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ABSTRACT. A fundamental problem in avalanche science is understanding the interaction between
frictional processes taking place at the basal running surface and dissipative mechanisms within the
avalanche body. In this paper, we address this question by studying how kinetic energy is dissipated into
heat in snow avalanches. In doing so we consider the effect of random granular fluctuations and
collisions in depth-averaged snow avalanche models. We show that relationships between the size of the
granular fluctuations and the energy dissipated by granular collisions can be obtained by studying the
energy input required to maintain steady-state flows. The energy input for granular fluctuations comes
from mechanisms operating in the basal layer. The kinetic energy of the flow at the basal layer is
converted to granular agitation energy, a random kinetic energy, which in turn is dissipated as heat by
both viscous shearing and inelastic collisions at higher levels in the avalanche profile. Thus granular
fluctuations play a crucial role in understanding the total dissipation process. We apply our theoretical
considerations to develop a constitutive model for dense snow avalanches and are able to accurately
model steady-state velocity profiles of both snow-chute experiments and field measurements.

1. INTRODUCTION

One long-standing problem in snow avalanche science is to
find a constitutive model for flowing snow that describes the
viscous, plug-like motion of wet snow avalanches as well as
the highly sheared, collisional behaviour of dry snow
avalanches. Ideally the model would explain how surface
roughness and snow properties influence the flow regime
and predict the formation of a powder-snow avalanche from
a dense flowing avalanche. To reach this goal the constitu-
tive model must account for the complex interaction of the
avalanche with the basal running surface while reconciling
macro-viscous and micro-granular descriptions of the flow.

In this paper, we address this problem by deriving
relationships between the random motion of snow granules
and the energy dissipation in avalanches. These relation-
ships are analogous to ‘fluctuation–dissipation’ relations
which are commonly used to describe multi-degree-of-
freedom systems with random movement (e.g. Brownian
motion; Lemons, 2002). They allow a macroscopic de-
scription of the microscopic energy dissipation which, in the
case of snow avalanches, arises from the random inelastic
collisions and enduring frictional rubbing between snow
granules. As such, fluctuation–dissipation relations are a tool
to study not only viscous/collisional flow regimes but also
how the random motion of the granules, the granular
agitation, affects the overall stability of the avalanche in
response to boundary conditions, such as external distur-
bances arising from the terrain roughness.

However, fluctuation–dissipation relations cannot be
derived without first identifying the source of the granular
fluctuations and then examining how these fluctuations are
destroyed. This problem necessarily involves studying how
the potential energy driving the flow is transformed into
kinetic energy – both translational and random kinetic
energy – and finally to heat. Our study is motivated by the
fact that the generation of heat and fluctuation energy at a
rough bottom boundary are competing processes, since the

sum of the two must be equal to the potential energy
remaining after the viscous shearing has been overcome in
the avalanche core. In order to maintain steady state, the
dissipated energy will be exactly the difference in potential
energy required to maintain a constant flow speed. We
therefore investigate the fluctuation energy input required to
maintain steady-state flows, first using a simple block model
and then using a more realistic depth-averaged model
containing internal deformations. In this analysis we
consider depth-averaged mechanical work rates – and not
flow forces as is customary in avalanche science – since they
can be directly and more easily linked to changes in random
kinetic energies of the granules.

The most important result described in this paper is that
the fluctuation–dissipation relations place restrictions on
constitutive formulations describing snow avalanche flow.
Firstly, the constitutive model for the frictional stresses at the
basal boundary cannot be chosen independently of the
constitutive model governing the dissipative processes at
higher levels in the avalanche profile. Secondly, the mutual
interaction between the viscous and collisional processes
must be reciprocal and therefore cannot be described by ad
hoc constitutive ideas. To clarify these points we apply our
results to develop a constitutive model for snow avalanches
which contains the three interacting dissipative mechan-
isms: basal slip, viscous shearing and inelastic granular
collisions (see Fig. 1). The fluctuation energy (‘granular
temperature’) is introduced as an independent state variable,
in a similar way to continuum theories of granular flow
(Haff, 1983; Jenkins and Savage, 1983; Hutter and others,
1987; Hutter and Rajagopal, 1994; Louge and Keast, 2001;
Aranson and Tsimring, 2002; Louge 2003). We are able to
model the measured steady-state velocity profiles of both
wet and dry snow avalanches and explain observed
phenomena such as the large shear rates near the basal
layer. Although our formulation describes the full range of
snow flows, more experimental work is needed to advance
more precise constitutive formulations.
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2. RANDOM FLUCTUATIONS IN
DEPTH-AVERAGED AVALANCHE FLOW
In this section we consider how random granular fluctua-
tions affect the energy balance of steady-state flows in
simple avalanche models. We start by considering the
energy conservation of a sliding block slipping down an
inclined plane. For any given inclination, the block reaches
a steady velocity and thus a constant energy-dissipation rate.
To study the energy balance, we use a coordinate system
that is moving with the centre of the mass of the block
(Lagrangian coordinates). This simple description of ava-
lanche flow corresponds to the so-called Voellmy–Salm
model, which has been used extensively to predict snow
avalanche run-out distances (Salm, 1993). It does not
explicitly account for the internal deformations in the
avalanche body. The force opposing gravity is modelled as
‘friction’ on the ground, at the interface between the moving
block and sliding surface. Thus, the sliding-block model
contains the first important component in our analysis:
friction at the basal surface. It allows us to define the
balance between the gravitational work rate and rise in
internal energy in steady-state flow.

The sliding-block analysis facilitates the introduction of
the two other important dissipative processes: granular
collisions and viscous shearing in the avalanche core in a
depth-averaged model with a sheared velocity profile. We
still consider the energy balance since this procedure allows
us to determine the frictional work done by the random
processes and identify where the random kinetic energy is
generated. This result cannot be obtained by postulating
constitutive relations for the internal and boundary stresses
directly, as is customary in avalanche science (Dent and
Lang, 1983; Norem and others, 1987; Nishimura, 1990;
Salm, 1993; Bartelt and others, 1999). A list of the necessary
notation is provided in Tables 1–3.

2.1. Sliding-block model, no internal deformations
The ‘avalanche’ (Fig. 2) consists of a mass of snow at
elevation H(x) moving down a slope of constant angle,
� ¼ arctanðdH=dxÞ. The avalanche is in steady state and the
bulk flow density, �, and the velocity, u(z), are not only
constant in time, t, but are also independent of z; that is,
u(z) ¼ um, the mean velocity. A volume slice has thermal
temperature T, which is continuously increasing due to the
frictional processes. For the flow volumes 1 and 2 depicted
in Figure 2, the translational kinetic energy K(um), the
potential energy Ug(H) and the internal energy E(T) can be
defined.

If we compare the energies and temperatures of the
avalanche at positions 1 and 2, we find that, by definition of
steady state, the translational kinetic energy K(um) is
constant and therefore the change in kinetic energy
�K ¼ 0. The potential energy of the considered snow
volume at position 1, Ug(H), has changed by descending
the distance �H, the difference in elevation H2 �H1. The
change in potential energy is denoted �Ug. The internal
energy of the avalanche, E, changes as well when moving
from 1 to 2 by �E. Energy conservation demands that the
sum of the changes of kinetic, potential and internal energies
be zero:

� K umð Þ þUg �Hð Þ þ E �Hð Þ� � ¼ 0: ð1Þ

Since the kinetic energy is constant in steady state, we have

�E �Hð Þ ¼ ��Ug �Hð Þ: ð2Þ

In other words, the decrease in potential energy of the
volume slice must be equal to the increase in internal energy

Fig. 1. Top: The granular deposits of a large snow avalanche
released at the Swiss Vallée de la Sionne test site. The snow
granules are 10–20 cm in size. Bottom: The basal sliding surface of
a large snow avalanche. Note the shining ice layer produced by
basal friction. The ice layer is several millimetres thick. A shovel is
located at the right of the bottom picture. Such observations
indicate that basal sliding, viscous shearing and inelastic collisions
are the primary energy-dissipation processes.

Fig. 2. Avalanche flow in steady state, sliding-block model. The
kinetic energy of the avalanche does not change, but the internal
energy, E, increases from position 1 to 2. The system is therefore in
thermodynamic non-equilibrium.
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of the slice. Considering a slice of unit width and length and
of height h, we can equivalently write

�E 00 ¼ ��U00
g , ð3Þ

which is the same equation as Equation (2), expressed per
unit flow area. (A double prime denotes a quantity per unit
area; a triple prime a quantity per unit volume.)

The concept of conservative and non-conservative forces
can be effectively applied to find the relation between the
gravitational work rate and the dissipation rate. The total
change in translational kinetic energy (which must be zero
in steady state) can be divided into two parts:

�K 00 ¼ �K 00
g þ�K 00

nc ¼ 0: ð4Þ
The quantity �K 00

g represents the change (gain) in transla-
tional kinetic energy due to the conservative gravity force
(subscript ‘g’). The loss in kinetic energy due to the non-
conservative friction forces is denoted �K 00

nc. In our
elementary sliding-block model there is only one non-
conservative process: the friction at the basal layer, which
we denote with the subscript ‘B’. Therefore, the loss in
kinetic energy is due entirely to basal sliding,

�K 00
B ¼ �K 00

nc: ð5Þ
Applying the work–energy theorem to the conservative and
non-conservative subsystems leads to:

�K 00
g ¼ W 00

g ¼ ��U00
g

�K 00
nc ¼ W 00

B ¼ ��00
B ¼ ��E 00

B

)
ð6Þ

whereW 00
g is the mechanical work done by gravity,W 00

B is the
frictional work done by the non-conservative forces at the

basal slip layer and �00
B is the dissipated work at this layer.

Because �K 00 ¼ 0 (�K 00
g ¼ ��K 00

B ) in steady state, we have
from Equation (6),

W 00
g ¼ �W 00

nc ¼ �W 00
B , ð7Þ

the conservative and non-conservative work done must
balance, or

W 00
g ¼ �E 00

B, ð8Þ
all the gravitational work goes into raising the internal
energy of the block, or, the gravitational work rate, _W

00
g, is

equal to the dissipation rate, _�00
B, at the basal surface,

_W
00
g ¼ _�00

B: ð9Þ
Because we are using a simple block model without internal
deformations or kinetic energy fluctuations, the increase in
internal energy corresponds to a heat source, raising the
temperature at the basal sliding surface.

2.2. Depth-averaged model
In order to see how the balance between potential energy
change and internal energy rise is affected by a velocity
profile, we now introduce internal deformations: viscous
shearing and granular fluctuations in the bulk (Fig. 3). Since
we are considering variations in z, the sliding-block control

Table 2. Energy, work and dissipation. If the quantity is encountered
with a double prime (e.g. K00), the units are Jm–2; triple prime units
are Jm–3. Dotted values represent rate of change (e.g. _W g is the
gravitational work rate with units W)

Symbol Definition Unit

E Internal energy J
�EB Change in internal energy due to basal shearing J
�Er Change in internal energy due to granular collisions J
�Ev Change in internal energy due to internal shearing J
F Random kinetic fluctuation energy J
J, L, X Coefficients of quadratic form representation of

dissipation (see section 3.4)
K Translational kinetic energy J
�KB Change in translational kinetic energy due to basal

shearing J
�Kg Change in translational kinetic energy due to gravity J
�Knc Change in translational kinetic energy due to

non-conservative forces J
�Kr Change in translational kinetic energy due to

random collisions J
�Kv Change in translational kinetic energy due to

internal viscous shearing J
QB Basal flux of kinetic fluctuation energy W
_S Entropy production _S ¼ _�=T WK–1

Ug Potential energy J
W Work J
WB Work done by basal shearing J
Wg Gravitational work J
Wnc Work done by non-conservative forces J
Wr Work done by random collisions J
Wv Work done by viscous forces J
_� Dissipation rate W
_�B Dissipation rate basal sliding surface W
_�n Normal dissipation rate W
_�r Dissipation rate random granular collisions W
_�v Dissipation rate viscous shearing W

Table 1. Avalanche coordinates and parameters

Symbol Definition Unit

d Diameter of granules m
e Coefficient of restitution of granules –
f Mean-square fluctuation velocity m2 s–2

fB Mean-square fluctuation velocity at basal sliding
surface

m2 s–2

g Gravitational acceleration m s–2

Gx Gravitational variable Gx ¼ �gh sin� Pa
Gz Gravitational variable Gz ¼ �gh cos� Pa
h Avalanche flow height m
H Avalanche elevation m
_M Avalanche mass flux kg s–1

p Effective pressure (hydrostatic minus dispersive) Pa
Rr Resultant frictional force of random collisions N
t Time s
T Temperature K
u Avalanche velocity in the x direction m s–1

uB Slip (basal) velocity m s–1

uh Surface velocity z ¼ h ms–1

um Mean (depth-averaged) velocity m s–1

w Avalanche flow width m
x Track coordinate m
z Avalanche height coordinate m
� Density kgm–3

�xx Normal stress x direction Pa
�zz Normal stress z direction Pa
�B Basal shear stress Pa
�h Surface shear stress Pa
�zx Shear stress Pa
� Slope angle 8

Bartelt and others: Fluctuation–dissipation avalanche relations 633

https://doi.org/10.3189/172756506781828476 Published online by Cambridge University Press

https://doi.org/10.3189/172756506781828476


volume with height h (Fig. 2) is partitioned into small
intervals, dz (Fig. 3). As the density, �, is assumed to be
isotropic and constant, there is no change in the height of
flow, h, which therefore remains the same in both the rigid
sliding-block and deforming body descriptions. The other
quantities will depend on z. Each volume element of
height dz will have the same difference in potential energy
�U, but not the same difference in internal energy �E,
which depends on the velocity gradient as well as the
fluctuation energy distribution of the granules F(z,t). We
neglect spatial changes in �E due to heat transfer mechan-
isms, such as thermal heat conductivity.

Of course, um still corresponds to a mean velocity defined
such that the total mass flux is preserved (see Fig. 3). The
mass flux at height z per unit flow area is

_M00 zð Þ ¼ �u zð Þ: ð10Þ
To find the mean velocity we simply integrate u(z) over the
flow height

um ¼ 1
h

Z h

0
uðzÞdz ð11Þ

so that we can remove the z dependency on the velocity.
Energy conservation still demands that the sum of the

changes of kinetic, potential and internal energies per unit
cross-sectional area be zero:

� K 00 þ F 00ðtÞ þU00
g þ E 00ðtÞ

h i
¼ 0: ð12Þ

The fluctuation energy, F 00ðtÞ, is considered a random
stochastic kinetic energy and a function of the time, t. The
internal energy, E 00ðtÞ, is also a function of time because it is
continually increasing, whereas the changes in translational
kinetic energy and potential energy are constant in our
steady-state system. The total change in translational kinetic
energy can be decomposed, as before, into conservative
(gravity gains) and non-conservative parts. In contrast to the
sliding-block model, however, the non-conservative change
in kinetic energy now contains additional contributions
(losses) arising from the viscous shearing and inelastic
collisions within the core of the avalanche:

�K 00 ¼ �K 00
g þ�K 00

B þ�K 00
v þ�K 00

r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�K 00

nc

: ð13Þ

The changes�K 00
v and�K 00

r are the depth-integrated losses of

translational kinetic energy due to viscous shearing and
inelastic collisions:

�K 00
v ¼

Z h

0
�K 000

v ðzÞdz ð14Þ
and

�K 00
r ¼

Z h

0
�K 000

r ðzÞdz : ð15Þ

The fluctuation energy, F 000ðzÞ, represents the kinetic energy
of the random velocity fluctuations:

F 000ðz, tÞ ¼ 1
2
� f ðz, tÞ½ � , ð16Þ

where f(z) is the mean-square velocity of the granular
fluctuations. Although K(z) and F(z,t) are both kinetic
energies, they represent two entirely different processes.
The root-mean-square velocity,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðz, tÞp

, represents the ran-
dom fluctuating velocity which is superimposed on the
translational velocity of the mass flow. As the sum of the
squares of the fluctuating velocity of each particle, it is a
positive function. Consequently, the random kinetic energy,
F(z,t), is not zero. However, the sum of the fluctuation
velocities must be zero since each fluctuating motion has a
counterpart in the opposite direction. The random system
can have no bias because the mean translational velocity is
defined such that any possible bias will be zero. The velocity
is divided into a systematic part and noise. The ensemble
average of the noise vanishes, but the ensemble average of
the systematic part remains.

2.3. Fluctuations and mechanical work
The mechanical work done by the random frictional forces
arising from the particle fluctuations is

W 00
r ¼ �K 00

r ¼
Z
x
R00
r ðtÞ dx ¼ 0, ð17Þ

where R00
r ðtÞ is the resultant frictional force of the random

collisional processes per unit area in the x direction. The
mean value, in time, of the integral in Equation (17) is zero,
due to the irregularity of the random forces, RrðtÞ,

R00
r ðtÞ

� � ¼ 0: ð18Þ
Thus, like the fluctuating velocities, the force R00

r ðtÞ averaged
over time must be zero, since it arises from a random process
and, as such, is a function of time but without bias, meaning
that it is indifferently positive or negative. Thus, the colli-
sional and fluctuating motion of the snow granules produces
heat, but does no frictional work – in the depth-averaged
mean over time – against the translational motion of the
avalanche. The translational kinetic energy is not influenced
by the random kinetic energy, �K 00

r ¼ 0. That is, the random
particle fluctuations can neither accelerate nor decelerate the
flow and therefore the mechanical work W 00

r ¼ 0.
A similar argument was first used in the study of Brownian

motion of a particle of known dimension in a viscous liquid
(Langevin, 1908). It is fundamental in the derivation of the
fluctuation–dissipation theorem of non-equilibrium statistic-
al mechanics (Lemons, 2002). The fact that the work done
by the granular fluctuations is zero should not be interpreted
to imply that the granular fluctuations are unimportant. On
the contrary, the granular fluctuations produce a collisional
stress which decreases the viscous shearing forces and thus
indirectly changes the frictional work, W 00

v . Equation (17)
indicates that only the viscous shearing forces, at the base of

Table 3. Constitutive parameters

Symbol Definition Unit

m,r Exponents of shear rate m ¼ r ¼ 1 –
n Exponent of mean-square velocity n ¼ 1 –
� Collisional dissipation coefficient m
� Internal friction angle � ¼ tan� –
� Random collisional energy diffusion coefficient kgm–1 s–1

	 Normal viscosity kgm–1 s–1

� Dry-Coulomb friction coefficient –

 Internal viscous shearing coefficient kgm–1 s–1

� Dispersive, collisional stress coefficient kgm–1

� Basal sliding viscous friction coefficient kgm–3
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the flow and within the core, can induce a change in kinetic
energy directly, �K 00

B 6¼ 0 and �K 00
v 6¼ 0. We conclude that

the viscous shearing and the granular interactions can be
considered complementary descriptions of the same effect
(Langevin, 1908), that is, the heating of the avalanche core.

2.4. The source of fluctuation energy
A further consequence of Equation (17) is that, in steady
state, the depth-integrated mean fluctuation energy, F 00, must
remain constant. Hence, both �K 00 and �F 00 must be zero,
�K 00 ¼ 0 and �F 00 ¼ 0. The integrated increase in potential
energy is transformed, as before, into internal energy or heat.
If a source of fluctuation energy exists, it must be balanced
by an internal energy sink, such that �F 00 ¼ 0. The
gravitational work done must balance the change in internal
energy:

W 00
g ¼ �E 00

B|ffl{zffl}
Basal heating

þ
Z h

0
�E 000

v ðzÞdz|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Viscous heating

þ
Z h

0
�E 000

r ðzÞdz:|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Randomcollisional heating

ð19Þ
But the gravitational work must also be in balance with the
frictional work done by the non-conservative processes in
steady state (cf. Equation (6))

W 00
g ¼ �W 00

nc ð20Þ
with

W 00
nc ¼ W 00

B|{z}
Basal work

þ
Z h

0
W 000

v ðzÞdz|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Viscous work

þ
Z h

0
W 000

r ðzÞdz:|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Random collisional work

ð21Þ

The essential problem, however, in granular avalanche flow
is that the heat energy produced by the granular collisions is
definitely non-zero and must be accounted for in the
internal energy balanceZ h

0
�E 000

r ðzÞdz 6¼ 0: ð22Þ

The fact that work done by the collisions is zero (Equa-
tion (17)),W 00

r ¼ 0, but the heat produced by the collisions is
non-zero (Equation (22)) disrupts the symmetry of the
fundamental equation balancing the heat produced (Equa-
tion (19)) and the work done by the frictional forces
(Equation (21)) in steady-state flow. The work balance
relation W 00

g = �W 00
nc becomes

�E 00
B þ

Z h

0
�E 000

v ðzÞdz þ
Z h

0
�E 000

r ðzÞdz|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
6¼0

¼ � W 00
B þ

Z h

0
W 000

v ðzÞdz þ
Z h

0
W 000

r ðzÞdz|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼0

0
BB@

1
CCA ð23Þ

or

�E 00
B þ

Z h

0
�E 000

v ðzÞdz þ
Z h

0
�E 000

r ðzÞdz

¼ � W 00
B þ

Z h

0
W 000

v ðzÞdz
 !

: ð24Þ

Since the viscous work done must be in balance with the
heat produced by viscous shearing,

�
Z h

0
W 000

v ðzÞdz ¼
Z h

0
�E 000

v ðzÞdz, ð25Þ

we have

�E 00
B þ

Z h

0
�E 000

r ðzÞdz ¼ �W 00
B : ð26Þ

This equation can be written as a rate equation in terms of
_E 000
r ðzÞ, the rate of change in internal energy, or _�000

r ðzÞ, the
dissipation rate due to random collisions in the avalanche
body, by simply dividing the above equation by the time
interval, �t,

� _W
00
B � _E 00

B ¼
Z h

0

_E 000
r ðzÞdz ¼

Z h

0

_�000
r ðzÞdz: ð27Þ

Defining

Q 00
B ¼ � _W

00
B � _E 00

B ð28Þ

we can write

Q 00
B ¼

Z h

0

_E 000
r ðzÞdz ¼

Z h

0

_�000
r ðzÞdz: ð29Þ

This equation states that, in steady state, the difference
between the frictional work rate, � _W

00
B, at the basal surface

and the heat production rate at the basal surface, _E 00
B, is

equal to the heat production rate by collisions or, alter-
natively, to the dissipation rate of fluctuation energy in the
core of the avalanche. We have denoted this difference Q 00

B
since it physically represents the flux of fluctuation energy
injected at the basal boundary. In steady state, the frictional
work rate at the basal layer can only be transformed into
two possible energies: internal heat energy or mechanical
fluctuation energy since there can be no increase or
decrease in the translational kinetic energy. The input of
fluctuation energy at the basal sliding layer is subsequently
consumed or dissipated in the core of the avalanche. The
competition at the basal layer between friction and the
creation of random fluctuation energy is the dominant
process in avalanche flow.

Fig. 3. Avalanche flow in steady state. The avalanche is no longer a
sliding block, but moves with an internal velocity profile u(z). The
mean velocity of the avalanche is um. The mass flux at height z
is _MðzÞ.
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2.5. Fluctuation–dissipation relations
The results from the depth-averaged models can be summar-
ized as follows:

1. In steady state the input of mechanical fluctuation energy
at the base of the avalanche is in balance with the
dissipation rate of fluctuation energy in the core
(conservation of fluctuation energy)

Q 00
B �

Z h

0

_�000
r dz ¼ 0: ð30Þ

This conclusion is a direct consequence of the fact that
the collisional work done against the motion of the
avalanche is zero.

2. The input of fluctuation energy at the base of an
avalanche is bounded by the basal work rate

Q 00
B

�� �� � _W
00
B

��� ���: ð31Þ
The difference between the basal work rate and the
mechanical fluctuation energy is the heat produced at
the base of the avalanche _E 00

B ¼ � _W
00
B �Q 00

B.

The first result indicates that fluctuation energy must be
conserved in steady-state flow. In the end, the mean
mechanical work done by the change in potential energy
goes partly into acceleration, raising the translational kinetic
energy, and partly into ‘turbulence’, increasing the fluctu-
ation energy, which finally goes into internal energy, raising
the thermal temperature of the system. However, the total
(depth-integrated) difference of potential energy and internal
energy will still be equal, since the kinetic energies K 00 and
F 00 are constant.

The second point has practical significance in avalanche
engineering. The work rate at the base of the avalanche is
given by

_W
00
B ¼ ��BuB , ð32Þ

where �B is the basal shear stress and uB is the basal slip
velocity. Different formulations for �B can be found in Bartelt
and others (1999). The constitutive relation for �B, which
describes the basal work rate, bounds the fluctuation energy
source at the basal sliding layer.

If the basal slip velocity vanishes, uB ¼ 0, then the basal
fluctuation energy input, Q 00

B, likewise vanishes since the

basal work rate _W
00
B ¼ 0. However, when Q 00

B ¼ 0, the
integral of collisional dissipation in the core of the avalanche
is zero:

Q 00
B ¼

Z h

0

_�000
r ðzÞdz ¼ 0 when uB ¼ 0: ð33Þ

The importance of this statement is that collisional dissipa-
tion (and therefore granular fluctuations) can only exist in
steady-state flow when there is a non-zero slip velocity at the
basal plane.

3. CONSTITUTIVE MODEL
3.1. Constitutive restrictions imposed by
fluctuation–dissipation relations
We will now demonstrate how the ideas developed in the
previous section can be used to construct a constitutive
model for snow avalanche flow. The constitutive formula-
tion must mathematically satisfy the following: (1) Only the

viscous shearing forces can induce a change in kinetic
energy (velocity) since the random particle collisions can
neither accelerate nor decelerate the flow. (2) The random
collisional interactions and the viscous shearing are
complementary processes in the sense of Langevin
(1908). The collisional and viscous shearing stresses in-
duced by these processes are therefore additive. (3) When
using a kinetic theory we are not free to choose the
constitutive models for the basal sliding and the avalanche
core independently. They are mathematically linked by the
slip velocity: in steady state, the input of mechanical
fluctuation energy at the sliding surface of the avalanche
must be in balance with the dissipation of fluctuation
energy in the core.

3.2. Constitutive equations
The following constitutive equations for simple shear flows
satisfy the above requirements:

�xz ¼ �p þ 

@u
@z

� 	m

, ð34Þ

�zz ¼ p � �

h2 f
n , ð35Þ

�xx ¼ p þ 	
@u
@z

� 	r

, ð36Þ

�yy ¼ p�zy ¼ �yx ¼ 0, ð37Þ

where p is the effective pressure (i.e. the pressure transferred
through the solid granular matrix and causing friction), � is
the internal friction parameter associated with the effective
pressure, 
 is the shear viscosity, 	 is the longitudinal
viscosity, � is the dispersive pressure coefficient and m, n
and r are positive material constants.

The effective pressure concept ensures that the collisional
and viscous stresses are complementary since the effective
pressure, p(z), is defined as the sum of the normal and
collisional stresses. The collisional stresses are directly
related to the fluctuation energy, f(z), by the dispersive
pressure coefficient, �. Thus, the constitutive parameter � is a
measure of how effective the agitated granules are at
translating fluctuation energy into a normal stress in the
z direction. The magnitude of � depends on the inelasticity
and geometry of the granular material. Norem and others
(1987) have proposed a constitutive model for snow in
which the effective pressure also contains a collisional stress
component, but one which is a function of the shear
gradient. In comparison, our constitutive model states that
the effective pressure is directly a function of the fluctuation
energy, f(z).

The exponents m and r define the fundamental nature of
the flow. For m ¼ r ¼ 1 we have a Newtonian fluid; for
m ¼ r ¼ 2 we have a Bagnold fluid. Both m ¼ r ¼ 1 (Dent
and Lang, 1983) and m ¼ r ¼ 2 (Norem and others, 1987)
and combinations (Nishimura, 1990) have been proposed to
model snow flows. In the following we will take m ¼ r ¼ 1,
following the kinetic theory approach of Jenkins and Savage
(1983). We have investigated formulations with n ¼ 1=2,
n ¼ 1 and n ¼ 3=2 but in the remainder of the paper consider
only the n ¼ 1 case, since it was impossible to distinguish
between the different formulations in our numerical calcula-
tions. A physical motivation behind this choice is that in
kinetic gas theory the pressure is proportional to the
fluctuation energy, i.e. n ¼ 1.
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The shear dissipation rate is:

_�000
v ¼ �xz

@u
@z

¼ ��zz � ��

h2 f

 � @u

@z
þ 


@u
@z

� 	2

ð38Þ

and the normal dissipation rate is

_�000
n ¼ �xx

@u
@x

¼ � �

h2 f
@u
@x

� 	
þ 	

@u
@x

� 	2

: ð39Þ

The normal dissipation rate is zero in steady state. The total
energy dissipation rate _� in the core of the avalanche is
given by the sum of the viscous shear Equation (38), viscous
normal Equation (39) and collisional parts:

_�000 ¼ _�000
v þ _�000

n þ _�000
r : ð40Þ

The collisional dissipation rate, _�000
r , is defined in section 3.3.

3.3. Diffusion and dissipation of fluctuation energy in
the core
Once fluctuation energy is created at the basal layer, it
diffuses upwards into the core of the avalanche. Although
this kinetic energy is, in principle, free and reversible for
each snow granule, it is doomed to be irreversibly destroyed
by random binary collisions. The shearing motion between
the snow granules in the core can create additional
fluctuation energy, but in steady state the overall balance
between the basal source and collisional dissipation will
remain. This condition can be enforced by solving the
stationary diffusion equation conserving fluctuation energy:

�
@2f
@z2|fflffl{zfflffl}

Diffusion

� _�000
r|{z}

Dissipation rate

¼ 0 ð41Þ

with the boundary conditions at the base z ¼ B

�
@f
@z

� 	
z¼B

¼ Q 00
B ð42Þ

and at the top surface z ¼ h (see Fig. 3)

�
@f
@z

� 	
z¼h

¼ 0: ð43Þ

The coefficient � governs the diffusive energy transport and
is similar to the thermal conductivity in that it linearly relates
the flux of fluctuation energy, Q 00, to the fluctuation energy
gradient,

Q 00 ¼ ��
@f
@z

: ð44Þ
We propose that the collisional dissipation be given by

_�000
r ¼ �

�2 f|{z}
Collisional

dissipation sink

� ��

h2 f
@u
@z|fflfflffl{zfflfflffl}

Shear straining
source

þ ��zz
@u
@z|fflfflfflffl{zfflfflfflffl}

Overburden
stress sink

� �f
h2

@u
@x

:|fflfflffl{zfflfflffl}
Normal straining

sink=source

ð45Þ

The first term on the righthand side accounts for the
destruction of fluctuation energy by granular collisions.
Using statistical mechanics arguments, Jenkins and Savage
(1983) found

�2 ¼ d2

6 1� eð Þ ð46Þ

for rapidly sheared granular flows, where d is the granule
diameter and e is the coefficient of restitution of the particles.
The parameter � controls the penetration depth of the
fluctuation energy in the core of the avalanche. The second
term on the righthand side of Equation (45) represents a

source of fluctuation energy arising from the shearing motion
of the granules. As we show in section 3.4, this term ensures
that the interaction of the viscous and collisional processes is
defined by a single dissipation mechanism. The third term in
Equation (45) accounts for the destruction of the fluctuation
energy as a function of the overburden pressure. It contains
the product of the normal stress �zzðzÞ and the velocity
gradient, both of which vary as a function of depth. Thus,
relatively more fluctuation energy is destroyed near the basal
layer, where the overburden stress and shear rates are largest,
than at the free surface of the avalanche where both the
normal stresses and shear gradients are zero.

Many constitutive models for snow avalanche flow
distinguish between active and passive flow states that
account for different amounts of dissipation depending on
the longitudinal strain state within the avalanche body
(Savage and Hutter, 1989; Salm, 1993; Bartelt and others,
1999). Usually simple soil mechanics relations are used to
define the active/passive pressure coefficients. In our
proposal, longitudinal strain gradients can create and
destroy fluctuation energy. Note that when @u=@x < 0,
Equation (45) predicts that fluctuation energy is destroyed
(passive state); whereas when @u=@x > 0 fluctuation energy
is created (active state). Thus, the last term in Equation (45)
(cf. Equation (39)) provides a physical mechanism to
destroy fluctuation energy when an avalanche is decelerat-
ing, for example in the run-out zone, where passive flow
states are encountered. Conversely, just after snow-slab
release, active flow states are encountered with increasing
fluctuation energy.

3.4. Reciprocity of viscous and collisional interactions
The viscous and collisional description of avalanche motion
is complementary and therefore contains interacting pro-
cesses. As we have seen, the collisional fluctuation energy
reduces (and therefore interacts with) the viscous shearing in
the avalanche core. Likewise, the shearing motion within the
avalanche core creates fluctuation energy. Both interacting
mechanisms are irreversible and therefore dissipate energy.
The mathematical description of the energy dissipation thus
contains products of the shear strain rate (representing the
viscous description) and fluctuation energy (representing the
collisional description). The product must describe a single
heat-producing mechanism, independent of the order of
multiplication, otherwise the mathematical description
allows non-unique dissipative processes. A constitutive
formulation containing a complementary viscous and colli-
sional description requires that the mutual interaction of the
dissipative processes be unique and therefore reciprocal.

To clarify this idea, consider the total energy dissipation
rate (Equation (40)) in the core of the avalanche. Let the
symbols Xv, Xr and Xn denote the viscous shear, collisional
and viscous normal processes which are defined in terms of
the shearing and normal strain rates as well as the mean
fluctuation velocity:

fXg ¼
Xv

Xr

Xn

8<
:

9=
; ¼

@u
@zffiffi
f

p
h
@u
@x

8<
:

9=
;: ð47Þ

The total dissipation equation (Equation (40)) can be written
as a quadratic equation in Xv, Xr and Xn. The associated
matrix form is

_�000 ¼ fXgT L½ �fXg , ð48Þ
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where [L] is the matrix of the quadratic form:

L½ � ¼
Lvv Lvr Lvn
Lrv Lrr Lrn
Lnv Lnr Lnn

2
4

3
5 ¼


 � ��̂
h

ffiffiffi
f

p
0

� ��̂
h

ffiffiffi
f

p
� h2

�2 � �
h

ffiffiffi
f

p

0 � �
h

ffiffiffi
f

p
	

2
64

3
75:
ð49Þ

The symbol �̂ denotes

�̂ ¼ � � �zzh2

f
: ð50Þ

The advantage of writing the total dissipation as a quadratic
form is that we can identify the symmetry of the interacting
processes. The constitutive formulation is such that Lij ¼ Lji
(the subscripts i and j denote processes v, r or n). Moreover,

_�rv ¼ LrvXrXv ð51Þ
and

_�vr ¼ LvrXvXr: ð52Þ
Therefore, _�rv ¼ _�vr. Similarly, _�rn ¼ _�nr. The interacting
processes are constructed such that they are independent of
the order of the product between Xr and Xv (or Xr and Xn).
That is, the description of the collisional and viscous
shearing interaction (or collisional and viscous normal
interaction) dissipates equal amounts of energy. If Lij ¼ Lji
did not hold, the energy dissipation of the system would not
be uniquely defined.

Another feature of the constitutive formulation is that the
dissipation can be written as

_�000
v ¼ JvXv , ð53Þ
_�000
r ¼ JrXr , ð54Þ
_�000
n ¼ JnXn , ð55Þ

where Jv, Jr and Jn are:

Jv ¼ 
Xv � ��̂

h

ffiffiffi
f

p
Xr , ð56Þ

Jr ¼ ���̂

h

ffiffiffi
f

p
Xv þ �h2

�2 Xr � �

h

ffiffiffi
f

p
Xn , ð57Þ

Jn ¼ � �

h

ffiffiffi
f

p
Xr þ 	

ffiffiffi
f

p
Xn: ð58Þ

Note that the diagonal components of matrix [L] are
constant and satisfy the condition that

Lij ¼ @Ji
@Xj

¼ constant: ð59Þ

Therefore, the constitutive formulation is linear in Xv, Xr

and Xn.

3.5. Basal source of fluctuation energy, Q 00
B, the ‘slip

volume’ and the ‘fluidized layer’
At the base of the avalanche, there is a boundary layer
between the fixed ground and the moving bulk of snow. The
granules within this layer collide with the roughness of the
fixed ground with their corresponding downslope velocity.
The thickness of this boundary layer is not yet defined.
However, in this layer two processes must occur: the
inelastic part of the collisions, including the sliding motion
between the particles, will be converted to heat whereas the
elastic part of the collision will be transformed into kinetic
energy (Hui and others, 1984; Gutt and Haff, 1991; Jenkins,
1992). The transformation of collisional elastic strain energy
to kinetic energy of the particles might extend over several
diameters because of the closeness and enduring contacts of
the particles. In the mean there must exist a distance from
the bottom at which the mean-square velocity of the
fluctuations is a maximum and the stored elastic strain
energy is a minimum. This distance defines the thickness of
what we call the slip volume and the location of the slip
velocity, uB (see Fig. 4). As long as the avalanche is moving,
fluctuation energy will be produced within the slip volume
and diffused into the core of the avalanche where it is
eventually destroyed. The diffusion length characterizes the
thickness of the so-called fluidized layer (see Fig. 4). Within
this diffusion layer the fluctuation energy produced in the
slip volume is destroyed (transformed into heat energy).

We are now confronted with the problem of how to
distribute the basal work rate acting on the slip volume into
Q 00

B, the fluctuation energy flux, and _E 00
B, the heat produced

(Equation (28)). We are assuming that we can collapse the
slip volume onto the bottom boundary.

An empirical model governing the basal shear stress is the
so-called Voellmy model (Buser and Frutiger, 1980; Salm,
1993) which states that the basal shear stress, �B, is governed
by a dry-Coulomb friction and a ‘turbulent’ friction:

�B ¼ ��gh cos �ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Dry�Coulomb

friction

þ �u2
B:|{z}

0Turbulent0
friction

ð60Þ

The parameter � is the coefficient of sliding friction which is
commonly defined using the internal friction angle, �:
� ¼ tan�. Salm (1993) designated the velocity-squared
friction ‘turbulent’ since it accounts for the collisional
friction and random movement of the snow granules in the
core of the avalanche. Although it acts in the avalanche
bulk, the frictional stress is projected on the basal sliding
surface.

In order to find the basal work rate we must multiply the
shear, �B, by the slip velocity, uB:

_W
00
B ¼ ��BuB ¼ ��gh cos �ð ÞuB|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

_E 00
B

Heat

þ �u3
B:|{z}

Q 00
B

Fluctuation energy

ð61Þ

The source of Salm’s turbulent friction is the fluctuation
energy created in the slip volume. We therefore take

Q 00
B ¼ �u3

B ð62Þ
as shown in Equation (61). This procedure clarifies Salm’s
well-accepted empirical approach. It identifies the source of
the turbulence (the slip volume) and the region where the
turbulence is destroyed (the fluidized layer). Because the

Fig. 4. Frictional/collisional avalanche flow. Definition of the ‘slip
volume’, the source of agitation, and the ‘fluidized layer’ where

fluctuation energy is destroyed. The basal work rate, _W
00
B, is divided

into heat, _E 00
B, and granular agitation, Q 00

B. In steady state the basal
source is in balance with the consumption of fluctuation energy.
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translational kinetic energy of the particles is proportional to
u2
B, the fluctuation energy influx depends linearly on the

kinetic energy of the avalanche and is given by proportion-
ality factor �, which depends on the elasticity of the snow
granules and the roughness of the basal surface. Figure 5
depicts how the slip-volume model divides the basal work
rate into internal energy (heat) and agitation, dependent on
the slip velocity, uB. Because � scales the kinetic energy
associated with uB, � is equal to �/2, where � is the density of
the flow above the slip volume. In a more advanced model
the parameter � can be made a function of the fluctuation
energy (Jenkins, 1992).

This description of the slip volume makes two important
statements about the nature of snow avalanche flow. Firstly,
there exists a single slip surface and, secondly, this slip
surface is located near the basal layer. These assumptions are
supported by chute and small-scale field experiments (Lang
and Dent, 1983; Nishimura and Maeno, 1987; Nishimura
and others, 1993; Dent and others, 1998; Kern and others,
2004). Further evidence supporting this approach is
provided by the numerical particle dynamics simulations
of granular flows down inclined planes (Silbert and Levine,
2002; Silbert and others, 2003). These simulations show that
the maximum fluctuation energy is located a few particle
diameters above the rigid, inclined surface where both the
translational and root-mean-square velocities are (and must
be) zero. That is, there exists an interface within the flow
near the running surface where the fluctuation energy is
maximum.

4. STEADY-STATE VELOCITY PROFILES
We now apply the constitutive relations developed above to
predict the internal velocity profiles observed in both steady-
state chute experiments and field case studies. The mo-
mentum equation

@�ðzÞ
@z

þGx ¼ 0 ð63Þ

with boundary conditions governs steady-state viscous flows
in simple shear (Schmid and Henningson, 2001). Gx is the
gravitational force in the x direction, Gx ¼ �g sinð�Þ, where
g is the gravitational acceleration and � is the slope angle.
The solution to this equation automatically satisfies the
steady-state energy equation

u zð Þ @� zð Þ
@z|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

_W
000
nc

þu zð ÞGx|fflfflfflffl{zfflfflfflffl}
_W
000
g

¼ 0 ð64Þ

when the work done in the core of the avalanche by the non-
conservative forces is composed entirely of the viscous shear

stress. This, of course, is only true when
R h
0 W 000

r dz ¼ 0
(Equation (17)).

The coupled system of equations governing momentum
conservation (Equation (63)) and fluctuation energy con-
servation (Equation (41))

�
@2f
@z2 � _�000

r ¼ 0 ð65Þ

are to be solved for the velocity profile, u(z), and mean-
square velocity, f(z). The boundary conditions for the shear

stress are

� z ¼ Bð Þ ¼ �B and � z ¼ hð Þ ¼ 0 ð66Þ
and for the fluctuation energy

�
@f
@z

� 	
z¼B

¼ Q 00
B and �

@f
@z

� 	
z¼h

¼ 0: ð67Þ

The boundary conditions state that no fluctuation energy
escapes from the stress-free top surface. The shear stress,
�ðzÞ, is given by Equation (34) and the dissipation rate, _�000

r ,
by Equation (45).

The coupled system of differential equations has to be
solved numerically. Although general solutions can be
found, we begin our investigations with a simplification
that facilitates the implementation of the theory in depth-
averaged models. The fluctuation energy equation (Equa-
tion (65)) can be simplified by considering only the
collisional dissipation rate of _�000

r :

�
@2f zð Þ
@z2 � �

�2 f zð Þ ¼ 0: ð68Þ

Thus, we neglect the fluctuation energy source terms
associated with the overburden pressure and shearing in a
first step: the terms ���zzðzÞ@u=@z and ½�f ðzÞ��h2�@u=@z,
respectively. The overburden term reduces the fluctuation
energy of the granules at the bottom of the flow whereas the
shearing term increases the fluctuation energy in the highly
sheared fluidized layer, which is also located near the basal
surface. Physically, we are assuming that the processes offset
each other and the destruction of fluctuation energy is
governed by the inelastic granular collisions alone (par-
ameter �). This approach yields Equation (68) which has the
analytical solution:

f ðzÞ ¼ fB exp �z
�


 �
, ð69Þ

where fB is given by the boundary conditions

fB ¼ ��u3
B

�
: ð70Þ

The steady-state velocity profile can be found directly after

Fig. 5. The partition of the basal work rate, _W
00
B, into heat, _E 00

B, and
fluctuation energy flux, Q 00

B, in the slip volume.
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substitution of Equation (69) into the momentum equation
(Equation (65)). The general solution is:

u zð Þ ¼ uB þ uh � uBð Þ 1� 1� z
h


 �2 �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous part

þ A� 1� z
h


 �2
�exp � z

�


 � �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Collisional part

ð71Þ

with

A ¼ ��




fB
h2 : ð72Þ

The velocity at the top surface of the avalanche, uh, is

uh ¼ uB þ B
h2

2
þ A� ð73Þ

with

B ¼ hðGx � �GzÞ



, ð74Þ

where Gz is the gravitational force in the z direction,
Gz ¼ �g cosð�Þ.

The slip velocity is found by solving the shear balance
equation at z ¼ 0,

�B ¼ Gxh ¼ �Gzh þ �u2
B ð75Þ

for uB:

uB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

Gx � �Gzð Þ
�

s
: ð76Þ

Thus, fB, uB and uh are known. As shown in Bartelt and
others (2005), minimizing the total energy dissipation
equation (Equation (40)) provides the same solution as
solving the momentum equation.

The complementary nature of the viscous and collisional
processes can be identified in Equation (71), since the
velocity profile is composed of a viscous and a collisional
part. In the absence of fluctuations, � ¼ 0 (no dispersive
pressure, A ¼ 0), we recover the parabolic velocity distri-
bution of a viscous Newtonian fluid. The greater the
fluctuation energy, the greater the influence of the expo-
nential term (coefficient A). This fact is demonstrated in

Figures 6 and 7 where the influence of the collisional
parameters � and � is depicted. As the dispersive pressure
coefficient, �, increases, the shear deformation becomes
more concentrated at the basal layer and the steady-state
flow velocities become larger. The dispersive pressure
coefficient, �, controls the size of the fluidized layer and
indirectly the mean velocity of the flow. The fluctuation
velocity also increases with increasing �; that is, with
increasing particle size and elasticity. The larger the value of
� the larger the fluidized layer and the faster the avalanche.

The proposed constitutive theory requires six constitutive
parameters (�,�,
,�,�,�) to model steady-state velocity pro-
files. These can be determined from experiments performed
on the Swiss snow chute (Kern and others, 2004). Direct
measurement of the shear and normal stresses by basal force
plates (Platzer and others, in press) provides the Coulomb
friction parameter, �. In accordance with the experimental
results for wet snow avalanches we take � ¼ 0:4, in
agreement with the measurements of Lang and Dent
(1983). Optical velocity sensors installed at the basal running
surface of the chute are used to determine the second
parameter, �. Since the basal slip velocity, uB, is measured as
a function of the flow height, h, and normal stress, Gz, the
value of � can be determined directly from Equation (76).
Typical slip velocities are of order uB � 2–4m s–1, providing

Fig. 6. The influence of the collisional stress parameter, �, on the
velocity profile. The larger � the faster the flow and the greater the
shearing near the basal layer.

Fig. 7. The influence of the collisional dissipation parameter, �, on
the velocity profile. (a) The larger � the faster the flow; (b) the larger
� the larger the fluidized layer height and fluctuation velocities.
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� values between 10 and 40 kgm–3. The velocity sensors are
placed at different height locations on the chute sides as well
as on a specially designed flow wedge located in the middle
of the chute. These sensor arrays provide the velocity profile
and the remaining four constitutive parameters. The shear
viscosity, 
, is uniquely determined since it governs the shear
deformations in the plug flow, i.e. the slope of the velocity
profile in the upper regions of the flow. We found values
ranging between 30 and 70 kgm–1 s–1. Because this value
represents the viscosity of the plug region of the avalanche
core, it is higher than the ‘fluidized’ viscosity values found
by Nishimura and Maeno (1987). The dispersive pressure
coefficient, �, and fluctuation energy diffusion coefficient, �,
determine the size of the fluidized layer (the region of large
shear gradients) and subsequently the overall mean velocity

of the flow. Since the shear layer is small, the mean velocity
is essentially the plug velocity. Hence unique values for �
and � can be found. The final parameter, �, which governs
the collisional dissipation, is found by direct application of
Equation (46). For the snow flows considered in the
following with coefficients of restitution of e � 0.5 and
particle sizes 0.005< d<0.5m, we have 0.001<�<0.1m.
The longitudinal viscosity (	) is not required in our steady-
state analysis.

Figure 8 presents two constitutive parameter combina-
tions that fit the experimental velocity profile measurements
made in chute experiments with wet snow by Kern and
others (2004). Figure 9 fits the experimental velocity profile

Fig. 8. Comparison between the measured velocity profile of a
snow-chute avalanche (Kern and others, 2004) and proposed
theory. The fluctuation velocities are of the same order as the
translational velocity. Constitutive parameters (a) � ¼ 0:02m;
� ¼ 0:05 kg m–1 s–1; � ¼ 300 kg m–1; � ¼ 0:40; � ¼ 35 kg m–3;

 ¼ 70 k g m – 1 s – 1 . ( b ) � ¼ 0:01m ; � ¼ 0:05 k g m – 1 s – 1 ;
� ¼ 120 kgm–1; � ¼ 0:40; � ¼ 10 kgm–3; 
 ¼ 30 kgm–1 s–1. Flow
height of the avalanche h ¼ 0.5m; density � ¼ 300 kgm–3.

Fig. 9. Comparison between the measured velocity profile of a
small field avalanche (Gubler, 1987) and proposed theory. The
fluctuation velocities are slightly smaller than the translational
velocity. Different parameter combinations can match the observed
results. Parameter combination (a) predicts a large fluidized layer;
parameter combination (b) a smaller fluidized layer. Constitutive
parameters: (a) � ¼ 0:03m; � ¼ 0:05 kgm–1 s–1; � ¼ 190 kgm–1;
� ¼ 0:40; � ¼ 35 kg m–3; 
 ¼ 30 kg m–1 s–1. (b) � ¼ 0:01m;
� ¼ 0:05 kg m–1 s–1; � ¼ 120 kg m–1; � ¼ 0:40; � ¼ 5:0 kg m–3;

 ¼ 10 kgm–1 s–1. Flow height of the avalanche h ¼ 1.0m; density
� ¼ 300 kgm–3.
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measurements made with ground radar by Gubler (1987) at
the Aulta (Switzerland) avalanche track. Note that the value
of the constitutive parameters does not change significantly
between the chute experiments and the field experiment.
Both Dent and Lang (1983) and Norem and others (1987)
had to introduce a yield stress in their constitutive
formulations in order to model the measured velocity
profiles, which also contain a ‘plug’ region. Because we
employ a collisional stress which is a function of the
fluctuation velocity and not the shear gradient, we no longer
need an empirical stress cut-off.

Although the fluidized layer is thin, it will have a dramatic
influence on the overall sliding because the shear resistance
can be significantly reduced in this region. Our constitutive
model predicts that long avalanche run-out distances are
possible if there is a continual supply of fluctuation energy
from the basal surface. The snow type (wet, dry, granule size)
will govern the overall flow behaviour, since the consump-
tion and diffusion of fluctuation energy in the core of the
avalanche depends on these properties.

The above results are based on the simplified solution of
Equation (65). A comparison between the numerical solu-
tion of the full coupled system and the simplified analytical
solution of the uncoupled solution is shown in Figure 10 for
the Aulta avalanche example. We find good qualitative
agreement between the numerical and analytical solutions,
although the numerical solution predicts higher plug flow
velocities. This implies that the creation of fluctuation
energy from shearing is slightly greater than the destruction
of fluctuation energy from the overburden pressure.

5. CONCLUSIONS AND OUTLOOK
The proposed fluctuation–dissipation relations provide a
framework for developing more accurate constitutive
theories for depth-averaged avalanche-dynamics models.
They reveal that the interaction between the avalanche with
the basal surface and energy dissipation by macro-viscous
and micro-collisional processes are interrelated by simple
thermodynamic constraints. These constraints are governed

by the mechanical work rate and injection of fluctuation
energy at the basal layer of the avalanche. Further progress is
dependent on measurement of these processes in chute
experiments or from numerical simulations (see Louge,
1994). Our future experimental work will concentrate on
identifying the dimension of the basal slip volume and
resolving the problem of how to partition the basal work rate
into the generation of fluctuation energy and heat as a
function of the surface roughness and snow properties. It
should therefore be possible to improve existing avalanche-
dynamics models which presently rely on empirical models
that require extensive calibration to fit flow velocities and
run-out distances (Buser and Frutiger, 1980; Bartelt and
others, 1999; Sovilla and others, 2006).

Our constitutive proposal is a first attempt to apply
fluctuation–dissipation relations to geophysical flows that
are governed by the interaction with the basal surface. The
model can already explain the observed velocity profiles of
snow avalanches without using some z-dependent viscosity
in the avalanche core. In the proposed model the viscosity
coefficient is a material constant and the z-dependent
viscous shearing is determined by the random motion of the
snow granules. We can therefore model the whole velocity
profile without using some macro-viscous rheology which
empirically divides the avalanche core into a bulk and a
highly sheared part (Dent and Lang, 1983; Nishimura and
Maeno, 1987; Norem and others, 1987; Salm 1993).
Because the fluctuation energy diminishes with increasing
height, the velocity gradient becomes so small that the upper
region of the flow behaves like a rigid plug. The size of the
viscous shear layer is given by fluctuation energy input as
well as the snow properties, specifically the fluctuation
energy transport and collisional damping properties. Hence
the model explains both wet and dry dense snow avalanche
flow regimes. Finally, it predicts that avalanches can reach
long run-out distances when the viscous shear resistance of
the flowing snow is reduced by a continual supply of
fluctuation energy at the basal surface.

The interaction of the viscous and collisional processes
introduces an important thermodynamic constraint on the
constitutive formulation. The product of the viscous strain
rate and fluctuation energy must describe a single energy
dissipation process. This fact illustrates the complementary
character of the viscous and granular descriptions of snow
avalanches. Accordingly, their interaction is required to be
reciprocal. By finding the associated quadratic form of the
total dissipation, we can identify the symmetric cross-
product coefficients of the dissipation matrix. The variables
of the quadratic form define the viscous and collisional
processes uniquely. Since the diagonal coefficients of the
dissipation matrix are constant, the constitutive formulation
defines a linear dissipative system. Interestingly, such
systems are governed by dissipation functionals that obey
general variational principles such as the principle of
minimum entropy production _s (Leopold and Langbein,
1962; Glansdorf and Prigogine, 1974; Bartelt and others,
2005). A variational principle provides us with a powerful
tool to investigate our complex flow systems, including their
stability with regard to external disturbances. It implies that
dense snow avalanche flows are near to equilibrium, that is,
they tend to steady state under the given basal boundary
conditions – a result that can be corroborated with further
field studies to quantify the relationship between fluctuation
energy and the basal work rate.

Fig. 10. Comparison between the numerical solution when the
collisional dissipation rate, _�000

r , is given by Equation (45) and
the analytical solution when _�000

r is given by Equation (68). The
numerical and approximate solutions have the same form; the
numerical solution predicts slightly higher plug velocities.
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