
OLD AND NEW RESULTS ON KNOTS 
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T H E theory of knots undertakes the task of giving a complete survey of all 
existing knots. A solid mathematical foundation was not laid to this theory 
until our century. A mathematician of the rank of Felix Klein thought it to 
be nearly hopeless to treat knot problems with the same exactness as we are 
accustomed to from classical mathematics. We want to give here a short 
summary of the modern topological methods enabling us to approach the knot 
problem in a mathematical way. 

In order to exclude pathological knots, as for instance knots being entangled 
an infinite number of times, we will define a knot as a polygon lying in the 
space. In other words: a knot is a closed sequence of segments without 
double points. In Figure 1 some examples of knots are given in plane pro
jection. 

Now the question arises when two knots are to be called equivalent. One 
might be induced to call them so if one of them can be transformed into the 
other by a deformation without self-intersection. But this definition needs a 
restriction, otherwise every two knots would be equivalent. For one could 
transform both of them into an unknotted curve, a process shown for the 
trefoil knot by Figure 2. We therefore permit only more special transfor
mations which do not allow such a tightening. We will call two knots equi
valent, or of the same type, if they can be transformed into one another by a 
finite number of operations of the following kind : Let A be a triangle having 
one or two sides (and no other points) in common with the knot; then we add 
the boundary of A modulo 2 to the knot. This means the sides of A are to 
be added to the segments of the knot, and the segments, then occurring twice, 
are to be dropped. The two possible cases of such transformations are illus
trated by Figure 3 and Figure 4. One may picture the knot as being pulled 
over the surface of the triangle. 

The following definition has the same meaning, as can be proved : Two knots 
are equivalent if and only if the one can be transformed into the other by a 
topological, simplicial, sense-preserving mapping of the whole space onto itself 
[6]. These so-called semilinear self-transformations of space forming a group, 
the theory of knots may be regarded as part of the geometry belonging to this 
group. 

We usually represent a knot in the drawing plane by parallel projection. 
The type of the knot is uniquely determined by its projection. It is always 
possible to choose the direction of the projecting lines in such a way that only 
"ordinary double points" occur, which means that in a double point one 
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segment of the knot is crossed by one other segment only. The lower segment 
is drawn interrupted in the figures. One and the same knot and its equivalents 
are capable of an infinity of different projections. For instance Figures 5-7 are 
all projections of the trefoil knot. 

There is one way near at hand for getting a survey of all possible knots. 
One has to construct systematically all projections with 2, 3, 4, . . . double 
points, and one has to find out by trying which of these projections represent 
equivalent knots. Of all the possible projections of the same type of knot, 
one distinguished by having the least number of double points or other simple 
qualities, will be picked out as a representative and be admitted to an inventory 
of knots. This is how the index of knots of Alexander and Briggs [2] was 
constructed. It contains 84 knots with up to 9 double points. 

It remains to be seen whether different knots of the index are really not 
equivalent. This question, the true knot problem, cannot be decided by 
trying. For there is an infinity of possibilities of transforming a knot, and 
the reason why we may fail in transforming one knot of the index into another 
may be lack of skill or perseverance. 

In order to prove two such knots to be really not equivalent, deeper methods 
are wanted. They offer themselves in the topological invariants of the com
plement of the knot, i.e., the space from which the knot has been taken away: 
if the knot k can be transformed into the knot kf by a semilinear transfor
mation of the space R then the complements R — k and R — k' must be homeo-
morphic. Therefore the topological invariants of R — k are knot-invariants. Thus 
the theory of knots is closely connected with the topology of three-dimensional 
manifolds, and every new topological invariant of three-dimensional manifolds 
is at the same time a new knot invariant. The only problem left to the knot 
theory is then to develop a method of calculating these invariants out of a 
given projection of the knot. Let us review the main results which have been 
attained in this direction. 

One of the most important knot invariants is the group of the knot [4]. It is 
the fundamental group of the complement R — k. The fundamental group is 
defined for every connected complex L of any dimension. One has to choose 
a point 0 of L and to draw all closed oriented paths starting from 0 and 
running on L. Two such paths W and W are called homotopic and are con
sidered to be in the same class of paths, if W can be deformed on L into W, 
0 remaining fixed, yet self-intersections being allowed throughout the de
formation. The classes of paths are considered as the elements of a group; 
this is the fundamental group of L. The product W1W2 of two paths W\ and 
W2 is obtained by passing first along W\ and then along W2. 

In the case of the group of a knot k, the complex L is the complement R — k. 
Thus the knot group of a "circle'' is the free group of one generator; for every 
closed path that does not meet k can be deformed without intersecting k into 
a definite power of the path 5 entangling the circle once (Figure 8). The knot 
group therefore consists of all the powers of the class of the path S. The path 
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W, for instance, shown in Figure 8, can be deformed into S~2; the path E is 
homotopic to zero and represents the unity of the knot group. 

Let k be an arbitrary knot given by its projection. We may represent its 
group by generators and defining relations in the following way. To every 
double point of the projection there correspond two points of the knot, one 
lying on the crossing, the other below, on the crossed branch. The latter may 
be called a crossed point. If there are n double points in the projection, then 
there will be n crossed points on the knot. We shall denote them by Di, D2, 
. . . , Dn in such an order as is given by a certain orientation of the knot. The 
knot is divided by the crossed points into n oriented segments Si, 52, . . . , sni 

the segment sy running from Dv-\ to Dv (indices are to be reduced modulo n 
so that DQ means the same as Dn). We choose the origin 0 of the closed paths 
above the drawing plane, and we adjoin to the n segments $i, 52, . . . , sn n ele
ments Si, 52, . . . , Sn of the knot group which will generate the whole group. 
They are classes of paths of R — k. The class S„ is represented by a path starting 
from 0, entangling s„ once in the positive sense and returning to 0. To en
tangle in the positive sense means that the sense of the rotation of the oriented 
path around sv together with the orientation of sv determines a right-handed 
screw. We indicate such a way in the knot projection simply by an arrow, 
representing the part of the path which is overcrossed by the knot. Without 
changing the class of a path one may draw the path along the crossing segment 
over a double point. Figure 9 shows an example. Every class S„ of paths is 
represented by two different arrows marked with the same letter. Figure 10 
gives a picture of the same knot. In order to improve the view we added a 
cylinder underneath, with its generating lines in the direction of the projecting 
parallels. 

To every double point there corresponds a certain defining relation of the 
knot group. To realize this let us consider Figures 11 and 12. They show 
the two possible kinds of crossing (overcrossing from right to left and from 
left to right). The closed path ABCD represented in the projection is ob
viously homotopic to zero as it lies wholly beneath the knot. Now let the 
origin 0 of the closed paths be situated above the drawing-plane. If we then 
move the points A, B, C, D towards 0, drawing the path ABCD behind, this 
closed path will become a product of our generating elements SM. In the case 
of Figure 11 this product is 

and in the case of Figure 12 it is 

We therefore have in the two cases the respective relations 

(la) R„= S ^ S ^ - ' S H - f 1 = 1, 

(lb) R, = SK-*SySKSr+rl = 1. 
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These relations, formed for v = 1, 2 . . . , w, constitute (as can be proved) a 
complete system of defining relations for the knot group. In the case of the 
trefoil knot (Figure 9) it is 

Ri= S . S i S . ^ S f 1 = 1 
(2) R2^ S1S2S1-

1Sfl = 1 

R% — 02 0 3 S2— 1 O i _ 1 = 1. 

It may be noticed, however, that the relations (1) are not all essential; one of 
them, being a consequence of the others, may be dropped. 

We have so far constructed the knot group out of a given projection of the 
knot. But our result is still insufficient for distinguishing given knots. For 
the generating elements and the defining relations depend upon the choice of 
the projection, and no method is known for determining whether two groups 
given by generating elements and defining relations are identical or not. 
The problem of isomorphism of groups is as unsolved as the problem of equi
valence of knots. For instance, the knot group of the trefoil knot for which 
we have found the defining relations (2) may as well be given by two generating 
elements A and B and the one defining relation A2 — Bz. It is not at all obvious 
how the generating elements A and B may be expressed by Si, S2, S3. Never
theless the knot group is one of the most important knot invariants as it is 
the starting point for other and calculable invariants. 

Besides of the fundamental group F of a complex L there is another well 
known invariant, the homology group H. One may define it as the abelianised 
fundamental group, that is the quotient group of F by its commutator group F0: 

H = F/Fo. 
We see that the homology group can be derived from the fundamental group, 
and therefore it is in general a weaker invariant than the fundamental group. 
On the other hand it has the advantage of being determined by a finite system 
of numerical invariants which can be calculated by rational methods. For, 
every abelian group having a finite number of generating elements is the direct 
product of p cyclic groups of infinite order and certain cyclic groups of finite 
order, as is shown in the theory of elementary divisors. If the abelian group 
is the homology group H, the orders of the finite groups are called coefficients 
of torsion and the number p is the Betti number of the complex L. 

Calculating the homology group H of the complement L=R — k of a knot k 
one will find always the same result. H is the free group of one generator; 
in other words: p = 1 and there are no coefficients of torsion. This is a con
sequence of the relations (1). They reduce to S„ = S^+i by abelianising (the 
bar indicates the corresponding element of the abelianised group). The gener
ators of the abelian group Si, S2, . . . , Sn are therefore all equal to one another, 
say = S, and the abelianised knot group is the free cyclic group of one gener
ator, S. It therefore cannot be utilized for the classification of knots. 

But new invariants may be deduced from the covering manifolds of R — k. 
These covering manifolds are likewise connected with k in an invariant manner. 
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Alexander discovered that the homology groups of the covering manifolds are 
in general different for different knots. They may be therefore utilized for 
distinguishing knots. The so-called cyclic covering manifolds are of special 
importance. In order to construct them let us remark that an orientable sur
face without singularities may be framed in any knot k in such a way that k 
is the only boundary curve of the surface. In the case of the circle one may 
take an element (a 2-cell) (Figure 13) ; in the case of the trefoil knot the surface 
given by Figure 14 will do. This figure shows the surface bounded by the knot 
in plane projection. In the three-dimensional space the two hatched parts of 
the projection cohere along three segments, which are double points in the 
projection. This surface is a perforated torus as may be shown by calculating 
its Euler characteristic. The surface of Figure 15, however, would not be fit 
for our purpose, as it is non-orientable (a Môbius strip). 

We now cut the space R along the surface. We get a three-dimensional 
"sheet/ ' and we attach g replicas of this sheet to one another in cyclic order 
around the knot. The analogous process, one dimension lower, is the con
struction of a Riemann surface on the sphere: the sphere is cut along an arc; 
it becomes a two-dimensional sheet, and g of these sheets are to be attached 
around the two branch points. In this way we get a g-fold covering manifold 
Rg of Ry the knot k being the branch-line. By taking k out of Rg we obtain a 
covering manifold Rg — k "without ramification.'' It is to be noticed that Rg 

depends only on the number g and the knot fe, but not on the surface used for 
the construction. (However, there exist in general still other non-cyclic covering 
manifolds which are not to be considered here.) 

In order to calculate the fundamental group FQ and the homology group 
H g oî Rg — k we proceed from the theorem that the fundamental group of a 
covering manifold is isomorphic with a subgroup of the fundamental group F 
of the basic manifold. We obtain the subgroup by copying through into the 
basic manifold all oriented closed paths of the covering manifold starting from 
a fixed point. We therefore have to find in R — k those closed paths W starting 
from 0 to which correspond in Rg — k closed paths starting from one and the 
same point 0. These are exactly the paths whose intersection number with 
the surface bounded by k is a multiple of g. An intersection point is to be 
counted positive or negative according as W pierces the surface from right to 
left or from left to right. (We may speak of left and right as our surface is 
orientable and therefore two-sided in the space). The intersection number 
is called also the looping coefficient of W with k. It is independent of the 
surface. We thus have found: the fundamental group Fg oiRg — k is isomorphic 
with the subgroup of the (classes of) paths, the looping coefficients of which 
with k are multiples of g. 

Reidemeister [7] has shown how to derive generators and defining relations 
of a subgroup from generators and defining relations of the whole group. By 
applying this method to the knot group one arrives after some calculations [13] 
at the following simple result. 
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In order to determine the homology groupff^of the g-fold cyclic covering mani
fold Rg — k, the double points of the knot projection are to be denoted seriatim 
by Du D2, . . . , Dni and the corresponding segment running from one crossed 
point to the next by Si, s2, . . . , sn as has been done above. Let sx„ be the 
crossing segment in the double point Dv. Then we will write on this segment 
at the point Dv the number —1 or + 1 according as the crossing takes place 
from right to left or from left to right. We attach to the segment lying on the 
left side of sx„ and coinciding with Dv the opposite number, + 1 or —1 as 
shown in Figures 16 and 17. From these numbers we form the matrix A, the 
rows corresponding to the double points Di, D2, . . . , Dn and the columns to 
the segments si, 52, . . . , sn. (It may happen that in the case of a crossing 
from right to left sv is the same as sXj/. Then s„ will have two numbers + 1 
and —1 as suffixes of Dv. In this case we put the sum of these two numbers, 
i.e., 0, in the position (Dv, sv) of the matrix A ; similarly in the case of a crossing 
from left to right.) We obtain from this matrix by suppressing the last row 
and the last column a matrix A, and from this by adding the first column to 
the second, then the second to the third, etc., a matrix r of n — 1 rows and 
n — \ columns. The torsion coefficients of Rg — k are then the elementary 
divisors (other than 1) of the matrix 

r°- (r - E)*, 
E being the unit matrix of n — 1 rows, whereas the rank defect of this matrix, 
augmented by one, gives the Betti number of Rg — k. 

This theorem allows us to calculate the homology groups of all cyclic covering 
manifolds by means of one and the same matrix V. As Alexander has shown, 
one may thus verify that the 84 knots of the Alexander-Briggs index are dis
tinct with a few exceptions. 

Let us take as an example the trefoil knot. According to our prescription 
we number the double points and the segments, and we determine the indices 
zb 1. In Figure 18 we have written the signs + and — of the indices on the 
segments. The matrices A, A and T become 

A= DI\-I i o, Â - ( \ J ) , r - ( _ J J ) . 
D3 I 0 - 1 1 X ' V ' 

We therefore get 

r2_{r_E)2 = (_j_f). 
By suitable transformations of the rows and columns the normal form 

results. It has one elementary divisor 3, and the rank defect is 0. Thus the 
(it) 
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twofold cyclic covering manifold i?2— fe has one torsion coefficient of value 3 
and the Betti number 1. In the same way one may calculate 

K-(r-D.-(-J _ ; ) . 
that is to say, the threefold covering manifold R% — k has two torsion coeffi
cients of value 2 each, and the Betti number 1. For R& — k we find 

r.- (r-E).-(j; I). 
This covering manifold has therefore no torsion coefficient, and the Betti 
number is 3. 

Next to the covering manifolds Rg— k of a finite number of sheets, the 
infinite cyclic covering manifold RQ— k is important. Its fundamental group 
is isomorphic with the subgroup FQ of those elements of the knot group, whose 
looping coefficients with k are 0. (F0 is the commutator group of F.) Because 
of the infinite number of sheets, the homology group Ho of R0 — k can in general 
be given only by an infinite number of generators and relations. But a finite 
representation of H0 may be obtained by interpreting Ho as a group with 
operators in the following sense. There is a symmetry operation (Deckbe-
wegung) of Ro— k transferring every sheet into the next one. It induces in H0 

an automorphism x. By making use of the operator x one obtains instead of 
the infinite number of generators and relations of Ho a finite number of rela
tions, the domain of coefficients being the integral domain of the polynomials 
in x and x~l with integral coefficients. 

It can be shown that the polynomial 
A = |r - X(E - r) | , 

r being the above-mentioned matrix, is a knot invariant, if one does not count 
a factor ± xv which remains undetermined. This is the "L-polynomial" intro
duced by Alexander [1], see also Seifert [9]. In the case of the trefoil knot it is 

A = 1 + x + x2, 
whereas the circle has the L-polynomial 

A = 1. 
An interesting application of the L-polynomials is the following relation 

between the L-polynomials of a special class of knots. Let k be an (oriented) 
knot lying in the space R, V a tubular neighbourhood of k. The boundary of 
F is a (two-dimensional) torus T. Let W = R — V + T be the closed com
plement of V in R. A closed oriented curve on T without double points and 
non-bounding on T is called a ''meridian" of V if it bounds on V, and a "par
allel'' of V if it bounds on W. 

V can be mapped by a topological representation <j> on an unknotted solid 
tube V, bounded by a two-dimensional torus T\ in such a way that the 
parallel q of V becomes a parallel qf of V. Figures 19 and 20 illustrate the 
case of k being the trefoil knot. 
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Now let / be an arbitrary knot lying in V. I being a closed 1-chain of V, it 
is homologous on F to a multiple of k, say 

/ ~ nk on V. 

We may assume n ^ 0 by orienting / properly. The topological represen
tation <t> of F on V maps I into a knot V of F ' . Let Ak(x), Az(x), A^(x) be the 
/.-polynomials of the knots k, /, V respectively. Then our theorem is (Seifert 
[12]) 

Ai(x)= Av(x)Ak(x
n). 

This theorem contains a result of Burau [3] concerning the special case where / 
is a "tube knot," the carrier knot of which is k. 

An example of our theorem is given in Figure 21. Here the knot k is the 
trefoil knot, and n — 0. The case n = 0 has a remarkable consequence. Then 
we have Ak(xn) = Ak(x°) = A*(l). But A&(1) = 1 for every knot. Therefore 
for n = 0 our theorem is Ai(x) = A^(x). In other words the L-polynomial of / 
does not depend on the knot k. The doubled knots in the sense of Whitehead 
[14] are a special case hereof. We shall treat them soon again. 

Besides the homology groups there are still other invariants of three-
dimensional manifolds which play a role in distinguishing knots. In three-
dimensional space, two closed oriented curves without common points have a 
certain looping coefficient. In the same way a looping coefficient of two closed 
oriented curves may be defined in other orientable three-dimensional mani
folds, provided that the curves themselves or multiples of them be homologous 
to zero. These looping coefficients, however, will be in general fractions. For 
instance the looping coefficient of two projective lines of the projective space 
is 1/2. The looping coefficients possess the important property of changing 
their sign when the orientation of the space is reversed. From them may be 
deduced the so-called looping invariants, which are invariants of a three-
dimensional manifold including a certain orientation. They may change when 
the orientation changes. There are examples where they do more for distin
guishing knots than the knot group. For instance, it can be shown with them 
that the two knots of Figures 22 and 23 are not equivalent in spite of their 
having the same knot group. They further allow us in many cases to dis
tinguish a knot from its symmetric (its image in a mirror). This is, for instance, 
the case with the trefoil knot, and the result is not to be had by the homology 
groups, Ho, H2, Hz, . . . . It may be mentioned that these invariants are 
connected with the so-called quadratic form of the knot ([5] and [10]). 

We have hitherto enumerated the most important knot invariants so far as 
they can be defined for arbitrary knots. What is the significance of these 
invariants? 

The problem of isomorphism of the knot group is unsolved. Setting aside 
the knot group, we have the homology groups and the looping invariants of 
the infinite number of covering manifolds Rg— k. Let us call them the homo
logy invariants of the knot. They suffice for distinguishing all the 84 knots of 
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the Alexander-Briggs index. But the knot problem is still far from being solved 
with them. For there exists an infinite number of knots all having the same 
homology invariants. 

There is even an infinite number of knots having the same homology invar
iants as the circle. For instance, certain doubled knots of J. H. C. Whitehead 
[14] are of this kind. They are defined as follows. Take a narrow ribbon, 
knot it in an arbitrary way and after that put the ends one into the other, so 
that they will penetrate each other along a segment AB, as is shown in Figure 
24. Then the boundary of the ribbon will be a doubled knot. By making the 
ribbon more and more narrow it will finally be reduced to a knotted line k, 
which we call the carrier knot. The carrier knot of the doubled knot shown 
in Figure 24 is the trefoil knot. To every carrier knot k there corresponds an 
infinite number of doubled knots. To construct them we only have to knot 
the ribbon according to k and then to twist it an arbitrary number of times. 
By choosing this number suitably the homology invariants of the doubled knot 
will be the same as those of the circle. 

How is it possible to distinguish such knots? Whitehead has proved that 
two doubled knots can be equivalent only if their carrier knots have the same 
knot group. We can prove in addition that not only the knot group of k but 
the type of k itself is an invariant of the doubled knot. Two doubled knots, 
if constructed by means of inequivalent carrier knots, are therefore certainly 
not equivalent. 

In contrast to the above-mentioned homology invariants, which may be 
called algebraic topological invariants, the invariance of the carrier knot is of 
a purely topological nature. Accordingly, other methods have to be used to 
prove it. One may proceed as follows. By definition a doubled knot is the 
boundary of an *'element with self-penetration." This means a 2-cell of the 
three-dimensional space, the only singularity of which is a self-penetration 
along a segment AB (Figure 24). Yet we have to pay attention to the fact 
that this element with self-penetration is not determined by the doubled knot. 
For instance, one may deform it into another one without changing the 
boundary. 

The question therefore arises how many essentially different elements with 
self-penetration may be bounded by the same doubled knot k. Let us explain 
this question as applied to the simplest example imaginable. The circle itself 
may be interpreted as a doubled knot, as is seen by Figure 25. The figure 
shows the ribbon bounded by the circle. We may provide the ribbon with a 
certain "index." It is defined as follows. We give the boundary k of the ribbon 
a certain orientation. This induces a certain orientation of the ribbon itself. 
A and B being the points of penetration between k and the ribbon, the orien
tation of k together with the orientation of the ribbon determines a certain 
screw (space orientation) in A. In Figure 25 this is a right-handed screw. 
The same right-handed screw is determined in B. 
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If we reverse the orientation of fe, the orientation of the ribbon is reversed 
at the same time. Therefore the sense of the screws does not change. Now 
we assign to the intersection point A the index + 1 if the screw of A is a right-
handed screw, and —1 if it is a left-handed screw, and we do the same to the 
other point B. Then the index of the ribbon is the sum of the two indices of 
A and B. In the case of Figure 25 the index is + 2 . We therefore see that a 
circle may bound a ribbon of index + 2 . But then it may bound a ribbon of 
index — 2 just as well. We only have to reflect Figure 25. This process reverses 
the orientation of space and therefore right-handed screws become left-handed 
screws. The reflected knot is again a circle, but now it bounds an element 
with self-penetration of index —2. The result is, that a circle can bound two 
essentially different elements with self-penetration, which cannot be trans
formed into one another by a semilinear mapping of the space, for such a 
mapping would not change the index of the element. 

We find the same situation in the case of the "four-knot." The ribbon shown 
in Figure 26 has the index + 2 . By reflecting it we get a ribbon of index —2. 
Now it is known that the reflected image of the four-knot is equivalent to the 
original knot. Therefore the four-knot also admits two essentially different 
elements with self-penetration of which it is the boundary. 

We believe the circle and the four-knot to be the only two knots having this 
quality. We can prove the following result : If a doubled knot k can be con
structed by means of a carrier knot k, k not being the circle, then there exists, apart 
from semilinear mappings of the space, only one element with self-penetration 
bounded by k. The proof of this theorem is rather complicated. The only way 
is to construct the semilinear mapping of one of two elements with self-pene
tration bounded by k into the other. This can be done by considering the 
lines and points of mutual penetration of the two elements and splitting them 
off one by one by appropriate methods [11]. 

The invariance of the carrier knot is an immediate consequence of this 
theorem. Given the element with self-penetration, the carrier knot is obtained 
by joining the ends A and B of the penetrating segment by a curve running 
along the ribbon. The resulting closed curve is itself the carrier knot k. Now 
let k and kr be two doubled knots derived from the carrier knots k and k!'. 
Then the equivalence of k and kf follows from the equivalence of k and k' 
provided that one at least of the two knots k and k' is not the circle. In the 
case when both of them are circles, they are obviously equivalent. In any 
case, therefore, the carrier knot is an invariant of the doubled knot. 

Furthermore it follows from our theorem of the uniqueness of the bounded 
element that a doubled knot, the carrier knot of which is not a circle, will never 
be equivalent to its mirrored image. For the index of the bounded element 
would change by reflection. If the doubled knot were equivalent to its image 
it would bound therefore two essentially different elements of index + 2 
and - 2 . 
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The preceding theorems are concerned with special classes of knots. Let 
us conclude with a result relating to the decomposition of an arbitrary knot. 
We shall call a knot a prime knot if it is impossible to cut it after a suitable 
deformation by a plane having only two points P and Q in common with k, 
into two knots (both distinct from the circle) consisting of the two parts of k 
and the closing segment PQ. For instance the knot shown in Figure 22 can 
be decomposed into two trefoil knots. Now our theorem is, that every knot k 
can be decomposed into prime knots and that the series of these prime knots 
is unique but for the order of them [8]. 
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