
Most analyses of data collected from a classical twin study
of monozygotic (MZ) and dizygotic (DZ) twins assume that

zygosity has been diagnosed without error. However, large
scale surveys frequently resort to questionnaire-based methods
of diagnosis which classify twins as MZ or DZ with less than
perfect accuracy. This article describes a mixture distribution
approach to the analysis of twin data when zygosity is not per-
fectly diagnosed. Estimates of diagnostic accuracy are used to
weight the likelihood of the data according to the probability
that any given pair is either MZ or DZ. The performance of this
method is compared to fully accurate diagnosis, and to the
analysis of samples that include some misclassified pairs.
Conventional analysis of samples containing misclassified pairs
yields biased estimates of variance components, such that addi-
tive genetic variance (A) is underestimated while common envi-
ronment (C) and specific environment (E) components are
overestimated. The bias is non-trivial; for 10% misclassification,
true values of Additive genetic: Common environment: Specific
Environment variance components of .6: .2: .2 are estimated as
.48: .29: .23, respectively. The mixture distribution yields unbi-
ased estimates, while showing relatively little loss of statistical
precision for misclassification rates of 15% or less. The method
is shown to perform quite well even when no information on
zygosity is available, and may be applied when pair-specific esti-
mates of zygosity probabilities are available.

The majority of investigations into the causes of variation
in human populations begin with a classical twin study.
Twin pairs who have been raised in the same home are
diagnosed as MZ or DZ, and the correlations of the two
types of pair are compared. As intimated by Galton (1865)
and later formalized (Merriman, 1924; Siemens, 1924),
greater average similarity of MZ than DZ twins is taken as
support for the hypothesis that genetic factors cause indi-
vidual differences in the population. Several formulae exist
to compute an estimate of the relative impact of genetic
and environmental factors (Holzinger, 1929; Vandenberg,
1966) but these have important limitations ( Jinks 
& Fulker, 1970; Neale, in press). Consequently, most
modern analyses use a model-fitting approach (Eaves et al.,
1978; Neale & Cardon, 1992) to obtain maximum likeli-
hood estimates of variance components.

Most methods for the genetic analysis of twin data rely
on the accurate diagnosis of zygosity, but a few analyses of
twin data have been conducted without zygosity informa-
tion (Scarr-Salapatek, 1971). An estimate of the MZ corre-
lation was obtained by assuming that the observed
correlation for same-sex pairs was generated by DZ pairs
with equal sample size and equal correlation to those of the

opposite sex pairs, along with MZ pairs whose sample size
and correlation can be obtained by subtraction, via z-trans-
formed correlations. Assumptions of this earlier method
required that the number of same-sex DZ pairs was equal
to the number of opposite-sex pairs (i.e., no gender effects
on study participation) and that sex-limitation was absent.
In practice, these assumptions are unlikely to be met
because gender bias in participation is frequently observed
(Lykken, 1978). Furthermore, this approach has been
shown to be of limited use beyond simple univariate heri-
tability estimation, and to be dramatically short of statisti-
cal power when comparing groups (Eaves & Jinks, 1972).
A more general method that can be used for multivariate,
longitudinal, and other more complex genetically informa-
tive study designs would be useful.

Apart from rare cases where there is extensive genetic
marker data collected from every pair in the sample, per-
fectly accurate diagnosis of zygosity is almost never
achieved in practice. In large studies it is prohibitively
expensive to genotype every twin pair, so questionnaire-
based methods are frequently used. While some question-
naires have been demonstrated to be accurate in up to 95%
of cases (Jackson et al., 2001; Kasriel & Eaves, 1976;
Lykken, 1978; Nichols & Bilbro, 1966), the effects of this
level of misclassification have not been explored systemati-
cally. It is possible that misclassification has biased the
results of almost all studies of twins. Meta-analyses may be
particularly susceptible if the degree of misclassification
varies between the studies being examined.

The goal of this article is to present a new method to
analyze twin data in the presence of known rates of misclas-
sification. The method is appropriate when average misclas-
sification rates are known for MZ and DZ pairs. The two
rates do not have to be equal, as it is usually found that mis-
classification of MZ pairs as DZ is more common than the
reverse. Furthermore, the method may be applied on a case-
by-case basis, so that depending on the response pattern of
the twin pair, individual zygosity probabilities may be calcu-
lated and used. Heath et al. (2003) recently described a
latent-class approach to the diagnosis of zygosity which
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yields estimates suitable for this purpose. Finally, the
method may be applied in meta-analyses, multivariate or
longitudinal analyses, and studies of extended pedigrees.

Two key features of the proposed method are of inter-
est. First, the bias of the estimates of the A, C and E com-
ponents that occurs with different rates of misclassification
is compared between the conventional and mixture distrib-
ution methods. Second, the 95% confidence intervals of
these parameter estimates are compared. Some broadening
of the confidence intervals is expected to occur when the
mixture distribution method is used.

Method
Finite mixture distributions (Everitt & Hand, 1981)
provide a suitable mathematical model for the analysis of
imperfectly classified data. This approach has been used in
linkage analyses of quantitative traits, where the classifica-
tion of sibling pairs into those sharing zero, one or two
alleles identical-by-descent at a given genetic locus is
subject to error (Eaves et al., 1996; Fulker & Cherny, 1996;
Neale, 2003). In the present case, the population of twin
pairs consists of two classes, MZ and DZ, whose zygosity
may not be known.

Suppose that twin pairs are assessed on a trait which is
assumed to follow a normal distribution in the population,
and a bivariate normal in twin pairs. Under a simple model
of twin resemblance (Neale & Cardon, 1992), the pre-
dicted covariance of MZ twin pairs is given by:

ΣMZ = a2 + c2 + e2 a2 +c 2

a2 + c 2 a2 +c 2 + e2 (1)

where a2 c2 and e2 are the additive genetic, common envi-
ronment and random environment variance components,
respectively. The corresponding matrix for DZ twin pairs
is:

ΣDZ = a2 + c 2 + e 2 .5a2 + c
.5a 2 + c 2 a 2 + c 2 + e 2 (2)

The likelihood of a vector of scores from MZ pairs is
given by the bivariate normal probability density function:

L(MZ) = ⏐2 π Σ
MZ

⏐–k/ 2

exp {– —
1
2

— (xi – µ )′ Σ
MZ

–1 (xi – µ )}
in which µ is the (2 × 1) column vector of estimated popu-
lation means of the k = 2 observed scores of the twins, x1

and x2 , and |ΣMZ| and ΣMZ
-1 denote the determinant and

inverse of the matrix ΣMZ, respectively. The likelihood of
observed scores of DZ pairs, L(DZ) is computed in an
analogous fashion by substituting ΣDZ for ΣMZ.

When zygosity is not known exactly, the likelihood may
be computed as a weighted sum of L(MZ) and L(DZ). 
The weights used are the probabilities p(MZ) and p(DZ) =
1–p(MZ) which are derived from available information 
to diagnose zygosity. These weights would typically be 
different for pairs initially identified (with error) as MZ

from those identified as DZ. More generally, the weights
may be different for all pairs i = 1 … N in the sample:

Li = p(MZi) Li(MZ) + p(DZi ) Li(DZ ).

Simulation

To explore the effects of misclassification on the parameter
estimates and confidence intervals on parameters, data were
simulated under a standard genetic model. The trait was
generated by additive genetic (a 2), common environment
(c 2) and specific environment (e2) variance components
that constituted 60, 20 and 20% of the variance, respec-
tively. Data on 1000 pairs of MZ and 1000 pairs of DZ
twins were generated using SAS (SAS, 1999), which 
was also used to implement the misclassification process.
The percentage of pairs misclassified was set at 1, 5, 10, 15
or 50%. In many samples MZ pairs are more 
frequently misclassified than DZ, so some tests were run
with higher MZ error rates. Each simulation was repeated
500 times.

For each simulated dataset, the data were analyzed
using three methods. Under the “True” method, the
assigned zygosity was set to the true zygosity (no misclassi-
fication) and the weights were assigned as p(MZ) = 1 for
MZ pairs and p(DZ) = 1 for DZ pairs. Under the “Con-
ventional” method, the pairs were analyzed with the same
weights, but the assigned zygosity was incorrect in a pro-
portion of cases. Under the “Mixture” method, the data
were analyzed using the known population misclassification
rates for MZ and DZ twins as weights for the preliminarily
diagnosed pairs.

Parameter estimates and likelihood-based confidence
intervals (Neale & Miller, 1997; Venzon & Moolgavkar,
1988) were obtained with the freely available Mx package
(Neale et al., 1999). Mx scripts for the analyses are available
on the Mx website1 in the examples section.

Results
Table 1 shows the average estimates of a 2, c 2 and e 2 and
their average confidence intervals under the three misclassi-
fication conditions. Six features of this table are especially
noteworthy. First, parameter estimates are close to the pop-
ulation values for the True analyses, as is expected when
there is no zygosity classification error. Second, the mixture
distribution analyses yield parameter estimates very close 
to the population values. Third, and especially interesting,
the confidence intervals from the mixture distribution
approach are very close to those from the True analyses,
indicating that the loss of information incurred by specify-
ing a mixture distribution is relatively slight, even when the
misclassification rate is as high as 15%. Fourth, the
Conventional analyses that ignore misclassification show
substantial bias from the population estimates, with addi-
tive genetic variance underestimated and environmental
sources, particularly common environment, over-estimated,
except when the misclassification rate is low (1% for MZ
twins). Fifth, the confidence intervals of the Conventional
analyses span approximately the same range as those of the
True analyses, and are just as biased as the Conventional
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parameter estimates. Sixth, even when there is essentially
no information about zygosity (misclassification is 50% 
for both MZ and DZ) the mixture approach is still able 
to recover parameter estimates, albeit with less precision
than when zygosity is diagnosed perfectly (e.g., .15 vs. .09
each side for a 2).

Discussion
This article presents a method of analyzing data collected
from twins when zygosity is known with less than full pre-
cision for some or all of the sample. Results of simulations
indicate that the mixture distribution approach recovers the
population values used for simulation, and does so even
when the misclassification rate is as high as 50%, which is
probably more than is common in twin studies. Better still,
with misclassification rates as high as 15%, there is little
loss of information; confidence intervals are only slightly
broader than when no misclassification is present. This
result indicates that statistical power will not be adversely
affected by the specification of a mixture distribution.
Failure to specify a mixture distribution when one exists
can result in substantial bias of parameter estimates. With
10% misclassification of MZ and DZ pairs (N = 1000 pairs
each), the average heritability estimate of .481 is outside
the average 95% confidence intervals of the estimate of
.608 provided by the mixture distribution analyses.

In the present era of relatively inexpensive genotyping,
it is likely that misclassification of zygosity will be less
common, especially in small to moderate sized samples of
twins. The method presented here should still prove useful
in larger studies where genotyping is impractical or too
costly. Indeed, except when the cost of phenotyping is very
high relative to genotyping, questionnaire-based zygosity
assessment and analysis with the mixture distribution
method may prove to be the more cost-effective strategy.

The observed bias in parameter estimates due to mis-
classification is non-trivial once misclassification rates reach
5%. This has implications for meta-analyses of twin studies
(Hettema et al., 2001; Sullivan et al., 2000) as varying rates
of misclassification are a likely source of discrepancy
between studies. If zygosity diagnosis has become more
precise in more recent studies, greater heritability and
smaller effects of the shared environment may be observed
in later versus earlier studies.

An interesting possibility for practical research is that 
it would be possible to use data collected from twins 
in which zygosity is completely unknown. Prior informa-
tion about the ratio of MZ to same-sex DZ twin pairs could
be used to weight those cases that have no direct data 
on zygosity. This approach may be most effective when 
the sample also includes some pairs with reasonably accu-
rate zygosity diagnosis.
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Table 1

Averaged Parameter Estimates (Est) and 95% Confidence Intervals (Low, High) from Three Analyses of Simulated Twin Data Sets. True is Without
Misclassification, Conventional is Standard Analysis of Partly Misclassified Samples, and Mixture Uses the Mixture Distribution Method. 
Each Data Set Consists of 500 Replicates of Samples of 1000 MZ and 1000 DZ Pairs of Twins with Misclassification Rates of 15, 10 or 5%. 
Variance Components (VC) are a2: Additive Genetic; c2: Common Environment; and e2: Specific Environment

Misclassification (%) True Conventional Mixture
MZ DZ VC Est Low High Est Low High Est Low High
1 1 a2 0.601 0.512 0.697 0.589 0.500 0.685 0.601 0.511 0.699 
1 1 c2 0.198 0.105 0.287 0.207 0.114 0.296 0.197 0.103 0.288 
1 1 e2 0.200 0.184 0.219 0.203 0.186 0.222 0.200 0.183 0.219 
1 5 a2 0.601 0.513 0.696 0.566 0.476 0.662 0.603 0.510 0.702
1 5 c2 0.197 0.106 0.286 0.218 0.125 0.308 0.196 0.102 0.287
1 5 e2 0.200 0.183 0.219 0.215 0.197 0.235 0.200 0.181 0.221
5 5 a2 0.600 0.512 0.697 0.540 0.452 0.634 0.603 0.507 0.706
5 5 c2 0.200 0.108 0.290 0.246 0.154 0.335 0.197 0.100 0.292
5 5 e2 0.200 0.183 0.219 0.215 0.197 0.235 0.200 0.181 0.221
10 10 a2 0.601 0.513 0.698 0.481 0.394 0.574 0.608 0.504 0.718 
10 10 c2 0.199 0.107 0.289 0.290 0.199 0.378 0.192 0.090 0.291
10 10 e2 0.199 0.183 0.218 0.230 0.211 0.251 0.199 0.178 0.221
15 5 a2 0.601 0.515 0.694 0.481 0.391 0.577 0.606 0.504 0.714 
15 5 c2 0.199 0.110 0.285 0.274 0.182 0.364 0.193 0.095 0.289
15 5 e2 0.199 0.182 0.219 0.244 0.224 0.267 0.199 0.176 0.224
15 15 a2 0.601 0.512 0.697 0.420 0.334 0.512 0.612 0.501 0.728
15 15 c2 0.199 0.107 0.289 0.335 0.245 0.422 0.188 0.082 0.292
15 15 e2 0.199 0.183 0.218 0.245 0.224 0.267 0.198 0.176 0.223 
50 50 a2 0.600 0.512 0.696 0.020 0.001 0.091 0.643 0.480 0.786
50 50 c2 0.199 0.107 0.289 0.634 0.561 0.698 0.161 0.042 0.299
50 50 e2 0.199 0.183 0.218 0.344 0.319 0.370 0.191 0.161 0.230
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The analyses used here were conducted using simulated
bivariate normal distributions for the twins’ trait scores.
The analysis of binary or ordinal data with this method 
can be tackled with a threshold model (Falconer, 1965). 
In principle, any analytic approach for which the likelihood
can be written or approximated (via e.g., Monte Carlo
Markov Chain methods) is amenable to the finite mixture
distribution approach used here.

While the mixture distribution method is particularly
suitable for studies of twins, it is not limited to this geneti-
cally informative design. Non-paternity is a documented
problem for genetic research where the ostensible father 
is not the biological father (Neale et al., 2000). Rates vary,
but 5% may be a reasonable estimate. In the absence of
data such as genetic markers that unambiguously diagnose
paternity, it would seem prudent to fit mixture distribution
models to data collected from families, to avoid bias in para-
meter estimates derived from father–child resemblance.

Finally, although this article is limited to univariate
analysis, it is equally appropriate for multivariate or longi-
tudinal analyses. Furthermore, it seems likely that the loss
of information due to misclassification would be even less
when there are multivariate data. The likelihood of the
observed phenotypic scores for the incorrect zygosity would
be substantially less than that of the correct zygosity, and to
a greater degree than would be expected in a univariate
analysis. That is, the phenotypes would themselves be pro-
viding an indirect and partial zygosity diagnosis.

These results should be considered in the light of three
potentially important limitations. First, the proposed meth-
od relies upon accurate estimates of the probabilities that
pairs are MZ or DZ. Biased parameter estimates may be
expected when these estimates are incorrect, as can be seen 
in the results of the Conventional analyses in Table 1.
Incorrect application of p(MZ) = 1 or p(MZ) = 0 generates
bias in the parameter estimates. Second, a single set of vari-
ance component proportions (A: C: E ratio of .6: .2: .2) was
used for exploring the effects of misclassification. When the
ratio was set to .2: .1: .7 relatively little bias was observed: for
5% misclassification, the average estimates from the conven-
tional approach were .179: .115: 0.706 versus .202: .098:
.700 for the mixture distribution analysis. Similar effects are
to be expected across the range of heritability, with more bias
in the conventional approach when the difference between
the MZ and DZ correlations is greater. An architecture of
only common and specific environment components would
not incur bias from misclassification, because the predicted
correlations of MZ and DZ twins are equal so misclassifica-
tion would have no effect. Conversely, substantial genetic
non-additivity, with MZ correlation much greater than the
DZ would accrue considerable bias from misclassification.

Third, the method is based on the assumption that
zygosity diagnosis is not derived from the phenotypes
under study. While this is likely to be the case for most
traits in most studies, for studies of physical characteristics
such as height or facial morphology, misclassification may
be partially systematic. In this case, the more similar DZ
twins would be more likely to be misclassified as MZ,
which would reduce the DZ correlation. The effect of the
contamination of MZ pairs with more similar DZ pairs is

less clear, as it depends on how similar the misclassified DZ
pairs are relative to the similarity of MZ pairs. Similarly,
misclassification of the more dissimilar MZ pairs would
reduce the apparent MZ correlation, and could have a variety
of effects on the DZ correlation. In many cases, the impact
of this sort of misclassification would be to bias estimates of
genetic variance components upwards, and common envi-
ronment downwards  — the opposite of the random mis-
classification mechanism considered in this article.
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