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Recent observations (Tarbell et al., 1990; see also Ruzmaikin et al. these Proceed
ings) show that the surface distribution of magnetic fields on the solar surface is 
selfsimilar, with an approximately constant fractal dimension over a large range of 
horizontal scales. Also, recent ideas about flare energy release assumes a "fibrous" 
corona, with the energy release consisting of many small scale events (Vlahoz, 
1989) Prompted partly by these observations, we investigate the properties of self-
similar three-dimensional magnetic fields. 

1. Magnetic null points 
The global connectivity of non-trivial 3-D magnetic fields is strongly influenced by 
the presence of critical points (null points) where all components of the magnetic 
field vanish. In a neighbourhood of such points, the magnetic field is characterized 
by the magnetic field gradient matrix G_ = Bi,j] 

B(r) = £>•>• ; =£-*r- (1) 
i 

where G, again, is completely characterized by its eigenvalues and eigenvectors. 
Since div(B) = 0, the sum of the eigenvalues (= trace(Gr)) vanishes. Thus there are 
only two, non-trivially different, combinations of eigenvalues; those with all eigen
values real (one with the sign differing from the other two), and those with one real 
and two complex conjugate eigenvalues. Corresponding to these two cases, there 
are two different classes of field structure near magnetic null points; non-spiralling 
field lines corresponding to the case with all real eigenvalues, and spiraling field 
lines corresponding to the case with complex eigenvalues. In both cases, the field 
lines in one direction asymptotically approach an axis along the eigenvector be
longing to the largest (real) eigenvalue, while in the other direction the field lines 
asymptotically approach the plane containing the other two eigenvectors (Fukao 
et al., 1975; Green, 1988). 

2. Field representation 
We construct schematic, but reasonably complicated ("non-text book") magnetic 
fields, by representing the field by the real part of a complex exponential series. 
Specifically, here, we write B in terms of a vector potential A 

B = V x A , (2) 
where 

B(r) = R e [ ^ ^ f < A i e ^ r | . (3) 
» i 
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j indexes groups of components with similar wave numbers k j , and i indexes several 
sets of these groups, scaled with wavenumber scaling factors gi and amplitude 
scaling factors /<. 
For a force-free field, the current is proportional to the magnetic field 

I = (V x B) = a B . (4) 

For the complex exponential series, this may be shown to imply that the size of a 
must be equal to the length of the wavevector, a = |k|. A more detailed analysis 
shows that A, in the force free case, must lie in the plane orthogonal to k, and 
must consist of a certain combination of two linearly independent vectors in that 
plane. 

3. Examples of 3-D topologies 
To construct force-free fields with single (periodic) null points, we use groups 
of three terms with different k directions. Sets of such groups, with increasing 
wavevector and decreasing amplitude, where each group fulfills the force-free con
dition, produce fields that are not exactly force-free, but must be in a rather low 
energy state. 

The panels in Figure 1. show two examples of such fields. The first column is 
a sequence where one null point from each group remains in the same location. 
The second column is a sequence where the null points for the i >— 2 groups 
are displaced by 1/8 period with respect to the null points of the i = 1 group. 
The plots are made by first finding all null points in the region, then placing a 
small number of starting points at a small distance from the null point, around 
the main axis, and trace these in both directions. As illustrated by the figure, both 
these selfsimilar fields exhibit a complicated field structure with many null points. 
Whether or not superpositions of fluctuations on several scales results in many null 
points depends on the relative amplitudes of the fluctuations. If the field gradients 
near a null point of a large scale component are smaller than the gradients of the 
smaller scale components, then in a neighbourhood of the null point of the large 
scale fluctuation the small scale fluctuations are able to create a number of null 
points. These form a cluster of "satellite" null-points around the null point of the 
large scale fluctuation (cf. Galsgaard and Nordlund, 1990ab). Presumably, for a 
field with a continuous spectrum of fluctuations, there is a critical spectrum slope, 
below which the field topology is vastly more complicated than above. 
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Fig . 1. The panels show two series of magnetic fields generated from groups of three 
vector potentials with increasing wave number and decreasing amplitude. The left column 
shows a sequence of magnetic field line plots where one null point from each group with 
i > = 2 is located at the same position as a null point from i = 1 group. The field is 
defined by the following wavevectors, vector potentials and scaling constants: 
ki=[(0,l),(0,0),(0,0)], Ai = [ (0 ,0) , (1 ,1) , ( -1 ,1)] , 
k2=[(0,0),(0,l),(0,0)], A2 = [ ( -1 ,1) , (0,0), (1,1)], 
k3=[(0,0),(0,0),(0,l)], A 3 = [ (1 ,1) , ( -1 ,1) , (0 ,0)] , 
#=(1,4,16), /j=(l,.13,.0169), i= l , 3 . 
The plots in the right column are made from the same wavevectors k, and scaling con
stants gi, fi but with these vector potentials: 
Ai=[(0,0),(l,0),(0,l)], Aj=[(0,l),(0,0),(l,0)], Aa=[(l,0),(0,l),(0,0)]. 
The last plot in this series has been simplified, by following the field lines for a shorter 
distance than for the other plots. 
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