. 191 

(1974), 289-299. 

11837 Diane Drive, 
Wauwatosa, Wisconsin 

https://doi.org/10.4153/CJM-1975-087-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-087-9

