BULL. AUSTRAL. MATH. SOC. Vol. 50 (1994) [109-116]

ON THE PETTIS MEASURABILITY THEOREM

DIETRICH HELMER

It is shown that, in Pettis's criterion for Bochner measurability of a vector-valued function $f: S \to X$, scalar measurability of f can be weakened to requiring that $u \circ f$ be measurable for u in some subset of the dual X^* separating the points of X. Even then, the separability hypotheses in Pettis's Theorem can be weakened as well.

Throughout, (S, Σ, μ) denotes a positive measure space. Then Σ_0 stands for the collection of all μ -null sets and Σ_b for $\{E \in \Sigma \mid 0 < \mu(E) < \infty\}$. Moreover, X is a Fréchet space over K, where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. We fix a function $f: S \to X$. Recall that f is μ -measurable (in the sense of Bochner) if and only if $\chi_E f$ is, for every $E \in \Sigma_b$, the limit μ -almost everywhere in S of a sequence of μ -simple functions. The set of all μ -measurable functions $S \to X$ is denoted by $\mathcal{M}(\mu, X)$.

One of the most frequently employed and useful criteria for μ -measurability is the Pettis Measurability Theorem for Banach spaces X [12, p.278] (compare [2, p.149]): $f \in \mathcal{M}(\mu, X)$ if (and only if) every $E \in \Sigma_b$ admits an $N \in \Sigma_0$ such that $f(E \setminus N)$ is separable and f is scalarly μ -measureable, that is,

$$X^* \circ f := \{u \circ f \mid u \in X^*\} \subseteq \mathcal{M}(\mu, \mathbb{K}) =: \mathcal{M}(\mu).$$

A discussion of the importance of the theorem for Measure Theory and the theory of Banach spaces has been given by Uhl in [19]. It is known (compare [19] [1, p.43] for finite μ) that scalar μ -measurability of f in Pettis's Theorem can be replaced by the weaker condition that $U \circ f \subseteq \mathcal{M}(\mu)$ for some norming $U \subseteq X^*$. We shall show in this note that a minimal requirement is already sufficient here: namely, that $U \circ f \subseteq \mathcal{M}(\mu)$ for some $U \subseteq X^*$ separating sufficiently many points of X. (A key argument has already been utilised implicitly in [4] for Haar measures μ and, for general σ -finite μ , in [7].) It is often easy to identify point-separating subsets U of X^* ; and, depending on X^* and f, there may be flexibility in tailoring U so as to facilitate the verification of $U \circ f \subseteq \mathcal{M}(\mu)$.

Let $\mathbb{I} := [0, 1]$. If $B \subseteq X$, then $\overline{span} B$ stands for the closed linear span of B in X and B_{σ} denotes B with the subspace topology it inherits from the weak topology of X.

Received 5th October, 1993

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

D. Helmer

Similarly, if $V \subseteq X^*$, then V_{σ} is V equipped with the restricted w^* -topology. $(S, \hat{\Sigma}, \mu)$ denotes the Lebesgue extension of (S, Σ, μ) . We call $\Sigma_c \subseteq \hat{\Sigma}$ μ -covering if and only if for every $E \in \Sigma_b$, there exists some $T \in \Sigma_c$ such that $E \cap T \notin \Sigma_0$, which is the case if and only if every $E \in \Sigma_b$ admits a sequence T_n in Σ_c with $E \setminus \bigcup_{n=1}^{\infty} T_n \in \Sigma_0$. And $\Gamma \subseteq \hat{\Sigma}$ is said to be a μ -regularity set if and only if $\mu(E) = \sup\{\mu(G) \mid G \in \Gamma, G \subseteq E\}$ for every $E \in \Sigma_b$. Any such Γ is μ -covering.

THEOREM 1. $f \in \mathcal{M}(\mu, X)$ if and only if there exists a μ -covering set Σ_c such that every $T \in \Sigma_c$ admits some $N \in \Sigma_0$ with $f(T \setminus N)$ separable and some $U \subseteq X^*$ separating the points of $\overline{span} f(T \setminus N)$ with $U \circ f \subseteq \mathcal{M}(\mu)$.

PROOF: If f is μ -measurable, then the conditions are satisfied with $\Sigma_c := \Sigma_b$ and $U := X^*$. Conversely, suppose now that there exists a μ -covering collection Σ_c as above. First, using routine arguments, one reduces the proof to the case where μ is finite, X is separable, and where $U \circ f \subseteq \mathcal{M}(\mu)$ for some subset U of X^* separating the points of X. In this situation, it follows by means of Egoroff's Theorem that the linear subspace $D := \{u \in X^* \mid u \circ f \in \mathcal{M}(\mu)\}$ of X^* is sequentially closed in X^*_{σ} . For every 0-neighbourhood B in X, the polar $B^\circ := \{u \in X^* \mid |u(b)| \leq 1 \text{ for all } b \in B\}$ is compact and metrisable in X^*_{σ} ; and, consequently, $D \cap B^\circ$ is closed in $(B^\circ)_{\sigma}$. According to the Krein-Šmulian Theorem [9, 22.6], therefore, D itself is closed in X^*_{σ} . On the other hand, D is dense in X^*_{σ} since it separates the points of X. Thus, $D = X^*$, that is f is scalarly μ -measurable. If X is a Banach space, an appeal to Pettis's Theorem finishes the proof. In the general case, the usual arguments need adaptation: Fix a sequence B_n of closed convex circled subsets of X constituting a 0-neighbourhood base in X such that $B_{n+1} \subseteq B_n$ for all n. Thereafter, pick, for every n, a sequence u_{nk} that is dense in $(B^\circ_n)_{\sigma}$. Moreover, let x_m be a dense sequence in X. Then

$$h_{nm} \colon s \longmapsto \sup ig \{ |u_{nk}(f(s) - x_m)| \mid k \in \mathbb{N} ig \} \colon S \longrightarrow \mathbb{K}$$

is μ -measurable for all n, m, and, consequently, $h_{nm}^{-1}(\mathbb{I}) \in \widehat{\Sigma}$. But $h_{nm}^{-1}(\mathbb{I}) = f^{-1}(x_m + B_n)$ by means of the Bipolar Theorem. Now the classical arguments carry over mutatis mutandis to show that f is the uniform limit of a sequence f_n of countably-valued functions with $\{f_n^{-1}(x) \mid n \in \mathbb{N}, x \in X\} \subseteq \widehat{\Sigma}$ and, finally, to show that f is μ -measurable.

EXAMPLE. Suppose S is also a topological space and Γ is a μ -regularity set consisting of closed subsets or of open subsets of S. Let D be an open connected set in \mathbb{C} and $h : S \times D \to \mathbb{C}$ a function that is analytic in the second argument such that $\{h(-, z) \mid z \in A\} \subseteq \mathcal{M}(\mu)$ for some $A \subseteq D$ with an accumulation point in D. Then, given $\varepsilon > 0$, every $E \in \Sigma_b$ contains a $G \in \Gamma$ with $\mu(E \setminus G) < \varepsilon$ such that h is continuous on $G \times D$.

PROOF: Consider $\psi: s \mapsto h(s, -): S \to H(D)$, where H(D) denotes the separable Fréchet space consisting of all analytic functions $D \to \mathbb{C}$ equipped with the topology of uniform convergence on compacta. The subset U of $H(D)^*$, made up of the evaluation functionals at points of A, separates the points of H(D) and satisfies $U \circ \psi \subseteq \mathcal{M}(\mu)$. So ψ is μ -measurable by Theorem 1; whence some sequence of countably-valued μ -measurable functions $S \to H(D)$ converges to ψ uniformly. Adapting standard arguments (compare [16, p.27]), given ε and E, we find some $G \in \Gamma$ with $G \subseteq E$ and $\mu(E \setminus G) < \varepsilon$ on which ψ is continuous. To complete the proof, it therefore suffices to utilise the continuity of the evaluation $H(D) \times D \to \mathbb{C}$.

We now turn to the second ingredient of the Pettis Theorem, separability, and replace it by weaker conditions, while keeping our minimal hypotheses on scalar μ -measurability.

We call a topology \mathcal{T} on $R \subseteq S$ a μ -topology if and only if $\mathcal{T} \cap \Sigma_0 \subseteq \{\emptyset, R\}$. If R is σ -finite in $\widehat{\Sigma}$ and θ is a lifting of $\Delta := \{D \in \widehat{\Sigma} \mid D \subseteq R\}$, or just any lower density of Δ , then the density topology

$$\mathcal{T}_{\theta} := \{\theta(D) \setminus M \mid D \in \Delta, M \in \Delta \cap \Sigma_0\} = \{F \in \Delta \mid F \subseteq \theta(F)\}$$

(compare [8, p.54]) is a μ -topology on R. Generally: if $R \in \widehat{\Sigma} \setminus \Sigma_0$ and \mathcal{O} is any topology on R with $\mathcal{O} \cap \Sigma_0 = \{\emptyset\}$, then $\{Q \setminus M \mid Q \in \mathcal{O}, M \in \Sigma_0\}$ is a basis of a μ -topology. If P is a topological space and $V \subseteq C(P)$, then V is considered equipped with the topology of pointwise convergence and AlgV denotes the smallest closed \mathbb{K} subalgebra of C(P) containing V. Recall that P satisfies the Souslin countable chain condition CCC if and only if every family of non-empty, pairwise disjoint, open subsets of P is countable. We say that a collection \mathcal{B} of Borel subsets of \mathbb{K} is a *Borel subbase* for \mathbb{K} if and only if for every open $W \subseteq \mathbb{K}$ and every $\alpha \in W$, there are B_1, \ldots, B_m in \mathcal{B} with $\alpha \in \bigcap_{h=1}^m B_k \subseteq W$.

THEOREM 2. $f \in \mathcal{M}(\mu, X)$ if there is a μ -covering set Σ_c such that every $T \in \Sigma_c$ admits pseudo-compact sets P_1, P_2, \ldots in X_{σ}, μ -null sets N_0, N_1, \ldots with

$$f(T \setminus N_0) \subseteq \overline{span}\left(\bigcup_{i=1}^{\infty} f(T \setminus N_i) \cap P_i\right) =: Y,$$

and a $U \subseteq X^*$ separating points of Y with $U \circ f \subseteq \mathcal{M}(\mu)$ satisfying, for every $k \ge 1$, one of these conditions:

(1) There is a sequence V_{km} of pseudo-compact CCC-subspaces of $C(P_{k\sigma})$ with $U \mid_{P_k} \subseteq Alg\left(\bigcup_{m=1}^{\infty} V_{km}\right)$.

D. Helmer

(2) There is a Borel subbase \mathcal{B}_k for \mathbb{K} so that every pairwise disjoint collection in

[4]

$$\Big\{T\cap igcap_{i=1}^{m}f^{-1}ig(P_{k}\cap u_{i}^{-1}(B_{i})ig)\setminus N_{k}\mid m\in\mathbb{N},\,u_{i}\in U,\,B_{i}\in\mathcal{B}_{k}\Big\}$$

is countable.

(3) $T \cap f^{-1}(P_k)$ is in $\widehat{\Sigma}$ and σ -finite; and there is a μ -topology \mathcal{T}_k on $T \cap f^{-1}(P_k)$ such that $u \circ f$, restricted to $(T \cap f^{-1}(P_k)) \setminus N_k$, is \mathcal{T}_k -continuous for $u \in U$.

Conversely, these conditions are necessary for $f \in \mathcal{M}(\mu, X)$.

PROOF: Suppose that there exists a μ -covering collection Σ_c with the properties listed above. Fix $T \in \Sigma_c$, and then let the P_j 's, the N_j 's and U be as guaranteed by the hypotheses. In view of Theorem 1, it suffices to show that, for every fixed $k \ge 1$, the weak closure C_k of $f(T \setminus N_k) \cap P_k$ is separable with respect to the weak topology. Note that $C_k \subseteq Y$, as Y is closed in X_{σ} by Mazur's Theorem [9, 17.1]. The class of Eberlein compacta (that is, those topological spaces that are homeomorphic with weakly compact subsets of Banach spaces) is well-known to be closed under the formation of countable products. And according to a result of Preiss and Simon [13], every weakly pseudo-compact subset of a Banach space is weakly compact. Thus, as X admits a linear homeomorphic embedding into a product of countably many Banach spaces, $P_{k\sigma}$ is Eberlein compact.

First, suppose that (1) is satisfied. Fix m. Evaluation $g: V_{km} \times P_{k\sigma} \to \mathbb{K}$ is separately continuous. Let $h \in C(\mathbb{K}, \mathbb{I})$. Then an argument given by Pták [14, p.572] shows that

$$\lim_{i\to\infty}\lim_{j\to\infty}h(v_i(p_j))=\lim_{j\to\infty}\lim_{i\to\infty}h(v_i(p_j))\quad\text{in }\mathbb{I}$$

for every sequence (v_i, p_i) in $V_{km} \times P_k$ for which all limits involved exist. According to [5, 2.1.(2)], therefore, $h \circ g \colon V_{km} \times P_{k\sigma} \to \mathbb{I}$ admits a separately continuous extension to $\beta V_{km} \times P_{k\sigma}$, where β denotes the Stone-Čech compactification operator. Furthermore, if A, B are any two disjoint closed subsets of \mathbb{K} , then $h'(A) \subseteq \{0\}$ and $h'(B) \subseteq \{1\}$ for a suitable $h' \in C(\mathbb{K}, \mathbb{I})$. Consequently, g admits a separately continuous extension $\beta V_{km} \times P_{k\sigma} \to \beta \mathbb{K}$ by [5, 2.1.(7)]. Moreover, all subspaces of \mathbb{K} of the form $V_{km}(p)$ with $p \in P_k$ and of the form $v(P_k)$ with $v \in V_{km}$ are compact. It therefore follows from [5, 2.5.(1), 2.8] that V_{km} has Eberlein compact closure \overline{V}_{km} in $C(P_{k\sigma})$. On the other hand, \overline{V}_{km} satisfies CCC. Consequently, \overline{V}_{km} is separable. This follows from the Rosenthal Separability Theorem [15, 4.6] and is also a rather direct consequence of Namioka's continuity Theorem 4.2 in [11]. Thus, $A := Alg\left(\bigcup_{m=1}^{\infty} V_{km}\right)$ is separable in

 $C(P_{k\sigma})$, whence $A|_{C_k}$ is separable in $C(C_{k\sigma})$. But $A|_{C_k}$ separates the points of C_k since it contains $U|_{C_k}$. Consequently, $C_{k\sigma}$ is separable, indeed.

In cases (2), (3), it suffices to show that $C_{k\sigma}$ satisfies CCC because it is Eberlein compact. So let $(Q_{\lambda})_{\lambda \in \Lambda}$ be any family of non-empty, open, pairwise disjoint subsets of $C_{k\sigma}$. Fix $\lambda \in \Lambda$, and choose some $t_{\lambda} \in T \cap (f^{-1}(P_k \cap Q_{\lambda}) \setminus N_k)$. Since $U|_{C_k}$ separates the points of C_k , it generates the topology of $C_{k\sigma}$. So there exist $u_1, \ldots, u_m \in U$ and open subsets B_1, \ldots, B_m in \mathbb{K} such that

$$f(t_{\lambda}) \in C_k \cap \bigcap_{i=1}^m u_i^{-1}(B_i) \subseteq Q_{\lambda}.$$

But then $f(D_{\lambda}) \subseteq Q_{\lambda}$ for

$$D_{\lambda} := T \cap f^{-1}(P_k) \cap \bigcap_{i=1}^m (u_i \circ f)^{-1}(B_i) \setminus N_k.$$

And $D_{\lambda} \neq \emptyset$, as $t_{\lambda} \in D_{\lambda}$.

Suppose now that (3) holds. Then D_{λ} is an open \mathcal{T}_k -neighbourhood of t_{λ} in $(T \cap f^{-1}(P_k)) \setminus N_k$. Since \mathcal{T}_k is a μ -topology on $T \cap f^{-1}(P_k)$, it follows that $D_{\lambda} \notin \Sigma_0$, provided that $D_{\lambda} \neq (T \cap f^{-1}(P_k)) \setminus N_k$. Moreover, in view of the hypothesis that $U \circ f \subseteq \mathcal{M}(\mu)$ and that $T \cap f^{-1}(P_k)$ is σ -finite in $\hat{\Sigma}$, we obtain that $D_{\lambda} \in \hat{\Sigma}$ (compare [2, p.148]). Consequently, the usual summability argument shows that Λ must be countable.

Finally, suppose that (2) is satisfied. Then we may assume that B_1, \ldots, B_m are, actually, members of \mathcal{B}_k (though no longer open, perhaps). Consequently, (2) guarantees countability of Λ in this case as well.

Conversely, as for the necessity of the conditions, suppose that f is μ -measurable. Take $\Sigma_c := \Sigma_b$ and $U := X^*$. Fix $T \in \Sigma_c$ and, thereafter, $N_0 \in \Sigma_0$ such that $\bigcup_{i=1}^{\infty} P_i$ is dense in $f(T \setminus N_0)$ for some sequence P_k of singletons. Let $N_k := \emptyset$ for $k \ge 1$. Then (1) and (2) are, trivially, satisfied for every k. As is (3) since $T \cap f^{-1}(P_k) \in \widehat{\Sigma}$ (compare [2, p.148]).

REMARKS. 1. The proof of Theorem 1 essentially consisted in showing that, if $U \circ f \subseteq \mathcal{M}(\mu)$ for some $U \subseteq X^*$ separating the points of X, then f is scalarly μ -measurable, provided that X is separable. Scalar measurability has received considerable attention, in particular in the context of the Pettis integral (compare [18] and references there). The Krein-Šmulian Theorem can be applied to the scalar measurability problem as well. Even if X is non-separable, the argument for scalar μ -measurability of f in the proof of Theorem 1 goes through, provided that $(B^{\circ})_{\sigma}$ is sequential for every 0-neighbourhood B in X. The latter condition is satisfied, for instance, if X is a closed

linear subspace of a Fréchet space Z such that $\bigcup_{n=1}^{\infty} P_n$ is total in Z for some sequence P_n of pseudo-compact subsets of Z_{σ} . But some additional assumption on X is, generally, indispensable to arrive at the conclusion. Consider, for instance, the map $g: \mathbb{I} \to \ell^{\infty}$, where g(s) is the sequence making up the dyadic expansion of $s \in \mathbb{I}$ such that g(s) is not 1 eventually. Let $U \subseteq (\ell^{\infty})^*$ consist of the evaluation functionals at points of N. For every $u \in U$, then $u \circ g$ is measurable with respect to Lebesgue measure λ (in fact, $u \circ g$ is of Baire class 1). It can be shown, however, that g is not scalarly λ -measurable. 2. If S is a Souslin space and μ a Borel measure, then the set $\mathcal{K}(S)$ of all compact subsets of S is a μ -regularity set (compare [16, p.122]).

3. If S is a completely regular space and μ a Baire measure, then it can be shown that the collection $\mathcal{Z}(S)$ of zero-sets of S (that is, sets $g^{-1}(0)$ with $g \in C(S, \mathbb{I})$) is a μ -regularity set. This, in turn, can be used to show that, if S is a locally compact group and μ a Haar measure, then $\mathcal{Z}(S) \cap \mathcal{K}(S)$ is a μ -regularity set; if, moreover, the connected components of S are metrisable, then those members of $\mathcal{Z}(S)$ that are homeomorphic with $\{0, 1\}^w$ form a μ -regularity set, where w is the local weight of S [6, p.337].

4. In Theorems 1, 2, $U \circ f \subseteq \mathcal{M}(\mu)$ can be replaced by $U \circ f|_T \subseteq \mathcal{M}(\mu_T)$, where μ_T is the restriction of μ to T.

5. For certain measures μ , a much stronger version of the σ -compactness condition for $f(T \setminus N_0)$ in Theorem 2 is a necessary by-product of μ -measurability. Suppose S is also a topological space and has a μ -regularity set Γ consisting of closed pseudo-compact sets of S. (For example, μ a Radon measure.) If $f \in \mathcal{M}(\mu, X)$, then every $T \in \Sigma_b$ admits some $N_0 \in \Sigma_0$ such that $f(T \setminus N_0)$ is σ -compact, even in X. This follows from the fact (compare the Example) that T contains, for every $\varepsilon > 0$, some $G \in \Gamma$ with $\mu(T \setminus G) < \varepsilon$ such that $f|_G : G \to X$ is continuous.

6. Given the P_k 's in Theorem 2, condition (1) is satisfied if U is pointwise bounded on X and U_{σ} satisfies CCC. For instance, if Z is a Banach space for which $B := \{z \in Z \mid ||z|| \leq 1\}_{\sigma}$ satisfies CCC — such spaces have been studied and examples exhibited by Wheeler in [20] — and if X is the strong dual of Z, then one may take the set $U \subseteq X^*$ corresponding to B or any sufficiently large subset thereof.

7. Concerning the countable chain condition in (1), it would not be good enough to suppose that $\bigcup_{m=1}^{\infty} V_{km}$ be a CCC-space. Consider $X := \ell^2(\mathbb{I}), U := X^*, P_k := \{x \mid ||x|| \leq 1\}$, and $V_{km} := \{v \mid P_k \mid v \in X^*, ||v|| \leq m\}$. Since X_{σ}^* is homeomorphic with a dense subset of some product \mathbb{K}^{Λ} , it satisfies CCC. But the scalarly Lebesgue measurable function $f : s \mapsto \chi_{\{s\}} : \mathbb{I} \to X$ is not measurable (as Birkhoff observed long ago).

8. In Theorem 2: if $T \cap f^{-1}(P_k)$ is in $\widehat{\Sigma}$ and σ -finite and the set system in (2) has

only \emptyset in common with Σ_0 for some \mathcal{B}_k , then (2) is satisfied.

9. If (3) is satisfied for all k, if $T \setminus \bigcup_{k=1}^{\infty} f^{-1}(P_k) \in \Sigma_0$, and $\bigcup_{k=1}^{\infty} \mathcal{T}_k \subseteq \widehat{\Sigma}$, then the hypothesis $U \circ f \subseteq \mathcal{M}(\mu)$ is redundant since $U \circ f|_T \subseteq \mathcal{M}(\mu_T)$ in this situation.

10. Let \mathcal{F} be the class of those Fréchet spaces in which all weakly compact, hence all weakly pseudo-compact, subsets are separable. (1), (2), (3) in Theorem 2 are redundant if $X \in \mathcal{F}$. — Now let $X = L^{\infty}(\nu, Y)$, where ν is a σ -finite measure and Y a Banach space. Clearly, $X \in \mathcal{F}$, if $Y \in \mathcal{F}$ and $L^1(\nu)$ is separable. It is shown in [7] that large subspaces of X are in \mathcal{F} if Y admits a continuous linear injection into some Banach space Z such that W_{σ} satisfies CCC for some bounded $W \subseteq Z^*$ separating the points of Z. More elementary is the fact that $X \in \mathcal{F}$ if Y_{σ}^* is separable. For a compact space L, the Banach space C(L) may have a weak*-separable dual, even when L itself is not separable; compare [10] and [17]. In [3, 5.6], an example is given of a Banach space X with X_{σ}^* separable (equivalently: with a countable subset of X^* separating the points of X) such that no countable subset of X^* is norming.

COROLLARY. Let μ be σ -finite. If $f \in \mathcal{M}(\mu, X)$, then there are $N \in \Sigma_0$, some $U \subseteq X^*$ separating points of $\overline{span} f(S \setminus N)$, and a topology \mathcal{T} on S with $\mathcal{T} \setminus \{\emptyset\} \subseteq \widehat{\Sigma} \setminus \Sigma_0$ rendering $u \circ f|_{S \setminus N}$ \mathcal{T} -continuous for all $u \in U$. The converse holds if $f(S \setminus M)$ is relatively compact in X_{σ} for some $M \in \Sigma_0$.

PROOF: Let $f \in \mathcal{M}(\mu, X)$ and then Z a separable closed linear subspace of X such that $N_1 := f^{-1}(X \setminus Z) \in \Sigma_0$. Choose a countable subset U of X* that separates the points of Z. Moreover, let θ be a lifting of $\hat{\Sigma}$. (Such a lifting exists: if (S, Σ, μ) is not finite and complete, instead we may consider any measure $\nu: \hat{\Sigma} \to \mathbb{I}$ producing the same null sets as μ . Compare [8, p.46].) But then every $u \in U$ admits some $N_u \in \Sigma_0$ for which $u \circ f|_{S \setminus N_u}$ is continuous with respect to the density topology \mathcal{T}_{θ} on S [8, p.59]. Consequently, $N := N_1 \cup \bigcup_{u \in U} N_u$ does the job. Conversely, suppose that, in addition to the conditions listed, there exist a weakly compact subset P of X and some $M \in \Sigma_0$ such that $f(S \setminus M) \subseteq P$. Then the μ -measurability of f follows by means of Theorem 2.(3) with $N_0 := N \cup M =: N_k$, $\Sigma_c := \{S \setminus N_0\}$, $P_k := P$, and $\mathcal{T}_k := \{Q \setminus N_0 \mid Q \in \mathcal{T}\}$; compare Remark 9.

References

- J. Diestel and J.J. Uhl, jr, Vector measures, Mathematical Surveys 15 (American Mathematical Society, Providence, R.I. 1977).
- [2] N. Dunford and J.T. Schwartz, Linear operators I (Interscience Publ., New York, 1958).
- G.A. Edgar, 'Measurability in a Banach space II', Indiana Univ. Math. J. 28 (1979), 559-579.

- [4] D. Helmer, 'Continuity of locally compact group actions with measurable orbit maps', Math. Z. 172 (1980), 51-53.
- [5] D. Helmer, 'Criteria for Eberlein compactness in spaces of continuous functions', Manuscripta Math. 35 (1981), 27-51.
- [6] D. Helmer, 'Structure of locally compact groups with metrizable connected components up to negligible subsets', Arch. Math. 51 (1988), 332-342.
- [7] D. Helmer, Weakly compact and separable subsets of $L^{\infty}(\mu, X)$, (in preparation).
- [8] A. Ionescu Tulcea and C. Ionescu Tulcea, *Topics in the theory of lifting* (Springer-Verlag, Berlin, Heidelberg, New York, 1969).
- [9] J.L. Kelley, I. Namioka, *Linear topological spaces* (D. Van Nostrand, Princeton, N.J., 1963).
- [10] G. Mägerl and I. Namioka, 'Intersection numbers and weak* separability of spaces of measures', Math. Ann. 249 (1980), 273-279.
- [11] I. Namioka, 'Separate continuity and joint continuity', Pacific J. Math. 51 (1974), 515-531.
- [12] B.J. Pettis, 'On integration in vector spaces', Trans. Amer. Math. Soc. 44 (1938), 277-304.
- [13] D. Preiss and P. Simon, 'A weakly pseudocompact subspace of Banach space is weakly compact', Comment. Math. Univ. Carolinae 15 (1974), 603-609.
- [14] V. Pták, 'An extension theorem for separately continuous functions and its application to Functional Analysis', Czechoslovak Math. J. 14 (1964), 562-571.
- [15] H.P. Rosenthal, 'On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ ', Acta Math. 124 (1970), 205-248.
- [16] L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures (Oxford University Press, Bombay, 1973).
- [17] M. Talagrand, 'Separabilite vague dans l'espace des measures sur un compact', Israel J. Math. 37 (1980), 171–180.
- [18] M. Talagrand, Pettis integral and measure theory, Memoirs 307 (American Mathematical Society, Providence, R.I., 1984).
- [19] J.J. Uhl, jr., 'Pettis's measurability theorem', Contemp. Math. 2 (1980), 135-144.
- [20] R.F. Wheeler, 'The retraction property, CCC property, and Dunford-Pettis-Phillips property for Banach spaces', in *Proc. Measure Theory Conf., Oberwolfach*, Lecture Notes in Math. 945 (Springer-Verlag, Berlin, Heidelberg, New York, 1981), pp. 252-262.

Department of Mathematics University of Bahrain PO Box 32038 Isa Town Bahrain