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ON THE PETTIS MEASURABILITY THEOREM

DIETRICH HELMER

It is shown that, in Pettis's criterion for Bochner measurability of a vector-valued
function / : S —* X, scalar measurability of / can be weakened to requiring that
u o / be measurable for u in some subset of the dual X* separating the points of
X. Even then, the separability hypotheses in Pettis's Theorem can be weakened
as well.

Throughout, (5, S, /*) denotes a positive measure space. Then Eo stands for the
collection of all /x-null sets and £(, for {E E S | 0 < p(E) < oo}. Moreover, X is a
Prechet space over K, where K = R or K = C. Wefixa function / : 5 -> X. Recall
that / is ^.-measurable (in the sense of Bochner) if and only if XES is, for every E 6 Ei,,
the limit /x-almost everywhere in 5 of a sequence of /x-simple functions. The set of all
^-measurable functions 5 —> X is denoted by M((i, X).

One of the most frequently employed and useful criteria for /x-measurability is the
Pettis Measurability Theorem for Banach spaces X [12, p.278] (compare [2, p.149]):
/ G M{fi, X) if (and only if) every £ £ S S admits an N £ Eo such that f(E \ N) is
separable and / is scalarly fi-measureable, that is,

X*of:={uof\ueX*}C M(fi, K) =: M{n).

A discussion of the importance of the theorem for Measure Theory and the theory of
Banach spaces has been given by Uhl in [19]. It is known (compare [19] [1, p.43] for
finite /J.) that scalar jt-measurability of / in Pettis's Theorem can be replaced by the
weaker condition that U o f C M(/J.) for some norming U C X*. We shall show in this
note that a minimal requirement is already sufficient here: namely, that U o / C M(fi)
for some U C X* separating sufficiently many points of X. (A key argument has
already been utilised implicitly in [4] for Haar measures /i and, for general a-finite \i,
in [7].) It is often easy to identify point-separating subsets U of X*; and, depending
on X* and / , there may be flexibility in tailoring U so as to facilitate the verification
of Uof CM(fj,).

Let I:— [0, 1]. If B C X, then spanB stands for the closed linear span of B in X
and Ba denotes B with the subspace topology it inherits from the weak topology of X.
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Similarly, if V C X* , then Va is V equipped with the restricted w*-topology. (5, E, /x)

denotes the Lebesgue extension of (5, E, fi). We call Ec C E ^.-covering if and only if

for every £ e S j , there exists some T E Sc such that EC\T £ So , which is the case
oo

if and only if every E E Ej, admits a sequence Tn in Ec with E \ (J Tn E Eo. And
n=l

F C S is said to be a ^-regularity set if and only if fi(E) — sup{/x(G) | G E F, G C U}
for every E E E&. Any such F is ^-covering.

THEOREM 1 . / E M(/J., X) if and only if there exists a p-covering set Ec such

that every T E Sc admits some N E Eo witi / (T \ N) separable and some U C X*

separating the points of spanf(T \ N) with U o f C M.(/x).

PROOF: If / is /x-measurable, then the conditions are satisfied with Ec := Ej, and
U :— X *. Conversely, suppose now that there exists a ^-covering collection Ec as
above. First, using routine arguments, one reduces the proof to the case where fi is
finite, X is separable, and where U o / C M(fi) for some subset U of X* separating
the points of X. In this situation, it follows by means of Egoroff's Theorem that the
linear subspace D := {u £ X* \ uo f E A4(//)} of X* is sequentially closed in X*. For
every 0-neighbourhood B in X, the polar B" :- {u E X* | \u(b)\ ^ 1 for all b E B} is
compact and metrisable in X* ; and, consequently, DC\B° is closed in (B")<7. According
to the Krein-Smulian Theorem [9, 22.6], therefore, D itself is closed in X*. On the
other hand, D is dense in X* since it separates the points of X. Thus, D = X*, that
is / is scalarly p-measurable. If X is a Banach space, an appeal to Pettis's Theorem
finishes the proof. In the general case, the usual arguments need adaptation: Fix a
sequence Bn of closed convex circled subsets of X constituting a O-neighbourhood
base in X such that Bn+i C Bn for all n. Thereafter, pick, for every ra, a sequence
unk that is dense in (B^)a. Moreover, let xm be a dense sequence in X. Then

hnm: st-^> snp{\unk(f(s) - xm)\ \ k E N}: S —> K

is /i-measurable for all n, m, and, consequently, h^J^l) £ E. But fc^Ji(I) =
f~1(xm + Bn) by means of the Bipolar Theorem. Now the classical arguments carry
over mutatis mutandis to show that / is the uniform limit of a sequence /„ of countably-
valued functions with {/̂ "1(a;) | n E N, x £ X} C S and, finally, to show that / is
//-measurable. D

EXAMPLE. Suppose S is also a topological space and T is a fj,-regularity set

consisting of closed subsets or of open subsets of S. Let D be an open connected set

in C and h : S x D —* C a function that is analytic in the second argument such

that {h(—, z) | z E A} C M(fi) for some A C D with an accumulation point in D.

Then, given e > 0, every £ e S i contains a G E F with y,{E \ G) < e such that h is

continuous on G x D.
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PROOF: Consider iji: a »-» h(s, - ) : S -> H(D), where H(D) denotes the sep-
arable Frechet space consisting of all analytic functions D —* <C equipped with the
topology of uniform convergence on compacta. The subset U of H(D)*, made up
of the evaluation functionals at points of A, separates the points of H(D) and satis-
fies U o ip C Al(/x). So V> is /i-measurable by Theorem 1; whence some sequence of
count ably-valued ^-measurable functions 5 —> B~(D) converges to i/> uniformly. Adapt-
ing standard arguments (compare [16, p.27]), given e and E, we find some G £ T with
G C E and fi(E \ G) < e on which ij) is continuous. To complete the proof, it therefore
suffices to utilise the continuity of the evaluation H(D) x D —> C. u

We now turn to the second ingredient of the Pettis Theorem, separability, and
replace it by weaker conditions, while keeping our minimal hypotheses on scalar im-
measurability.

We call a topology T on R C 5 a ^.-topology if and only if T ( l Eo C {0, R}. If R
is er-finite in E and 6 is a lifting of A := {D G E | D C R}, or just any lower density
of A, then the density topology

Tg := {6{D) \M\DeA, M £ AnV0} = {F £ A\ F C 0(F)}

(compare [8, p.54]) is a /z-topology on R. Generally: if R £ E \ Eo and O is any
topology on R with O D Eo = {0}, then {Q\M \ Q £ O, M £ Eo} is a basis of a
/i-topology. If P is a topological space and V C C(P), then V is considered equipped
with the topology of pointwise convergence and AlgV denotes the smallest closed K-
subalgebra of C(P) containing V. Recall that P satisfies the Souslin countable chain
condition CCC if and only if every family of non-empty, pairwise disjoint, open subsets
of P is countable. We say that, a collection B of Borel subsets of K is a Borel subbase
for K if and only if for every open W C K and every a £ W, there are Bi, ..., Bm

in B with a£ f| Bk Q W.
fc=i

THEOREM 2 . f £ M(n, X) if there is a fi-covering set Ec such that every T £
Ec admits pseudo-compact sets Pi, Pi, . . . in Xa, fi-null sets No, Ni, ... with

f(T\N0)CJponl\Jf(T\Ni)nPi\ =: Y,

and a U C X* separating points of Y with U o / C .M(/J) satisfying, for every k ̂  1,
one of these conditions:

(1) Tiere is a sequence Vjtm of pseudo-compact CCC-subspaces of C(Pka)

with U\PkC Alg( 0 Vkm)-
\m=l /
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(2) There is a Borel subbase Bk for K so that every pairwise disjoint collection

in

m

T n f) r1 (Pk n ur\Bi)) \ Nk I m £ N, m e u,
1 = 1

is countable.

(3) T n f~x(Pk) is in £ and a-finite; and there is a fi-topology Tk on T (1

f-^Pk) such that uof, restricted to (T n /~1(p*))\-^*» i s Tk-continuous
for u £ U.

Conversely, these conditions are necessary for f £ M.(fi, X).

PROOF: Suppose that there exists a ^-covering collection Sc with the properties
listed above. Fix T £ Ec, and then let the Pj 's, the Nj 's and U be as guaranteed
by the hypotheses. In view of Theorem 1, it suffices to show that, for every fixed
k ^ 1, the weak closure C* of f(T\ Nk) fl Pk is separable with respect to the weak
topology. Note that Ck Q Y, as Y is closed in Xa by Mazur's Theorem [9, 17.1]. The
class of Eberlein compacta (that is, those topological spaces that are homeomorphic
with weakly compact subsets of Banach spaces) is well-known to be closed under the
formation of countable products. And according to a result of Preiss and Simon [13],
every weakly pseudo-compact subset of a Banach space is weakly compact. Thus, as
X admits a linear homeomorphic embedding into a product of countably many Banach
spaces, Pka is Eberlein compact.

First, suppose that (1) is satisfied. Fix m. Evaluation g : Vkm x Pka —* K is
separately continuous. Let h £ C(K ,11). Then an argument given by Ptak [14, p.572]
shows that

lim lim A(v,(pj)) = lim lim h(vi(pj)) in I
i—>oo j—>oo j—*oo i—>oo

for every sequence (vi, pi) in Vkm x Pk for which all limits involved exist. According to
[5, 2.1.(2)], therefore, hog: Vkm x Pka —» I admits a separately continuous extension to
PVkm x Pka, where /? denotes the Stone-Cech compactification operator. Furthermore,
if A, B are any two disjoint closed subsets of K, then h'(A) C {0} and h'(B) C {1}
for a suitable h' £ C(K ,11). Consequently, g admits a separately continuous extension
PVkm x Pka -> @K by [5, 2.1.(7)]. Moreover, all subspaces of K of the form Vkm(p)

with p 6 Pi and of the form v(Pk) with v £ Vkm are compact. It therefore follows
from [5, 2.5.(1), 2.8] that Vkm has Eberlein compact closure Vkm in C(Pka). On the
other hand, Vkm satisfies CCC. Consequently, Vkm is separable. This follows from
the Rosenthal Separability Theorem [15, 4.6] and is also a rather direct consequence of

/ oo \

Namioka's continuity Theorem 4.2 in [11]. Thus, A :— Alg I U Vkm I is separable in
Vm=l /
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) , whence A\ck is separable in C(Cka)- But J4|CJ. separates the points of CA

since it contains U\ck- Consequently, Cka is separable, indeed.

In cases (2), (3), it suffices to show that Cka satisfies CCC because it is Eberlein
compact. So let {Qx)xeA ^ e a n 3 r family °f non-empty, open, pairwise disjoint subsets of
Cka • Fix A 6 A, and choose some t\ G TD {f~1{Pk C\ Q\) \ Nk) • Since U\ck separates
the points of Ck, it generates the topology of Cka • So there exist i*i, . . . , um G U and
open subsets Bi, . . . , Bm in IK such that

But then f(Dx) Q Qx for

TO

Dx := T n f-^Pk) n f) (m o f)-\Bi) \ Nk.
t=i

And Dx^0, as txeDx.
Suppose now that (3) holds. Then D\ is an open ^-neighbourhood of t\ in

(T n /^(Pk)) \Nk • Since Tk is a ^i-topology on Tnf~1(Pk), it follows that Dx £ Eo,
provided that Dx ^ (Tfl f~1(Pk)) \ Nk- Moreover, in view of the hypothesis that
UofC M((J.) and that TDf~1(Pk) is ^-finite in £, we obtain that Dx G S (compare
[2, p.148]). Consequently, the usual summability argument shows that A must be
countable.

Finally, suppose that (2) is satisfied. Then we may assume that B\, ..., Bm

are, actually, members of Bk (though no longer open, perhaps). Consequently, (2)
guarantees countability of A in this case as well.

Conversely, as for the necessity of the conditions, suppose that / is /i-measurable.

Take Sc := S6 and U := X*. Fix T G Ec and, thereafter, No G Eo such that |J P;
i=i

is dense in f(T\No) for some sequence Pk of singletons. Let Nk := 0 for k ^ 1.
Then (1) and (2) are, trivially, satisfied for every k. As is (3) since T D f-1(Pk) G E
(compare [2, p.148]). D

REMARKS. 1. The proof of Theorem 1 essentially consisted in showing that, if UofC.
M(/J.) for some U C X* separating the points of X, then / is scalarly /x-measurable,
provided that X is separable. Scalar measurability has received considerable attention,
in particular in the context of the Pettis integral (compare [18] and references there).
The Krein-Smulian Theorem can be applied to the scalar measurability problem as
well. Even if X is non-separable, the argument for scalar /i-measurability of / in
the proof of Theorem 1 goes through, provided that (B°)a is sequential for every 0-
neighbourhood B in X. The latter condition is satisfied, for instance, if X is a closed
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linear subspace of a Frechet space Z such that (J Pn is total in Z for some sequence Pn
7 1 = 1

of pseudo-compact subsets of Za • But some additional assumption on X is, generally,
indispensable to arrive at the conclusion. Consider, for instance, the map g: I —> £°°,
where g(s) is the sequence making up the dyadic expansion of s £ I such that g(s) is
not 1 eventually. Let U C (f°°)* consist of the evaluation functionals at points of N.
For every u 6 U, then uog is measurable with respect to Lebesgue measure A (in fact,
uog is of Baire class 1). It can be shown, however, that g is not scalarly A-measurable.
2. If 5 is a Souslin space and fi a Borel measure, then the set K,{S) of all compact
subsets of 5 is a ^-regularity set (compare [16, p.122]).
3. If 5 is a completely regular space and /x a Baire measure, then it can be shown
that the collection Z(S) of zero-sets of 5 (that is, sets g~1(0) with g £ C(S, I)) is
a /^-regularity set. This, in turn, can be used to show that, if 5 is a locally compact
group and \i a Haar measure, then Z{S) (~l K,(S) is a ^-regularity set; if, moreover,
the connected components of S are metrisable, then those members of Z(S) that are
homeomorphic with {0, 1}*" form a //-regularity set, where w is the local weight of 5
[6, p.337].

4. In Theorems 1, 2, U o / C M((i) can be replaced by U o f\x C M(fj,T), where
fj,T is the restriction of fi to T.
5. For certain measures fi, a much stronger version of the «7-compactness condition for
f(T \ No) in Theorem 2 is a necessary by-product of ^-measurability. Suppose 5 is also
a topological space and has a ^-regularity set F consisting of closed pseudo-compact
sets of S. (For example, fj. a Radon measure.) If / £ M{fi, X), then every T £ Ej
admits some NQ £ So such that f(T \ No) is <7-compact, even in X. This follows from
the fact (compare the Example) that T contains, for every e > 0, some G £ F with
fi(T \G) < e such that f\a '• G —* X is continuous.
6. Given the P* 's in Theorem 2, condition (1) is satisfied if U is pointwise bounded on
X and Ua satisfies CCC. For instance, if Z is a Banach space for which B := {z £ Z \
\\z\\ < \}a satisfies CCC — such spaces have been studied and examples exhibited by
Wheeler in [20] — and if X is the strong dual of Z, then one may take the set U C X*
corresponding to B or any sufficiently large subset thereof.
7. Concerning the countable chain condition in (1), it would not be good enough

oo

to suppose that \J Vkm be a CCC-space. Consider X :- i2(I), U :- X*, Pk :=
m=l

{x | ||x|| ^ 1}, and Vkm '•= {v \pk \v £ X*, \\v\\ ̂  m}. Since X* is homeomorphic
with a dense subset of some product KA, it satisfies CCC. But the scalarly Lebesgue
measurable function / : J H X{>} : II —> X is not measurable (as Birkhoff observed long
ago).
8. In Theorem 2: if T D f~1{Pk) is in E and <r-finite and the set system in (2) has
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only 0 in common with So for some Bk, then (2) is satisfied.

9. If (3) is satisfied for all Jb, if T \ (j /^(Pk) 6 So, and (j Tk C E, then the

hypothesis U o / C M(n) is redundant since U o f\x C M.(HT) in this situation.

10. Let T be the class of those Prechet spaces in which all weakly compact, hence all
weakly pseudo-compact, subsets are separable. (1), (2), (3) in Theorem 2 are redundant
if X £ T. — Now let X = L°°{y, Y), where v is a o--finite measure and Y a Banach
space. Clearly, X £ J-, if Y £ T and Ll[y) is separable. It is shown in [7] that large
subspaces of X are in T if Y admits a continuous linear injection into some Banach
space Z such that Wa satisfies CCC for some bounded W C Z* separating the points
of Z. More elementary is the fact that X £ T if Y* is separable. For a compact space
L, the Banach space C(L) may have a weak'-separable dual, even when L itself is not
separable; compare [10] and [17]. In [3, 5.6], an example is given of a Banach space X

with X* separable (equivalently: with a countable subset of X* separating the points
of X) such that no countable subset of X* is norming.

COROLLARY. Let fj, be a-finite. II f 6 M(n, X), then there are N G So,
some U C X* separating points of spanf(S \ N), and a topology T on S with
T \ {0} Q S \ Eo rendering u o f\s\N 1~-continuous for all u € U. The converse holds
if f(S\ M) is relatively compact in Xa for some M € So .

PROOF: Let / £ M(fi, X) and then Z a separable closed linear subspace of X
such that Ni :— f-1(X \ Z) 6 Eo. Choose a countable subset U of X* that separates
the points of Z. Moreover, let 6 be a lifting of S. (Such a lifting exists: if (S, S, fi)
is not finite and complete, instead we may consider any measure u: E —> I producing
the same null sets as fi. Compare [8, p.46].) But then every u £ U admits some
Nu £ So for which u o /|S\JVU is continuous with respect to the density topology Tg
on S [8, p.59]. Consequently, N := Ni U U Nu does the job. Conversely, suppose

that, in addition to the conditions listed, there exist a weakly compact subset P of X
and some M £ Eo such that f(S\M) C P. Then the /i-measurability of / follows
by means of Theorem 2.(3) with No := N U M =: Nk , Sc := {5 \ 7V0}, Pk := P, and
Tk := {Q \ No | Q £ T}; compare Remark 9. D
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