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q-Integral and Moment Representations
for q-Orthogonal Polynomials
Mourad E. H. Ismail and Dennis Stanton

Abstract. We develop a method for deriving integral representations of certain orthogonal polynomi-
als as moments. These moment representations are applied to find linear and multilinear generating
functions for q-orthogonal polynomials. As a byproduct we establish new transformation formulas for
combinations of basic hypergeometric functions, including a new representation of the q-exponential
function Eq.

1 Introduction

The concept of the q-integral has proved to be very useful in analyzing q-special func-
tions. For |q| < 1, the q-integral is, [3], [10],

(1.1)

∫ b

a
f (x) dqx := b(1− q)

∞∑
n=0

qn f (bqn)− a(1− q)
∞∑

n=0

qn f (aqn),

with

(1.2)

∫ ∞
0

f (x) dqx := (1− q)
∞∑

n=−∞
qn f (qn).

We will follow the notation and terminology in [3] and [10]. Some of the technical
manipulations are greatly simplified by the q-integration by parts formula

∫ b

a
f (x)g(qx) dqx

(1.3)

= q−1

∫ b

a
g(x) f (x/q) dqx + q−1(1− q)[ag(a) f (a/q)− bg(b) f (b/q)].

In our earlier papers [12], [13], [14] we utilized integral representations of orthog-
onal polynomials as moments to derive linear and multilinear generating functions.
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The idea is to start with a sequence of polynomials in which we are interested, say
{pn(x)}, then derive an integral representation of the form

(1.4) pn(x) =
∫ b

a
yn dµ(y),

where µ is some measure to be determined. For example we obtain an integral rep-
resentation for any generating function of the orthogonal polynomials {pn(x)}

(1.5) F(x, t) =
∞∑

n=0

λn pn(x)tn =
∫ b

a

[ ∞∑
n=0

λn(t y)n
]

dµ(y),

and any bilinear generating function

∞∑
n=0

λn pn(x)pn(z)tn =
∫ b

a
F(z, yt) dµ(y).

Mixed bilinear generating functions of the type

∞∑
n=0

λn pn(x)rn(z)tn

may also be found in this manner.
By changing the normalization of {pn(x)} to {cn pn(x)}, new moment represen-

tations may also be found for {cn pn(x)}. A key feature of this paper is giving such
alternative moment representations for q-orthogonal polynomials (see for example
Theorem 2.1, Corollary 3.1, Theorem 4.1).

In this work we propose a more systematic method to establish representations
such as (1.4). Our representations are all q-integrals, that is, µ is a discrete measure
whose masses are located at points of the form aqn or bqn. The derivations use the fact
that every orthogonal polynomial sequence {pn(x)} satisfies a three term recurrence
relation of the form

(1.6) αn pn+1(x) + [βnx + γn]pn(x) + δn pn−1(x) = 0.

If the coefficients in (1.6) are polynomials in qn, then we let dµ(y) = f (y) dq y. Now
q integration by parts leads to a q-difference equation for f , with the boundary con-
ditions f (a/q) = f (b/q) = 0. This method will be illustrated in the subsequent
sections.

The method employed here is not completely new. When the coefficients in (1.6)
are polynomials in n, integration by parts leads to a differential equation satisfied by
f (y) under the boundary conditions f (a) = f (b) = 0. This is similar to the Laplace
transform method which appears in classical treatises on the subject, for example see
Milne-Thomson [17, Chapter 15].

It is important to emphasize that the solution derived this way will be a solu-
tion to (1.6) but may or may not be a polynomial. One then needs an independent
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verification that (1.4) gives the desired polynomial solution. We show by examples
that this method is effective for the Al-Salam-Chihara polynomials (Section 2), the
q-Pollaczek polynomials (Section 3), the continuous q-Hermite polynomials (Sec-
tion 4), the associated continuous q-ultraspherical polynomials (Section 5), and the
associated Al-Salam-Chihara polynomials (Section 6). On the other hand when we

try solutions of the form
∫ b

0 yn f (y) dq y, n ≥ 0 we only need to match the bound-
ary condition at b, that is require f (b/q) = 0. By varying the boundary conditions
we construct two linearly independent solutions to (1.6), which is of independent
interest.

Rahman and Tariq [19] used their deep knowledge of basic hypergeometric func-
tions and their transformation theory to derive a representation of the associated
q-ultraspherical polynomials as moments of a discrete measure and applied their
moment representation to derive a bilinear generating function for the associated
q-ultraspherical polynomials introduced in [7]. In Section 5 we give an elementary
proof of the Rahman-Tariq result and state a companion representation of the same
polynomials also as moments. Both results are used to establish linear and bilinear
generating functions for the associated continuous q-ultraspherical polynomials. The
same program is carried out in Section 6 to treat the associated Al-Salam-Chihara
polynomials.

Many of the bilinear generating functions are of the form

(1.7) K(x, y) =
∞∑

n=0

anrn(x)sn(y),

where {rn(x)} and {sn(x)} are orthonormal polynomials with respect to positive
measures ρ and σ, respectively. If {rn(x)} and {sn(x)} are complete in L2(ρ) and
L2(σ), respectively, then∫

R

K(x, y)rn(x) dρ(x) = ansn(y),

∫
R

K(x, y)sn(y) dσ(y) = anrn(x).

The above are projection formulas involving the integral operators∫
R

K(x, y) f (x) dρ(x),

∫
R

K(x, y) f (y) dσ(x).

In the special case ρ = σ the kernel K becomes a symmetric kernel, the above two
integral operators coincide, and have eigenvalues {an} and the corresponding eigen-
functions are {rn(x)}, see [22]. The completeness of {rn(x)} shows that these are all
the eigenfunctions and eigenfunctions of the corresponding integral operator. Thus
many of our bilinear generating functions construct kernels of integral operators and
in certain cases are Mercer kernels [22].

We now review the Casorati determinant for solutions of difference equations. If
un and vn are solutions of

(1.8) an yn = bn yn+1 + cn yn−1,
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then the Casorati determinant of {un, vn} is

(1.9) ∆n := un+1vn − vn+1un.

By substituting un (respectively vn) for yn in (1.8), and multiplying by vn (respectively
un) then subtracting the results we see that bn∆n = cn∆n−1, hence

(1.10) ∆n = ∆m−1

n∏
k=m

[ ck

bk

]
.

Formula (1.10) will be used repeatedly in this paper.
One of the corollaries in Section 4 gives a new representation of the q-exponential

function

Eq(cos θ;α) :=
(α2; q2)∞

(qα2; q2)∞

∞∑
n=0

(−iα)n

(q; q)n
qn2/4(1.11)

× (−ieiθq(1−n)/2,−ie−iθq(1−n)/2; q)n,

introduced in [15]. The new representation is given in Corollary 4.3. The function Eq

satisfies limq→1 Eq

(
x; (1 − q)α/2

)
= exp(αx), and Eq(0;α) = 1. Ismail and Zhang

[15] established a q-plane wave expansion, a special case of which is

(1.12) (qα2; q2)∞Eq(x;α) =
∞∑

n=0

qn2/4αn

(q; q)n
Hn(x|q).

2 The Al-Salam-Chihara Polynomials

The Al-Salam-Chihara polynomials were introduced in [5] and [2]. We shall follow
the notation in our work [13] for the Al-Salam-Chihara polynomials {pn(x; t1, t2)},

pn(cos θ; t1, t2) = 3φ2

(
q−n, t1eiθ, t1e−iθ

t1t2, 0

∣∣∣ q, q

)
=

(t2e−iθ; q)ntn
1 einθ

(t1t2; q)n
2φ1

(
q−n, t1eiθ

q1−neiθ/t2

∣∣∣ q, qe−iθ/t2

)
.

(2.1)

In [13] and [14] two representations for the Al-Salam-Chihara polynomials as mo-
ments were given.

Theorem 2.1 The Al-Salam-Chihara polynomials have the q-integral representations

pn(cos θ; t1, t2)

tn
1

=
(t1eiθ, t1e−iθ, t2eiθ, t2e−iθ; q)∞

(1− q)eiθ(q, t1t2, qe2iθ, e−2iθ; q)∞

×
∫ eiθ

e−iθ

yn (qyeiθ, qye−iθ; q)∞
(t1 y, t2 y; q)∞

dq y,

(A)
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(t1t2; q)n

(q; q)n

pn(cos θ; t1, t2)

tn
1

=
(t1eiθ, t1e−iθ, qeiθ/t1, qe−iθ/t1; q)∞

2(1− q)i sin θ(q, q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn (qyeiθ, qye−iθ, t2/y; q)∞(
qy/t1, t1 y, q/(yt1); q

)
∞

dq y.

(B)

The derivation of these results was by an ad-hoc method. In this section we show
that the representing measures can be easily found from the three-term recurrence
relation. In particular, in this section we derive the second measure and give some
generating functions as corollaries (Corollaries 2.2, 2.3, and 2.4).

We use the fact that the Al-Salam-Chihara polynomials may be renormalized in
two ways so that the three-term recurrence relation is linear in qn. Specifically if,

p̂n(x; t1, t2) := pn(x; t1, t2)/tn
1

cn(x; t1, t2) :=
(t1t2; q)n

(q; q)ntn
1

pn(x; t1, t2)

then [16],

2xp̂n(x; t1, t2) = (1− t1t2qn) p̂n+1(x; t1, t2) + (1− qn) p̂n−1(x; t1, t2)

+ (t1 + t2)qn p̂n(x; t1, t2), n > 0,
(2.2)

2xcn(x; t1, t2) = (1− qn+1)cn+1(x; t1, t2) + (1− t1t2qn−1)cn−1(x; t1, t2)

+ (t1 + t2)qncn(x; t1, t2), n > 0,
(2.3)

with the initial conditions

p̂0(x; t1, t2) = 1 = c0(x; t1, t2),

(1− t1t2) p̂1(x; t1, t2)/(1− q) = (2x − t1 − t2)/(1− q) = c1(x; t1, t2)

We now show how (2.3) leads to Theorem 2.1B. We seek an integral representation

(2.4) cn(x; t1, t2) =
∫ b

a
yn f (y) dq y,

with f satisfying the boundary conditions

(2.5) f (a/q) = f (b/q) = 0.

Assume that a and b are finite, hence the moment problem is determinate, that is the
moments determine f in (2.4) uniquely, [20]. Substitute the representation (2.4) for
the c’s in (2.3), then equate the coefficients of yn. The result, after applying (1.3), is
that f must satisfy the functional equation

(2.6) f (y) =
q

t1t2

(1− 2xyq + q2 y2)

(1− qy/t1)(1− qy/t2)
f (qy).
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Recall that

(2.7) u(y) =

(
λy, q/(λy); q

)
∞(

µy, q/(µy); q
)
∞

implies
u(u)

u(qy)
=
λ

µ
.

Thus a solution to (2.6) which satisfies the boundary conditions (2.5) is given by

(2.8) f (y) =

(
qyeiθ, qye−iθ, λy, q/(λy); q

)
∞(

qy/t1, qy/t2, yµ, q/(yµ); q
)
∞
, with qµ = t1t2λ

where x = cos θ, a = e−iθ and b = eiθ. Observe that here a and b are finite, hence if
f exists it will be unique. We then choose µ = t1 and λ = q/t2 so that

(2.9) g(cos θ)cn(cos θ; t1, t2) =
1

1− q

∫ eiθ

e−iθ

yn (qyeiθ, qye−iθ, t2/y; q)∞(
qy/t1, t1 y, q/(yt1); q

)
∞

dq y,

for some function g(cos θ), independent of n.
We now give a rigorous proof of (2.9) and determine g. The proof is based on the

three term transformation formula [10, (III.31)]

2φ1

(
A,B
C

∣∣∣ q,Z

)
=

(ABZ/C, q/C ; q)∞
(AZ/C, q/A; q)∞

2φ1

(
C/A,Cq/ABZ

qC/AZ

∣∣∣ q, qB/C

)
− (B, q/C,C/A,AZ/q, q2/AZ; q)∞

(C/q, qB/C, q/A,AZ/C, qC/AZ; q)∞

× 2φ1

(
qA/C, qB/C

q2/C

∣∣∣ q,Z

)
.

(2.10)

Proof of (2.9) By the definition of the q-integral, the right-hand side R of (2.9) is

R = eiθ
∞∑

m=0

(qm+1e2iθ, qm+1, q−mt2e−iθ; q)∞
(qm+1eiθ/t1, qmt1eiθ, q1−me−iθ/t1; q)∞

einθqm(n+1)

− a similar term with θ replaced by − θ.

The above expression simplifies to

R =
ei(n+1)θ(qe2iθ, q, e−iθt2; q)∞
(qeiθ/t1, t1eiθ, qe−iθ/t1; q)∞

2φ1

(
qeiθ/t1, qeiθ/t2

qe2iθ

∣∣∣ q, t1t2qn

)
− a similar term with θ replaced by − θ,

which is

R = ei(n+1)θ (qe2iθ, q, e−iθt2; q)∞
(qeiθ/t1, t1eiθ, qe−iθ/t1; q)∞

(2.11)

×
[

2φ1

(
qeiθ/t1, qeiθ/t2

qe2iθ

∣∣∣ q, t1t2qn

)
+ e−2inθ (t2eiθ, e−2iθ, t1eiθ; q)∞

(t2e−iθ, e2iθ, t1e−iθ; q)∞

× 2φ1

(
qe−iθ/t1, qe−iθ/t2

qe−2iθ

∣∣∣ q, t1t2qn

)]
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In (2.10) we make the parameter identification

(2.12) A = qeiθ/t1, B = qeiθ/t2, C = qe2iθ, Z = t1t2qn.

The expression between square brackets in (2.11), with the parameter identification
(2.12) is

2φ1

(
A,B
C

∣∣∣ q,Z

)
+

(B, q/C,C/A,AZ/q, q2/AZ; q)∞
(C/q, qB/C, q/A,AZ/C, qC/AZ; q)∞

2φ1

(
qA/C, qB/C

q2/C

∣∣∣ q,Z

)
.

Thus

R = ei(n+1)θ (qe2iθ, q, t2e−iθ; q)∞
(qeiθ/t1, t1eiθ, qe−iθ/t1; q)∞

(qn+1, e−2iθ; q)∞
(qnt2e−iθ, t1e−iθ; q)∞

× 2φ1

(
t1eiθ, q−n

q1−neiθ/t2

∣∣∣ q, qe−iθ/t2

)
,

which simplifies to

R = einθ (e2iθ, e−2iθ, q, q; q)∞
(qeiθ/t1, qe−iθ/t1, t1eiθ, t1e−iθ; q)∞

i(t2e−iθ; q)n

2 sin θ(q; q)n

× 2φ1

(
t1eiθ, q−n

q1−neiθ/t2

∣∣∣ q, qe−iθ/t2

)
.

In view of (2.1) we have

R =
i(e2iθ, e−2iθ, q, q; q)∞

2 sin θ(qeiθ/t1, qe−iθ/t1, t1eiθ, t1e−iθ; q)∞

(t1t2; q)n

tn
1 (q; q)n

pn(cos θ; t1, t2),

and Theorem 2.1B follows.
We next give some generating functions which follow from Theorem 2.1B. The

analogous corollaries for Theorem 2.1A appear in [13].

Corollary 2.2 We have the linear generating function

∞∑
n=0

(t1t2, λ/µ; q)n

(q, q; q)n
pn(cos θ; t1, t2)µn =

eiθ(t2e−iθ, t1e−iθ, t1λeiθ; q)∞
2i sin θ(q, qe−2iθ, t1µeiθ; q)∞

× 3φ2

(
qeiθ/t1, qeiθ/t2, t1µeiθ

qe2iθ, t1λeiθ

∣∣∣ q, t1t2

)
− a similar term with θ replaced by − θ.
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Proof Theorem 2.1B and the q-binomial theorem show that the left-hand side of
Corollary 2.2 is

(t1eiθ, t1e−iθ, qeiθ/t1, qe−iθ/t1; q)∞
2(1− q)i sin θ(q, q, qe2iθ, qe−2iθ; q)∞

(2.13)

×
∫ eiθ

e−iθ

(qyeiθ, qye−iθ, t2/y, λt1 y; q)∞
(qy/t1, t1 y, q/(yt1), µyt1; q)∞

dq y.

It is easy to see that

∫ eiθ

e−iθ

(qyeiθ, qye−iθ, t2/y, λt1 y; q)∞
(qy/t1, t1 y, q/(yt1), µyt1; q)∞

dq y

1− q

=
∞∑

m=0

(qm+1e2iθ, qm+1, q−mt2e−iθ, t1λeiθqm; q)∞
(qm+1eiθ/t1, qmt1eiθ, q1−me−iθ/t1, t1µeiθqm; q)∞

eiθqm

− a similar term with θ → −θ.

=
eiθ(qe2iθ, q, t2e−iθ, t1λeiθ; q)∞

(qeiθ/t1, t1eiθ, qe−iθ/t1, t1µeiθ; q)∞

× 3φ2

(
qeiθ/t1, qeiθ/t2, t1µeiθ

qe2iθ, t1λeiθ

∣∣∣ q, t1t2

)
− a similar term with θ replaced by − θ.

Therefore (2.13) and the above calculation indicate that the left-hand side of Corol-
lary 2.2 is

eiθ(t2e−iθ, t1e−iθ, t1λeiθ, ; q)∞
2i sin θ(q, qe−2iθ, t1µeiθ; q)∞

3φ2

(
qeiθ/t1, qeiθ/t2, t1µeiθ

qe2iθ, t1λeiθ

∣∣∣ q, t1t2

)
− a similar term with θ replaced by − θ,

and Corollary 2.2 follows.

Recall that the Al-Salam-Chihara polynomials have the generating function [13,
(3.18)]

(2.14)
∞∑

n=0

(t1t2; q)ntn

(q; q)ntn
1

pn(cos θ; t1, t2) =
(tt1, tt2; q)∞

(teiθ, te−iθ; q)∞
.

Corollary 2.3 The Al-Salam-Chihara polynomials have the following bilinear gener-
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ating function

∞∑
n=0

(t1t2, s1s2; q)n

(q, q; q)n
pn(cos θ; t1, t2)pn(cosφ; s1, s2)

( t

t1s1

) n

=
(t1e−iθ, t2e−iθ, ts1eiθ, ts2eiθ; q)∞
(q, e−2iθ, tei(θ+φ), tei(θ−φ); q)∞

× 4φ3

(
tei(θ+φ), tei(θ−φ), qeiθ/t1, qeiθ/t2

ts1eiθ, ts2eiθ, qe2iθ

∣∣∣ q, t1t2

)
+ a similar term with θ replaced by − θ.

Proof Replace pn(cos θ; t1, t2) by its integral representation in Theorem 2.1B then
use (2.14) to see that the left-hand side of Corollary 2.3 is

(t1eiθ, t1e−iθ, qeiθ/t1, qe−iθ/t1; q)∞
2(1− q)i sin θ(q, q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

(qyeiθ, qye−iθ, t2/y, ts1 y, ts2 y; q)∞
(qy/t1, t1 y, q/(yt1), t yeiφ, t ye−iφ; q)∞

dq y.

This expression simplifies to the right-hand side of Corollary 2.3.
An unexpected transformation formula results from the above corollary, namely

the fact that its right-hand side is invariant under the interchanges

(θ, φ, t1, t2, s1, s2)→ (φ, θ, s1, s2, t1, t2).

This establishes the next corollary.

Corollary 2.4 The combination

(t1e−iθ, t2e−iθ, ts1eiθ, ts2eiθ; q)∞
(q, e−2iθ, tei(θ+φ), tei(θ−φ); q)∞

×4φ3

(
tei(θ+φ), tei(θ−φ), qeiθ/t1, qeiθ/t2

ts1eiθ, ts2eiθ, qe2iθ

∣∣∣ q, t1t2

)
+ a similar term with θ replaced by − θ,

is invariant under the permutation (θ, φ, t1, t2, s1, s2)→ (φ, θ, s1, s2, t1, t2).

It is important to emphasize that the 4φ3’s appearing in the transformation Corol-
lary 2.4 are not balanced and most of the known transformations of this type involve
balanced series.

The moment representations not only give an integral representation for the Al-
Salam-Chihara polynomials but also they give q-integral representations for other
solutions to the same three term recurrence relation. For example the argument pre-
ceding (2.8) shows that

(2.15) φ±n (x) :=
1

1− q

∫ e±iθ

0
yn

(
qyeiθ, qye−iθ, λy, q/(λy); q

)
∞(

qy/t1, qy/t2, µy, q/(µy); q
)
∞

dq y, n > 1,
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are solutions to (2.3), where qµ = t1t2λ,

(2.16) e±iθ = x ±
√

x2 − 1,

and the branch of the square root is chosen in such a way that |e−iθ| ≤ |eiθ|. Thus

ψ±n (x) :=
(q; q)ntn

1

(t1t2)n(1− q)
(2.17)

×
∫ e±iθ

0
yn

(
qyeiθ, qye−iθ, λy, q/(λy); q

)
∞(

qy/t1, qy/t2, µy, q/(µy); q
)
∞

dq y, n > 0,

are solutions to the recurrence relation satisfied by the Al-Salam-Chihara polynomi-
als. Therefore

(2.18) e±i(n+1)θ (q; q)ntn
1

(t1t2; q)n
2φ1

(
qe±iθ/t1, qe±iθ/t2

qe±2iθ

∣∣∣ q, qnt1t2

)
,

are linearly independent solutions of the Al-Salam-Chihara three term recurrence
relation (2.19), which are multiples of ψ±n (x). The polynomial solution in (2.1) to-
gether with any one of the solutions in (2.18) form a basis of solutions to the three
term recurrence relation

2xzn(x; t1, t2) = (t−1
1 − t2qn)zn+1(x; t1, t2) + t1(1− qn)zn−1(x; t1, t2)

+ (t1 + t2)qnzn(x; t1, t2), n > 0.
(2.19)

We next state a bibasic version of Corollary 2.3. Let pn(x; t1, t2|q) denote the Al-
Salam-Chihara polynomials with base q. Then the bibasic version is:

∞∑
n=0

pn(cos θ; t1, t2|q)pn(cosφ; s1, s2|p)
(t1t2; q)n(s1s2; p)n

(q; q)n(p; p)n

( t

t1s1

) n
(2.20)

=
(t1e−iθ, t2e−iθ; q)∞

(q, e−2iθ; q)∞

∞∑
k=0

(qeiθ/t1, t1eiθ, qeiθ/t2; q)k

(q, qe2iθ, t1eiθ; q)k
(t1t2)k

× (ts1qkeiθ, ts2qkeiθ; p)∞
(tqkei(θ+φ), tqkei(θ−φ); p)∞

+ a similar term with θ replaced by − θ.

This establishes the following bibasic version of Corollary 2.4.

Corollary 2.5 The right-hand side of (2.20) is symmetric under interchanging

(t1, t2, s1, s2, θ, φ, p, q) with (s1, s2, t1, t2, φ, θ, q, p).
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3 The q-Pollaczek Polynomials

The q-Pollaczek polynomials {Fn(x; U ,∆,V )}, or {Fn(x)} for short, were introduced
in [9], whose notation we shall follow. They are generated by

(3.1) F0(x) = 1, F−1(x) = 0,

and

2[(1−U∆qn)x + V qn]Fn(x) = (1− qn+1)Fn+1(x)

+ (1−∆2qn−1)Fn−1(x), n > 0.
(3.2)

Charris and Ismail [9] gave the generating function

(3.3)
∞∑

n=0

Fn(cos θ)tn =
(t/ξ, t/η; q)∞

(teiθ, te−iθ; q)∞
,

where

(3.4) 1 + 2q(V − x∆U )∆−2 y + q2∆−2 y2 = (1− qξy)(1− qηy),

and ξ and η depend on x, and satisfy

(3.5) ξη = ∆−2.

The generating function (3.3) implies the explicit representation

(3.6) Fn(cos θ) = einθ (e−iθ/ξ; q)n

(q; q)n
2φ1

(
q−n, eiθ/η
q1−neiθξ

∣∣∣ q, qe−iθξ

)
.

From (3.6) and (2.1) it follows that

(3.7) Fn(x; U ,∆,V ) =

(
1/(ξη); q

)
n

(q; q)n
ηn pn(x; 1/η, 1/ξ),

and we can apply the results of Section 2 to state similar results for the q-Pollaczek
polynomials.

Corollary 3.1 The q-Pollaczek polynomials have the q-integral representations

(q; q)n

(∆2; q)n
Fn(x; U ,∆,V ) =

(eiθ/η, e−iθ/η, eiθ/ξ, e−iθ/ξ; q)∞
(1− q)eiθ(q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn (qyeiθ, qye−iθ; q)∞
(y/η, y/ξ; q)∞

dq y,

(A)

Fn(x; U ,∆,V ) =
(qηeiθ, qηe−iθ, eiθ/η, e−iθ/η; q)∞

2(1− q)i sin θ(q, q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn

(
qyeiθ, qye−iθ, 1/(ξy); q

)
∞

(qyη, y/η, qη/y; q)∞
dq y,

(B)
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It was shown in [9] that the orthogonality relation of the Fn’s is∫ π

0

(e2iθ, e−2iθ; q)∞
(eiθ/ξ, e−iθ/ξ, eiθ/η, e−iθ/η; q)∞

× Fm(cos θ; U ,∆,V )Fn(cos θ; U ,∆,V ) dθ

=
2π

(q,∆2; q)∞

(∆2; q)n

(1−U∆qn)(q; q)n
δm,n.

(3.8)

We next record two reproducing kernels for the q-Pollaczek polynomials. Corol-
lary 3.1B shows that the q-Pollaczek polynomials have the bilinear generating func-
tions

∞∑
n=0

Fn(cos θ; U1,∆1,V1)Fn(cosφ; U2,∆2,V2)tn(3.9)

=
(qη1e−iθ, e−iθ/η1, teiθ/ξ2, teiθ/η2, ; q)∞

(q, e2iθ, tei(θ+φ), tei(θ−φ); q)∞

× 4φ3

(
qη1eiθ, qξ1eiθ, tei(θ+φ), tei(θ−φ)

qe2iθ, teiθ/ξ2, teiθ/η2,

∣∣∣ q,
1

ξ1η1

)
+ a similar term with θ replaced by − θ,

where

1 + 2q(V1 − cos θ∆1U1)∆−2
1 y + q2∆−2

1 y2 = (1− qξ1 y)(1− qη1 y),(3.10)

1 + 2q(V2 − cosφ∆2U2)∆−2
2 y + q2∆−2

2 y2 = (1− qξ2 y)(1− qη2 y).(3.11)

Another reproducing kernel follows from Corollary 3.1A and the generating function
(3.3). The result is

∞∑
n=0

Fn(cos θ; U1,∆1,V1)Fn(cosφ; U2,∆2,V2)
(q; q)ntn

(∆2; q)n
(3.12)

=
(e−iθ/η1, e−iθ/ξ1, teiθ/ξ2, teiθ/η2, ; q)∞

(q, e2iθ, tei(θ+φ), tei(θ−φ); q)∞

× 4φ3

(
eiθ/ξ1, eiθ/η1, tei(θ+φ), tei(θ−φ)

qe2iθ, teiθ/ξ2, teiθ/η2,

∣∣∣ q, q

)
+ a similar term with θ replaced by − θ.

The Poisson kernel is similar to (3.12) except that the summand on left-hand side
will have the additional factor (1 − U1∆1qn). The Poisson kernel can be evaluated
by taking appropriate combinations of the right-hand side of (3.12). The same phe-
nomenon occurs for continuous q-ultraspherical polynomials which corresponds to
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U = 1, V = 0, and ∆ = β. Thus ξ1 = eiθ/β, η1 = e−iθ/β, and similarly for the ξ2

and η2. For details see [10, Section 8.6].
It is worth noting the integral evaluation equivalent to the orthogonality relation

(3.8). Multiply (3.8) by sm(1−U∆qn)tn and sum over m, n, m, n ≥ 0. The right-hand
side can be summed by the q-binomial theorem to

2π(st∆2; q)∞
(q,∆2, st ; q)∞

.

Applying the generating function (3.3) the integrand on the left-hand side involves
the factor

(1− t/ξ)(1− t/η)−U∆(1− teiθ)(1− te−iθ)

which in view of (3.4) and (3.5) is 1−U∆ + 2tV + ∆t2(∆−U ). This establishes the
following theorem.

Theorem 3.2 We have the integral evaluation∫ π

0

(e2iθ, e−2iθ, s/ξ, s/η, qt/ξ, qt/η; q)∞
(eiθ/ξ, e−iθ/ξ, eiθ/η, e−iθ/η, seiθ, se−iθ, teiθ, te−iθ; q)∞

dθ

=
1

[1−U∆ + 2tV + ∆t2(∆−U )]

2π(st∆2; q)∞
(q,∆2, st ; q)∞

.

We do not know of a direct way of evaluating this integral. The evaluation of the
integral via a moment problem was given in [9]. This also occurred in Chapters 6
and 7 of [5], where the identities obtained through solving a moment problem do
not seem to be amenable to direct proofs.

4 The Continuous q-Hermite Polynomials

The continuous q-Hermite polynomials satisfy

H−1(x|q) = 0, H0(x|q) = 1,(4.1)

2xHn(x|q) = Hn+1(x|q) + (1− qn)Hn−1(x|q), n > 0.(4.2)

We clearly have Hn(x|q) = p̂n(x; 0, 0), so that Theorem 2.1 gives integral represen-
tations for the q-Hermite polynomials. For Theorem 2.1A this is immediate, while
it is not clear how to let t1 = t2 = 0 in Theorem 2.1B. In this section we carry out
this limit, and we also give two additional q-integral representations. One surprising
result is Corollary 4.3 which gives 2φ1 representations of the function Eq.

Theorem 4.1 The q-Hermite polynomials have the q-integral representations

Hn(cos θ|q) =
1

(1− q)eiθ(q, qe2iθ, e−2iθ; q)∞

×
∫ eiθ

e−iθ

yn(qyeiθ, qye−iθ; q)∞ dq y,

(A)
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Hn(cos θ|q)

(q; q)n
=

(λeiθ, qeiθ/λ, λe−iθ, qe−iθ/λ; q)∞
2(1− q)i sin θ(q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn (qyeiθ, qye−iθ; q)∞(
λy, qy/λ, λ/y, q/(λy); q

)
∞

dq y,

(B)

Hn(cos θ|q2)

(q; q)n
=

(
√

qeiθ,
√

qeiθ,
√

qe−iθ,
√

qe−iθ; q)∞
2(1− q)i sin θ(q, q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn (qyeiθ, qye−iθ,−√q/y; q)∞
(
√

qy,
√

qy,
√

q/y; q)∞
dq y.

(C)

Hn(cos θ|q2)

(−q; q)n
=

(qe2iθ, qe−2iθ; q2)∞
2(1− q)i sin θ(q,−q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn (qyeiθ, qye−iθ; q)∞
(qy2; q2)∞

dq y.

(D)

Note that the right-hand side of Theorem 4.1B is independent of λ.

Proof of Theorem 4.1B First we motivate the integral for Theorem 4.1B. If
Ĥn(x|q) = Hn(x|q)/(q; q)n, then (4.2) becomes

(4.3) 2xĤn(x|q) = (1− qn+1)Ĥn+1(x|q) + Ĥn−1(x|q).

Here again we see that writing Ĥn(x|q) =
∫ b

a yn f (y) dq y requires f to satisfy

f (y) = (1− qyeiθ)(1− qye−iθ)(qy2)−1 f (qy).

Solving the above functional equation gives rise to the two solutions

∫ e±iθ

0
yn (qyeiθ, qye−iθ; q)∞(

λy, λ/y, q/(λy), qy/λ; q
)
∞

dq y

and the integral in Theorem 4.1B is linear combination of these two solutions.
We next show that Theorem 4.1A implies Theorem 4.1B. From Theorem 4.1A we

have

Hn(cos θ|q) =
e−iθ(q, qe2iθ; q)∞

(q, qe2iθ, qe−2iθ; q)∞
ei(n+1)θ(4.4)

× 2φ1(0, 0; qe2iθ; q, qn+1)

+ a similar term with θ replaced by − θ.

However a limiting case of Heine’s transformation [10, (III.3)] implies

(4.5) (q; q)∞2φ1(0, 0, qe2iθ; q, qn+1) = (q; q)n0φ1(−; qe2iθ; q, qn+2e2iθ),

https://doi.org/10.4153/CJM-2002-027-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-027-2


Moment Representations 723

so that (4.4) becomes

Hn(cos θ|q)

(q; q)n
=

einθ

(e−2iθ; q)∞
0φ1(−; qe2iθ; q, qn+2e2iθ)(4.6)

+ a similar term with θ replaced by − θ,

which is the equivalent form of Theorem 4.1B.

Proof of Theorem 4.1C This time if pn(x|q) = Hn(x|q2)/(q; q)n, then (4.2) becomes

(4.7) 2xpn(x|q) = (1− qn+1)pn+1(x|q) + (1 + qn)pn−1(x|q).

In the notation of (2.3) we find that pn(x|q) = cn(x;
√

q,−√q), so that Theorem 4.1C
is a special case of Theorem 2.1B.

Proof of Theorem 4.1D This follows from Theorem 2.1A and the proof of Theo-
rem 4.1C.

The Limit (t1, t2) → (0, 0) in Theorem 2.1B The limit t2 → 0 is Theorem 2.1B in
straightforward. To let t1 → 0 we set t1 = λqm then let m → ∞. Theorem 4.1B
follows from letting m→∞ in

(q1−meiθ/λ, q1−me−iθ/λ; q)∞(
q1−m y/λ, q1−m/(λy); q

)
∞

=
(q1−meiθ/λ, q1−me−iθ/λ; q)m(qeiθ/λ, qe−iθ/λ; q)∞(

q1−m y/λ, q1−m/(λy); q
)

m

(
qy/λ, q/(λy); q

)
∞

=
(λeiθ, λe−iθ; q)m(qeiθ/λ, qe−iθ/λ; q)∞

(λy, λ/y; q)m

(
qy/λ, q/(λy); q

)
∞

.

We now give two generating functions which follow from Theorem 4.1B and one
which follows from Theorem 4.1D.

∞∑
n=0

Hn+k(cos θ|q)

(q; q)n+k
tn =

eikθ

(1− teiθ)(e−2iθ; q)∞
1φ2

(
teiθ

qe2iθ, qteiθ

∣∣∣ q, qk+2e2iθ

)
+ a similar term with θ replaced by − θ.

(4.8)

In fact one can get the more general result

∞∑
n=0

Hn+k(cos θ|q)

(q; q)n+k

(λ; q)ntn

(q; q)n
=

(λteiθ; q)∞eikθ

(teiθ, e−2iθ; q)∞
1φ2

(
teiθ

qe2iθ, λteiθ

∣∣∣ q, qk+2e2iθ

)(4.9)

+ a similar term with θ replaced by − θ.
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Corollary 4.2 A generating function for the q-Hermite polynomials is

∞∑
n=0

(λ; q)n

(q2; q2)n
Hn(x|q2)tn =

(λteiθ; q)∞
(teiθ; q)∞

3φ2

(
λ,
√

qeiθ,−√qeiθ

λteiθ,−q

∣∣∣ q, te−iθ

)
.

Sketch of Proof of Corollary 4.2 Multiply both sides of the equation in Theo-
rem 4.1D by (λ; q)ntn/(q; q)n, sum on n and use the q-binomial theorem. The right-
hand side becomes a combination of two 3φ2’s with argument q. This can be trans-
formed to a multiple of a 3φ2 using [10, (III.34)].

Observe that the 3φ2 in Corollary 4.2 is essentially bibasic on base q and q2. If
λ = 0 or λ = −q the 3φ2 may be summed to infinite products, these are known
results. Furthermore [10, (III.9)] shows that the right-hand side of Corollary 4.2 is a
function of cos θ.

Corollary 4.3 The q-exponential function Eq is essentially a 2φ1 function, that is

Eq(cos θ; t) =
(−t ; q1/2)∞
(qt2; q2)∞

2φ1

(
q1/4eiθ, q1/4e−iθ

−q1/2

∣∣∣ q1/2,−t

)
=

(t ; q1/2)∞
(qt2; q2)∞

2φ1

(
−q1/4eiθ,−q1/4e−iθ

−q1/2

∣∣∣ q1/2, t

)
.

Consequently if either 0 ≤ t < 1, x ≥ −(q1/4 + q−1/4)/2, or −1 < t ≤ 0, x ≤
(q1/4 + q−1/4)/2, then Eq(x; t) > 0.

Proof In Corollary 4.2 replace t by −t/λ then let λ→∞. The result is the generat-
ing function
(4.10)

∞∑
n=0

qn(n−1)/2

(q2; q2)n
Hn(cos θ|q2)tn = (−teiθ; q)∞2φ2

(√
qeiθ,−√qeiθ

−q,−teiθ

∣∣ q,−te−iθ

)
.

The transformation [10, (III.4)] reduces the above equation to
(4.11)
∞∑

n=0

qn(n−1)/2

(q2; q2)n
Hn(cos θ|q2)tn = (−tq−1/2; q)∞2φ1

(√
qeiθ,
√

qe−iθ

−q

∣∣∣ q,−tq−1/2

)
.

Now (1.12) and (4.10) imply the first of the representations. The second equality
follows from the first and [10, (III.3)]. The statement about the zeros follows from
the second equation in Corollary 4.3.

Note that the two equations of Corollary 4.3 are q-analogue of the identities ext =
e±t e∓t(1∓x).

At the end of this section we will come back to Corollaries 4.2 and 4.3 and give a
direct proof of Corollary 4.2, which also proves Corollary 4.3. It is worth pointing out
that Corollary 4.3 is an important result and yields some quadratic transformations,
which will be the subject of a future work. In the same work we establish a Taylor
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series type expansion in the basis {(q1/4eiθ, q1/4e−iθ; q1/2)n}, n = 0, 1 . . . , and use the
Taylor type expansion to study transformation formulas, expansions and identities
for q-series.

Recall the Poisson kernel [4]
(4.12)
∞∑

n=0

Hn(cos θ|q)Hn(cosφ|q)
tn

(q; q)n
=

(t2; q)∞
(tei(θ+φ), tei(θ−φ), te−i(θ−φ), te−i(θ+φ); q)∞

.

Using Theorem 4.1A we can derive a trilinear generating function for the continuous
q-Hermite polynomials. If we replace t by t y in (4.12), then multiply by yk, and then
use Theorem 4.1A we find

∞∑
n=0

Hn+k(cosψ|q)Hn(cos θ|q)Hn(cosφ|q)
tn

(q; q)n

=
eikψ(t2e2iψ ; q)∞

(e−2iψ, tei(ψ+θ+φ), tei(ψ+θ−φ), tei(ψ+φ−θ), tei(ψ−θ−φ); q)∞

× 6φ5

(
tei(ψ+θ+φ), tei(ψ+θ−φ), tei(ψ+φ−θ), tei(ψ−θ−φ), 0, 0

qe2iψ, teiψ,−teiψ,
√

qteiψ,−√qteiψ

∣∣∣ q, qk+1eiψ

)
+ a similar term with ψ replaced by − ψ.

(4.13)

It is clear that both sides of (4.13) are symmetric in θ and φ. When k = 0 the
left-hand side is clearly symmetric in θ and ψ, but the form of the right-hand side
does not make its symmetry obvious. This leads to the following theorem.

Theorem 4.4 The expression

(t2e2iψ ; q)∞
(e−2iψ, tei(θ+φ+ψ), tei(θ−φ+ψ), tei(ψ+φ−θ), tei(ψ−θ−φ); q)∞

× 6φ5

(
tei(θ+φ+ψ), tei(ψ+θ−φ), tei(ψ+φ−θ), tei(ψ−θ−φ), 0, 0

qe2iψ, teiψ,−teiψ,
√

qteiψ,−√qteiψ

∣∣∣ q, qeiψ

)
+ a similar term with ψ replaced by − ψ.

is symmetric under any permutation of θ, φ, and ψ.

Similarly using Theorem 4.1B and (4.12) we establish the following theorem.
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Theorem 4.5 We have

∞∑
n=0

Hn+k(cosψ|q)

(q; q)n+k(q; q)n
Hn(cos θ|q)Hn(cosφ|q)tn

=
eikψ(t2e2iψ ; q)∞

(e−2iψ, tei(ψ+θ+φ), tei(ψ+θ−φ), tei(ψ+φ−θ), tei(ψ−θ−φ); q)∞

× 4φ5

(
tei(ψ+θ+φ), tei(ψ+θ−φ), tei(ψ+φ−θ), tei(ψ−θ−φ)

qe2iψ, teiψ,−teiψ,
√

qteiψ,−√qteiψ

∣∣∣ qk+2e3iψ

)
+ a similar term with ψ replaced by − ψ.

Furthermore when k = 0 the right-hand side of the above equality is symmetric in θ, φ,
ψ.

The trilinear generating function (4.13) contains two important product formulas
for the continuous q-Hermite polynomials which will be stated in the next theorem.

Theorem 4.6 With K(cos θ, cosφ, cosψ) denoting the right-hand side of (4.13), we
have the product formulas

Hn(cos θ|q)Hn(cosφ|q) =
(q; q)∞(q; q)n

2πtn(q; q)n+k

∫ π

0
K(cos θ, cosφ, cosψ)

×Hn+k(cosψ|q)(e2iψ, e−2iψ ; q)∞ dψ,

(4.14)

and

Hn(cos θ|q)Hn+k(cosψ|q) =
(q; q)∞

2πtn

∫ π

0
K(cos θ, cosφ, cosψ)

×Hn(cosφ|q)(e2iφ, e−2iφ; q)∞ dφ.

(4.15)

We now return to Corollary 4.2 and give a direct proof of it.

Proof of Corollary 4.2 Expand the 3φ2 on the right-hand side of Corollary 4.2 as a
sum over k, say, then use the q-binomial theorem to expand (λqkteiθ; q)∞/(teiθ; q)∞
as a power series in t . Thus the coefficient of tn on the right-hand side of Corollary 4.2
is

(λ; q)n

n∑
k=0

(qe2iθ; q2)k

(q2; q2)k(q; q)n−k
ei(n−2k)θ = (λ; q)nSn,

say. Now the q-binomial theorem gives

∞∑
n=0

Sntn =
1

(teiθ; q)∞

(qteiθ; q2)∞
(te−iθ; q2)∞

which is the generating function for Hn(cos θ|q2)/(q2; q2)n and the result follows.
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Observe that in the above proof we have established the representation

(4.16)
Hn(cos θ|q2)

(q2; q2)n
=

n∑
k=0

(qe2iθ; q2)k

(q2; q2)k(q; q)n−k
ei(n−2k)θ.

Note that (4.1), (4.2), (2.3), and the initial conditions of cn(x; t1, t2) imply

cn(cos 2θ;−1,−q|q2) =
H2n(cos θ|q)

(q2; q2)n
,

2 cos θcn(cos 2θ;−q2,−q|q2) =
H2n+1(cos θ|q)

(q2; q2)n

Thus Theorem 2.1 gives q-integral moment representations for the following func-
tions:

H2n(x|q)

(q2; q2)n
,

H2n+1(x|q)

(−q; q2)n
,

H2n+1(x|q)

(q2; q2)n
,

H2n+1(x|q)

(−q3; q2)n
.

One can also derive several generating functions involving H2n(x|q) and H2n+1(x|q)
from the corresponding results in Section 2.

5 The Associated Continuous q-Ultraspherical Polynomials

The associated continuous q-ultraspherical polynomials {C(α)
n (x;β|q)} [7] satisfy the

three term recurrence relation

2x(1− αβqn)C(α)
n (x;β|q) = (1− αqn+1)C(α)

n+1(x;β|q)

+ (1− αβ2qn−1)C(α)
n−1(x;β|q), n > 0,

(5.1)

and the initial conditions

(5.2) C(α)
0 (x;β|q) = 1, C(α)

1 (x;β|q) =
2(1− αβ)

(1− αq)
x.

In this section we give the moment representation (5.10) for the associated contin-
uous q-ultraspherical polynomials which leads to three new generating functions in
Theorems 5.3, 5.4 and 5.5. In Section 5 we shall always write x = cos θ.

Here again we set

C(α)
n (x;β|q) =

∫ b

a
yn f (y) dq y

then find out that f satisfies

f (y) =
q

αβ2

(1− qyeiθ)(1− qye−iθ)

(1− qyeiθ/β)(1− qye−iθ/β)
f (qy).

This suggests that we consider the functions∫ eiθ

e−iθ

yn

1− q

(
qyeiθ, qye−iθ, λy, q/(λy); q

)
∞

(µy, q/(µy), qyeiθ/β, qye−iθ/β; q)∞
dq y,
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with

(5.3) qµ = λαβ2.

We choose λ = qeiθ/β, µ = αβeiθ and consider the functions

(5.4) Φn(θ;β, α) =
∫ eiθ

e−iθ

yn

1− q

(qyeiθ, qye−iθ, βe−iθ/y; q)∞
(αβeiθ y, qe−iθ/(αβy), qye−iθ/β; q)∞

dq y.

Theorem 5.1 The functions Φn(θ, β, α) have the hypergeometric representation

Φn(θ, β, α) = ei(n+1)θ (q, αqn+1, qe2iθ, e−2iθ; q)∞(
q/β, αβqn, αβe2iθ, qe2iθ/(αβ); q

)
∞

× 2φ1

(
q−n/α, β

q1−n/(αβ)

∣∣∣ q,
q

β
e−2iθ

)
, n ≥ 0.

Proof From the definition of q-integration we see that the right-hand side of (5.4) is

ei(n+1)θ (q, qe2iθ, βe−2iθ; q)∞(
q/β, αβe2iθ, qe−2iθ/(αβ); q

)
∞

2φ1

(
q/β, qe2iθ/β

qe2iθ

∣∣∣ q, αβ2qn

)

− e−i(n+1)θ(q, qe−2iθ, β; q)∞
(αβ, q/(αβ), qe−2iθ/β; q)∞

2φ1

(
q/β, qe−2iθ/β

qe−2iθ

∣∣∣ q, αβ2qn

)
=

ei(n+1)θ(q, qe2iθ, βe−2iθ; q)∞(
q/β, αβe2iθ, qe−2iθ/(αβ); q

)
∞

[
2φ1

(
q/β, qe2iθ/β

qe2iθ

∣∣∣ q, αβ2qn

)

− e−2i(n+1)θ

(
qe−2iθ, β, q/β, αβe2iθ, qe−2iθ/(αβ); q

)
∞

(qe2iθ, βe−2iθ, αβ, q/(αβ), qe−2iθ/β; q)∞

× 2φ1

(
q/β, qe−2iθ/β

qe−2iθ

∣∣∣ q, αβ2qn

)]
.

Apply (2.10) with A = qe2iθ/β, B = q/β, C = qe2iθ, Z = αβ2qn to complete the
proof of Theorem 5.1.

Corollary 5.2 The function vn(θ;β, α) defined by

vn(θ;β, α) =
Φn(θ;β, α)

Φ0(θ;β, α)
= einθ (αβ; q)n

(qα; q)n
2φ1

(
q−n/α, β

q1−n/(αβ)

∣∣∣ q,
q

β
e−2iθ

)
satisfies the three term recurrence relation (5.1).

When α = 1 the extreme right-hand side of Corollary 5.2 reduces to the q-
ultraspherical polynomial Cn(cos θ;β|q). For α 6= 1 it may not be a polynomial
but nevertheless is a solution to (5.1).
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The solution of (5.1) given in Corollary 5.2 has a restricted β domain. We give two
other solutions of (5.1) which hold for a wider domain of β. Unlike Φn constructing
these two solutions will not require the application of transformations of basic hyper-
geometric series. However we will need to verify the three term recurrence relation
for n = 0.

Let yn f (y, θ) be the integrand in (5.4). Observe that the analysis preceding Theo-

rem 5.1 indicates that both
∫ e±iθ

0 yn f (y, θ) dq y, for n > 0 satisfy the recurrence (5.1).
Define v±n (θ;α, β) by

(5.5) v±n (θ;α, β) := e±(n+1)iθ
2φ1

(
q/β, qe±2iθ/β

qe±2iθ

∣∣∣ q, αβ2qn

)
.

This comes from the integral (5.4) on [0, e±iθ]. Both v+
n and v−n satisfy (5.1) for n > 0

and we will see later that are linearly independent functions of n for θ 6= kπ, k = 0,
±1, . . . .

We now verify that v+
n and v−n satisfy (5.1) if n = 0. To do so assume

(5.6) −1 < αβ2/q < 1,

so that v±−1 is well-defined. We now go back and reexamine the analysis preceding
Theorem 5.1. From (1.3) we see that when a = 0, the boundary term in (1.3) will
vanish if ug(u) f (u/q) → 0 as u → 0 for u of the form ζqm for fixed ζ and m → ∞.
In our case it suffices to prove that

lim
m→∞

(βe−iθq−m/ζ ; q)∞/
(

qe−iθq−m/(ζαβ); q
)
∞ = 0.

The above limit is a bounded function times

lim
m→∞

(βe−iθq−m/ζ ; q)m(
qe−iθq−m/(ζαβ); q

)
m

= lim
m→∞

(αβ2/q)m (qζeiθ/β; q)m

(αβζeiθ/q; q)m
= 0.

Note that (5.1), (5.2) and (5.6) imply C(α)
−1(x;β|q) = 0.

It is important to note that one can directly verify that v±n satisfy (5.1) by substitut-
ing the right-hand side of (5.5) in (5.1) and equating coefficients of various powers
of α. In fact this shows that v±n satisfies (5.1) for all n for which |αβqn−1| < 1. To go
beyond this restriction we need to analytically continue the 2φ1 in (5.5) using trans-
formations of basic hypergeometric series, see Appendix III in [10], for example.

We now show that v+
n and v−n are linearly independent functions of n by computing

the Casorati determinant

∆n = v+
n+1(θ;β, α)v−n (θ;β, α)− v+

n (θ;β, α)v−n+1(θ;β, α).

Equation (1.10) implies

∆n =
(qαβ2; q)n−1

(q3α; q)n−1
∆1,
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and since e∓i(n+1)θv±n → 1 as n→∞, then we have ∆n → 2i sin θ as n→∞. Hence

(5.7) ∆n =
(αqn+2; q)∞
(αβ2qn; q)∞

2i sin θ.

This confirms the linear independence of v±n when θ 6= kπ. Note also that

(5.8) ∆−1 =
(αq; q)∞

(αβ2/q; q)∞
2i sin θ.

Since both v±n satisfy (5.1) then there exists A(θ) and B(θ) such that

(5.9) C(α)
n (cos θ;β|q) = A(θ)v+

n (θ;β, α) + B(θ)v−n (θ;β, α).

To determine A and B use the initial conditions

C(α)
−1(x;β|q) = 0, C(α)

0 (x;β|q) = 1

and (5.8). The result is

C(α)
n (cos θ;β|q) =

(αβ2/q; q)∞
2i sin θ(αq; q)∞

× [v−−1(θ;β, α)v+
n (θ;β, α)− v+

−1(θ;β, α)v−n (θ;α, β)].

(5.10)

Formula (5.10) is Rahman and Tariq’s result [19, (3.4)]. They used (5.10) to derive
linear and bilinear generating functions. In the reminder of this section, we shall
apply (5.10) to derive only results not in Rahman and Tariq’s paper [19].

Our first result is the following theorem.

Theorem 5.3 We have

∞∑
n=0

(λ; q)n

(q; q)n
C(α)

n+k(cos θ;β|q)tn

= eikθ (λteiθ, αβ2/q; q)∞
(1− e2iθ)(teiθ, αq; q)∞

2φ1

(
q/β, qe−2iθ/β

qe−2iθ

∣∣∣ q,
αβ2

q

)
× 3φ2

(
q/β, qe2iθ/β, teiθ

qe2iθ, λteiθ

∣∣∣ q, αβ2qk

)
+ a similar term with θ replaced by − θ.

The cases λ = q or k = 0 of Theorem 5.3 are in [19].
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Theorem 5.4 We have the bilinear generating function

∞∑
n=0

Cn(cosφ;β1|q)C(α)
n (cos θ;β|q)tn

=
(αβ2/q, β1tei(θ+φ), β1tei(θ−φ); q)∞

(1− e−2iθ)(αq, tei(θ+φ), tei(θ−φ); q)∞

× 2φ1

(
q/β, qe−2iθ/β

qe−2iθ

∣∣∣ q,
αβ2

q

)
× 4φ3

(
q/β, qe2iθ/β, tei(θ+φ), tei(θ−φ)

qe2iθ, β1tei(θ+φ), β1tei(θ−φ)

∣∣∣ q, αβ2

)
+ a similar term with θ replaced by − θ.

Proof Multiply (5.10) by Cn(cosφ;β1|q)tn and add then use the generating function
(4.16).

The associated continuous q-ultraspherical polynomials have the generating func-
tion [7]
(5.11)

∞∑
n=0

C(α)
n (cos θ;β|q)tn =

1− α
(1− teiθ)(1− te−iθ)

3φ2

(
βteiθ, βte−iθ, q

qteiθ, qte−iθ

∣∣∣ q, α

)
.

We now give a Poisson-type kernel for the polynomials under consideration.

Theorem 5.5 A bilinear generating function for the associated continuous q-ultra-
spherical polynomials is given by

∞∑
n=0

C(α1)
n (cosφ;β1|q)C(α)

n (cos θ;β|q)tn

=
(1− α1)(αβ2/q; q)∞
(1− e−2iθ)(αq; q)∞

2φ1

(
q/β, qe−2iθ/β

qe−2iθ

∣∣∣ q,
αβ2

q

)

×
∞∑

k=0

(q/β, qe2iθ/β; q)kα
kβ2k

[1− 2 cosφteiθqk + t2q2ke2iθ](q, qe2iθ; q)k

× 3φ2

(
q, β1tqkei(θ+φ), β1tqkei(θ−φ)

qk+1tei(θ+φ), qk+1tei(θ−φ)

∣∣∣ q, α1

)
+ a similar term with θ replaced by − θ.

The case α = α1 of (5.16) is in [19].
Theorem 2.1 gave two moment representations for the Al-Salam-Chihara poly-

nomials. We can also do the same for the associated continuous q-ultraspherical
polynomials. Namely if

p̂n(x) =
(αq; q)n

(αβ2; q)n
C(α)

n (x;β|q)

https://doi.org/10.4153/CJM-2002-027-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-027-2


732 Mourad E. H. Ismail and Dennis Stanton

then p̂n(x) also satisfies a three term recurrence relation whose coefficients are also
polynomials in qn. Thus the technique of this paper applies. However we have

(5.12) C(αβ2/q)
n (x; q/β|q) =

(αq; q)n

(αβ2; q)n
C(α)

n (x;β|q).

So the renormalized moment representations amount to changing the α and β in the
associated continuous q-ultraspherical polynomials.

6 The Associated Al-Salam-Chihara Polynomials

These polynomials were first considered in [5] where their generating functions,
asymptotics, and their weight function were found. In this section we carry out our
program on these polynomials.

The associated Al-Salam-Chihara polynomials p(α)
n (x; t1, t2) are generated by

(6.1) p(α)
0 (x; t1, t2) = 1, p(α)

1 (x; t1, t2) =
t1[2x − (t1 + t2)α]

1− αt1t2
,

and

t1[2x − (t1 + t2)αqn]p(α)
n (x; t1, t2) = [1− t1t2αqn]p(α)

n+1(x; t1, t2)

+ t2
1 (1− αqn)p(α)

n−1(x; t1, t2), n > 0,
(6.2)

as can be seen from (2.2) and (2.3). Now assume
∫ b

0 yn f (y) dq y is a solution to (6.2).
Then (1.3) yields

f (y) =
t2

1 − 2qxt1 y + q2 y2

α[t2
1 − t1(t1 + t2)y + t1t2 y2]

f (qy),

which gives

f (y) =

(
qyeiθ/t1, qye−iθ/t1, λy, q/(λy); q

)
∞(

y, yt2/t1, αλy, q/(αλy); q
)
∞

.

This leads us to take b = t1e±iθ and to introduce the functions

(6.3) A±n (θ, t1, t2) = tn+1
1 e±i(n+1)θ

2φ1

(
t1e±iθ, t2e±iθ

qe±2iθ

∣∣∣ q, αqn+1

)
, n ≥ −1,

for |α| < 1. We need the assumption |α| < 1 in order for A±−1 to be defined by (6.3).
We are also assuming α 6= 0. We proceed as before, first verify that A±n satisfies (6.2)
for all n ≥ 0 then compute the Casorati determinant. The only difference here is that
t−2n−2

1 ∆n → 2t1i sin θ as n→∞. We find

(6.4) ∆n = 2it2n+3
1 sin θ

(αt1t2qn+1; q)∞
(αqn+1; q)∞

.
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The condition |α| < 1, enables us to conclude that p(α)
−1 = 0 if (6.2) is extended to

hold for n = 0. Thus p(α)
n = [A−−1A+

n − A+
−1A−n ]/∆−1, that is

p(α)
n (cos θ; t1, t2) =

(α; q)∞tn
1 einθ

(1− e−2iθ)(αt1t2; q)∞
2φ1

(
t1e−iθ, t2e−iθ

qe−2iθ

∣∣∣ q, α

)
× 2φ1

(
t1eiθ, t2eiθ

qe2iθ

∣∣∣ q, αqn+1

)
+ a similar term with θ replaced by − θ.

An immediate consequence of (6.5) is

∞∑
n=0

(λ; q)n

(q; q)n
p(α)

n (cos θ; t1, t2)tn(6.5)

=
(α, λt1teiθ; q)∞

(1− e−2iθ)(αt1t2, t1teiθ; q)∞
2φ1

(
t1e−iθ, t2e−iθ

qe−2iθ

∣∣∣ q, α

)
× 3φ2

(
t1eiθ, t2eiθ, t1teiθ

qe2iθ, λt1teiθ

∣∣∣ q, αq

)
+ a similar term with θ replaced by − θ.

Another application of (6.5) is to combine it with (2.17) and find

∞∑
n=0

(t3t4; q)ntn

tn
1 tn

3 (q; q)n
p(α)

n (cos θ; t1, t2)pn(cosφ; t3, t4)

(6.6)

=
(α, t3teiθ, t4teiθ; q)∞

(1− e−2iθ)(αt1t2, tei(θ+φ), tei(θ−φ); q)∞
2φ1

(
t1e−iθ, t2e−iθ

qe−2iθ

∣∣∣ q, α

)
× 4φ3

(
t1eiθ, t2eiθ, tei(θ+φ), tei(θ−φ)

qe2iθ, t3teiθ, t4teiθ

∣∣∣ q, αq

)
+ a similar term with θ replaced by − θ.
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The limiting case α → 1− of (6.7) is the result stated as Theorem 4.1 in our paper
[13].

A companion representation for the associated Al-Salam-Chihara polynomials
may also be found. Similar to Section 5 it follows from

(6.7) p(αt1t2/q)
n (x; q/t1, q/t2) =

( q

t2
1

) n (αt1t2; q)n

(αq; q)n
p(α)

n (x; t1, t2).
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