
A CONFIGURATION OF LINES IN THREE
DIMENSIONS

by J. W. P. HIRSCHFELD
(Received 30th July 1971)

1. Introduction

In 1849, Cayley and Salmon discovered that a general cubic surface in
projective space of three dimensions over the complex numbers has twenty-
seven lines on it. They remarked that all the properties of the twenty-seven
lines would not become apparent until a better notation than they had given
was found. This notation was discovered by Schlafli in 1858 in the double-six
theorem (henceforth referred to as (^)): given five skew lines au ..., a5 with
a single transversal b6 such that no four of the a, lie in a regulus, the four a(

excluding a} have a second transversal bj and the five lines bu ..., b5 thus obtained
have a transversal a6—the completing line of the double-six. The other fifteen
lines of the cubic surface are then cu = ap^api, where ajjj is the plane
containing at and bj.

In 1898, Grace gave the following extension of the double-six theorem:
given six skew lines cu ..., c6 with a transversal cc such that no four of the ct lie
in a regulus and no five have a further transversal, then a. and the set of five ct

excluding Cj determine a double-six with completing line d3 and the six lines
du ..., d6 have a transversal/?—the Grace line.

It is natural to ask whether Grace's theorem may be similarly extended
and whether there is an infinite sequence of such theorems. Thus the first
question is: if, from seven skew lines Au ..., A1 with a transversal A, the set
of six At excluding As determine the Grace line F,-, do the seven Grace lines
F1; ..., r 7 have a transversal?

In (9), this question was answered in the negative by the following method.
If the theorem is true over the complex field, say, the lines r 1 ; ..., F7 can be
obtained from the lines Alt ..., An by solving certain sets of linear equations.
If the line coordinates of At are A\l\ ..., A\6), then the line coordinates of
I \ , ..., T7 will lie in the polynomial ring Z[{/4J7)}], where Z is the ring of
integers. Let r l 5 ..., Fs lie in the linear complex W. Then Tx, ..., F7 have a
transversal if W is special and if both F6 and F7 lie in W. Thus three identities
must be satisfied in the ring Z[{/4^J)}]. Therefore, if the theorem is true over
the complex field, the theorem is true over any field for which the lines Tu ..., F7

exist and which is a homomorphic image of Z. In (9), the field GF(3l) was
chosen and, with the aid of a computer, a set of Au ..., An found which pro-
duced the lines Tu ..., F7. They did not have a transversal. So the question
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106 J. W. P. HIRSCHFELD

was negatively answered. The same result has since been found independently
by Longuet-Higgins (11), who gave two examples over the real field. In both
cases, the seven lines Ft, ..., F7 belonged to a (non-special) linear complex,
confirming in these cases a conjecture due to Babbage.

Two questions now arise. Firstly, can this result be proved without using
a computer? Secondly, what is the complete configuration obtained from A
and Au ..., An1 This paper answers the second question.

Grace (6) originally proved his theorem by considering six hyperspheres
through a point in four dimensions. Every four have a second point in common.
Thus each set of five hyperspheres produces five points. These five points lie
on a hypersphere. So, from six hyperspheres, six sets of five can be formed
and from each set of five a new hypersphere is obtained. It was shown that
the six new hyperspheres have a point in common.

This result was transformed to one on lines and linear complexes in three
dimensions, and this result in turn was specialised by using special linear com-
plexes and by involving {3i) to give the required result.

Brown (3) considered an extension of Grace's theorem in four dimensions
by commencing with seven hyperplanes through a point. This transforms
into a theorem in three dimensions about seven linear complexes with a line
in common, but says nothing about seven lines with a transversal. Never-
theless, we shall show that the analogy does hold. The review by Coxeter (4)
of Brown's paper was extremely helpful in suggesting a revised notation similar
to that below, as well as in identifying the group of the configuration as a
familiar one.

2. Notation and preliminaries

The geometry throughout takes place in a projective space of three dimen-
sions over an arbitrary field K with the single condition that K is large enough
for the configuration to exist: it was shown in (7) and (8) that the double-six
exists for all K except GF{q) with q = 2, 3 or 5 and that, for Grace's figure to
exist, q ^ 9.

Indices written on the same level will be interchangeable; e.g. r'Jkl = rj,gr

where p q r is any permutation of j k I.
M(IJ2...Q indicates that the lines lt, l2, ..., ln lie in a regulus.
To establish the configuration, two theorems will be required—(Q) and

Kubota's theorem (henceforth referred to as (•#")). Grace's theorem was proved
by Wren (14) in the following way: beginning with the lines cu ..., c6 with
transversal a, the four ct excluding c} and ck have a further transversal aJk

and the five lines a y with j = 1, ..., 6, j # i, have a transversal dx by {31). It
was then shown that the six lines cu c2, d3, d4, d5, d6 have a transversal /?12.
By constructing double-sixes from the lines dt and ptJ similar to those with the
lines Cj and au, it was shown that the six lines dt have a transversal p. The
existence of the lines jSy was shown differently by Kubota (10) as follows. In
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the above situation, the four reguli (<x12a13a14), (a12a23a24), (ai3a23a34)>
(a14, a24, a34) have a common line /?56: this theorem is (jf). By mapping the
lines on to the Klein quadric in five dimensions and projecting on to a plane,
it is equivalent to the result that the four circumcircles of the four triangles
obtained by omitting in turn each of four lines in the plane have a common
point (8).

The configuration to be constructed consists of two types of lines, which
will be called Greek (g-lines) and Latin (l-lines) and denoted accordingly.
The first table below gives in stages the list of results either assumed or to be
proved in § 3. The second table gives the intersections between the g-lines and
the l-lines as they are obtained. Here, the right-hand column lists the number
of l-lines that the given g-line meets. The third table lists the numbers of
l-lines and g-lines. In all, the g-lines and l-lines form a tactical configuration
(576, 7; 56, 72), in which each of the 576 g-lines meets seven l-lines and each
of the 56 l-lines meets 72 g-lines.

S1

S2

S3

S7

S8

•Sio:

•Si 1:

S12:

5 1 3 :

5 1 4 :

Stages of the Configuration

Ax, A2, A3, AA, A5, A6, A7 have the transversal A

Au A2, A3, A4 also have the transversal A567

A123, A124, A125, A126, A127 have the transversal A12

Al2, A13, A14, A15, A6, A7 have the transversal T^7

A12, A13, A14, A15, A16, Atl have the transversal I \

Au A56, A51, A61 have the transversals A567 and As67

AjJk, AfJk (V i, j , k # 1,2) have the transversal B12

Al2, A13, Al4, B56, BS7> B61 have the transversal T ^

Au B12, B13, B1A, B15, B16, B1 7 have the transversal A

^23> B14, Bls, B16, BX1 have the transversal A23

^Ijk (y U j , fe # 1) has the transversal Bt

Bj meets r t

Bu B2, B3, BA, B56, B51, B61 have the transversal r 5 6 7

Bu B2, B3, B4, B5, B6, B-, have the transversal T
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Intersections of the Configuration

Si'-

S2,S3:

5 4 :

S5:

S6:

5 7 :

5 7 :

S8:

S9:

^ io :

5 U :

Stl:

S12:

S13:

A

Ay*

rj*

A} 4 (

AJ«
^'jkl

Ai

A)k

AJ*
r,

r

meets

meets

meets

meets

meets

meets

meets

meets

meets

meets

meets

meets

meets

meets

meets

Ai

Ah Aij

Aj, An

Aij

Ai, Ajk

Bjk

Bim

Aim, Bjk

Ai, Bij

Ajk, Bu

Bi

Bj

Bi

Bh Btj

Bs

7

7

6

6

4

1

3

6

7

5

1

2

1

7

7

Lines of the Configuration

Latin

7

21

21

56

Greek

r,

A,

1

35

105

7

140

140

7

105

35

1
576
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To set the picture, there follow some elementary results on line geometry.

(1) Four skew lines lie in a regulus if and only if they are linearly dependent.
(2) Four skew lines have only one transversal if and only if the four skew

lines are linearly independent and the five lines are linearly dependent.
(3) Five skew lines, four of which have just two transversals, have two

transversals if and only if they are linearly dependent.
(4) Six skew lines lie in a linear complex if and only if they are linearly

dependent.
(5) Five skew lines have exactly one transversal if and only if the six lines

are linearly dependent but the five are not.
(6) Five skew lines have exactly one transversal and are part of a double-

six if and only if the six are linearly dependent but no five of the six are.
(7) A necessary condition that six skew lines with a transversal lead to

Grace's theorem is that every five of the seven lines are linearly independent
(this condition is not quite sufficient (8), p. 357).

(8) A necessary condition that seven skew lines with a transversal lead to
Brown's configuration is that every five of the eight lines are linearly independent.

3. Construction of the configuration

St. Let us begin with the seven lines A t with transversal A satisfying condition
(8) above.

52. Au A2, A3, A4 have the further transversal A567.

53. By (®), A123, A124, A125, A126, A127 have a transversal A12. Thus
there are 21 double-sixes like

A12
A

A
A
3

123

A
A
4

124

A
A
5

125

A
A
6

126

A
A
7

127

£4. Apply (jf) to the case cx = A2, c2 = A3, c3 = A4, c4 = As, c5 = A6,
c6 = An. Thena1 2 = A1 2 3 ,a1 3 = A1 2 4 ,a1 4 = A1 2 5 ,a2 3 = A1 3 4 ,a2 4 = A135>

a34 = A145. So the reguli in the left-hand column below have a common
line: their complementary reguli are written on the right.

A123 A 1 2 4 A 1 2 5 A6 A-j A12

Ai32 A1 3 4 A1 3 5 A6 A7 Al3

Ai42 A1 4 3 A1 4 5 A6 A-, A14.

^152 A153 A1 5 4 A6 A-j Als

Let this common line be r ^ ; it therefore meets A12, A13, Al4, A15, A6, An.

S5. Theorem. All fifteen lines T\j are distinct.
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Proof. If Fg7 = F4 S , it meets Al2, A4, As, A6, Alt which, by (3>), have only
the one transversal A1 2 3; so F£7 = A123. Then, by (jf), we have

^(A1 2 3A1 4 2A1 4 3Al 4 5)

which implies 3%(Al4rA5A6A-l'), contradicting the existence of a double-six such
as the above. So F ^ ^ F4 S .

If Fg7 = r ^ , it meets A5, A6, A7, A12, A13, AiA. But the three sets of four
{A5, A6, An, A12}, {A%, A6, An, Al3), {A5, A6, A1, Al4} have just the respective
pairs of transversals {A123) A1 2 4}, {A123, A1 3 4}, {A124, A1 3 4}. As all Aijk

are distinct, the six lines have no transversal. So Tl
61 # F 5 7 . So all fifteen

lines rA are distinct.
At this stage, in order that the figure does not degenerate, it must be assumed

that any set of six lines like A12, A13, AlA, Al5, A16, AX1 are skew: in fact,
the six lines are all skew or all concurrent, (8), p. 354.

It was previously shown that the four lines A5, A6, A7, A12 do not lie in a
regulus.

Theorem. No four of the lines A6, A-,, Al2> Al3, A14, Al5 lie in a regulus.

Proof.

So, in all

There

3l(A6, A-,, Al2, A13)

3%(An, A12, A13, A14]

®(Al2, Al3, Al4, Au

=> 0£

) => M

5) ^> M

=>®

cases, there is a contradictior

(^67:

(A 5,

(r67;

(rl6,

1.

> A 1 2 3 , A 1 2 4 ,A1 3 4)

A6, An, A12).

> Aj2 3 , A124,

p i p i p
• L 27> A 36> l

Aj, Ai2, Alz

are 7 x ) = 140 double-sixes of the type

A2 A3

ri ri
1 34 l 24

and double-sixes such as

and

A2 Al3

F F1

A3 A12

Tt F2S

A,

1 23

A14.

A 24

A14.

pi
134

^ 1 5

A 1 6 7

^ 1 5

rl5

pi
1 35

Al6 Ai7

A157 A1 5

Aie An

T\6 F 2 7

Ai6 An

A1 3 4)-

, ) •

6

Theorem. F* = F t .

Proof. As Al4., Al5, A16, An lie in one half of a double-six and meet
F 2 3 , they have just one further transversal. So F* = F j .

https://doi.org/10.1017/S0013091500009780 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009780
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There are then 42 double-sixes of the above type.
The lines F,, / = 1, ..., 7, are the Grace lines.

S6. Au A56, A51, A61 have the transversal A567. The four lines do not
lie in a regulus, since

contradicting a theorem in S5. So Au A56, A57, A67 have a second transversal
A567. (It is here assumed that the degeneracy Ff2 = T\2 has not occurred:
if F j 2 = T\2, then this line meets Au A2, A36, A31 and is T\2 or A367. If
rf2 = A367, then A367 meets A46, which is impossible as they are polar in a
double-six. Hence Ff2 = F j 2 and all F'12 are the same. In general, as will
be shown below, the five lines F'j2 lie in a regulus.)

S7. Now consider A567 meeting the five lines Au A2, A56, A51, A61.
Every four have a unique second transversal. So, by (®), we have the double-six

B\\7 Ai A2 A61 A51 A56

A567 A 5 6 7 A 5 6 7 r 1 2 r 1 2 r 1 2 .

Theorem. The ten lines B\?k are identical.

Proof. Apply (jf) to the case a = A567, cx = Au c2 = A3, c3 = A56,
C4 = ^57' C5 = A2, c6 = A61. Then

a i2 = A567, a13 = F 2 3 , a14 = F 2 3 ) a23 = F 1 2 , a24 = F 1 2 , a34 = A467.

Thus we have
A2 r7

 T6 A A R 2 3

A 567 A 23 V 23 A2 A61 ^"567
Kl p7 p6 j A R12

n567 l 12 l 12 A2 A61 -°567

F2 3 F j 2 A467 A2 A61 A41

•̂ 23 F 1 2 A 4 6 7 A 2 -^67 -^46-

The left-hand reguli have a common line. The other transversal to A2, A61,
A41, AA6 apart from A467 is A467: this is then the required line. So A467 meets
B\%n\ similarly A467 meets B\%n. So B\\7 meets A467, A467, T6

12, T\2.
Consider now the double-six

B* 2 A A A A A
467 -^l ^2 ^67 •'i47 •̂ 146

A A2 A1 r 4 r 6 r 7

^467 ^467 a467 1 12 * 12 x 12-

Therefore A467, A|6 7 ) Ff2, F i 2 have the three transversals B\%7, B417, A61,
where ^ 6 7 ^ B | | 7 and A67 # Bs|7 . As the above four lines do not belong to
a regulus, B\\7 = B\\7. Thus all ten lines B]?k are identical.
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112 J. W. P. HIRSCHFELD

Write B12 for B\fk. There are ( j x ( J = 210 double-sixes of the form

Bi2 A1 A2 A$5 A35 A34

A A 2 A l p3 -p4 p5

345 ^345 ^345 * 12 * 12 l 12

and all twenty lines A}Jk, AfJk (i, j , k # 1, 2) meet B12. Further Si{AlA2Bl^)
implies «cr?2rj2rf 2rf2rl2).

S8. Now consider A5 meeting Ai34, Af24, A?23, T~l6, Tl7. No four lie in
a regulus since @(A5

123A
5
124rl6r

l
5V)^@(AsA12A13A14) and

B56

r6 7

B67

r5 6

also.
Therefore, by {3i), we have the double-sixes

-^12 A\s -"14 ^se r

^134 ^124 ^123 L 57 -1 56 A 567

and

A 6 A 6 A6
Al34 Al24 ^l:

Theorem. r»*7 = r5 6 7.

Proof. As A12, A13, A14, B56 lie in one half of a double-six and meet r 5 6 ,
they have just one further transversal. So r^*, = r ^ , .

r | 6 7 meets A12, A13, A1A, B56, B51, B61 and there are 7x / J x3 = 420

double-sixes of the above type.

S9. Consider the six lines Au A23, B14, B1S, B16, B17. It will ultimately
be shown that they form one half of a double-six.

Theorem. No four of Au A23, 2?14, B1S, B16, B11 lie in a regulus.

Proof. Similarly to the one above, the following six lines form one-half
of a double-six and so no four lie in a regulus: 4̂23> ^26> ^27> ^i4> B15, A±.

<%(A23B14B1SB16) implies that r ? 5 6 meets Bl4.

Hence ^(T2
145T

2
156A

l
231) =><%(A23A21Bl4Bls).

tA23Bl4B15).

In each case, there is a contradiction. So no four of the given six lines lie in a
regulus.
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A\34 meets Au A23, A24, A34, B15, B16, 5 1 7 . Let the second transversal
of AuBl5, B16, 5 1 7 b e Ax.

Theorem. At meets B12, Bl3, Bl4.

Proof. Apply (jf) to the case a = A|3 4, ct = A2^, c2 = ^434, c3 = Bls,
c4 = B16, c5 = j?17, c6 = At. Then

ai2 = Ai, a13 = A345, a14 = A346, a23 = A245, a24 = A246, a34 = F 1 7 .

Thus we have

At A345 A346 Ax Bl7 X

Ai Ai4 5 Al46 Ai B17 Y

A345 A245 r 1 7 Ai B1 7 A45

A346 A^4 6 F 4
7 Ai Btl A46.

The reguli on the left all have a line Z in common, which meets all the lines
on the right. But the only transversal of At, 2?17, A45, A46 other than F j 7

is A456. So Z is A456. Hence ^(AiA^sA^gA^g). Hence Bi2, which meets
the last three lines meets At. Also ^(A^^sAl^Als^; Bi3 meets the last
three lines and therefore A1. Similarly, by putting cx = A23 above, it may be
shown that B14 meets At.

Therefore it has been shown that Au B12, B13, B14, Bl5, Bl6, BX1 have the
transversal Ax.

S10. Now consider At meeting Au Bi4, Bl5, Bl6, BX1. No four of the
five lines lie in a regulus. So, by (®), the double-six may be completed:

•̂ 23 "-\ #14 #15 #16 #17

Ai A\3 A\34 A\35 A\36 A\31.

There are 7 x I 1 = 105 double-sixes of this type and 105 lines A^.

Stl. Consider the construction of Grace's figure on Ax and Bl2, # 1 3 , B14,
#is> #i6> #17- This gives double-sixes like

Theorem. All six

# 1

Ai

lines

# 1 3

Ai3
B] (1

# 1 4

A|4

B

A

are

15

1
25

the

# 1 6

Al6
same.

# 1 7

A27.

Proof. Apply (jf) to the case a = Au cv = Au c2 = Bi2, c3 = Bl3,
c4 = # 1 4 , cs = B1S, c6 = B16. Then

= Ai7, a1 3 = Aj7 , a14 = A47, a2 3 = Ai 3 7 , a2 4 = A2 4 7 ) a3 4 = »347-
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51
Then we have

A>7

Ah

Ah
A47

Ah

Ah?

Ah7

Ah7

A47

Ah?

Ahv
Ah7

5 , 5

5 , 5

5 , 5

5 , 5

5 , 6

5 , 6

5 , 6

5 , 6

The line common to the four reguli on the left is the second transversal other
than A347 of B15, Bie, A31, AA1 and is therefore Y\S6. So r , 5 6 meets B\
and similarly B\, Bn

6. In the same way, B\ and Bl both meet r1 26. r , 3 6 , F146-
If Bl * Bl, then

which is a contradiction. So B\ = Bl and similarly all six lines B] are the
same.

Write B-i for Bj. Thus there are seven lines Bt and each Bt meets the twenty
lines Tjkl. Further, Ayfc meets B}. There are 42 double-sixes like

-̂ 2 5 1 3 2?,4 B1S B16 Bin

A A1 A1 A1 A1 A1

^ 1 ^23 A 24 A2S A26 A27-

Sl2. Now, constructing the double-six on F23 and B23, Al4., Al5, A16, Al7,
we obtain

B23 ^14 -4,5 ^16 -4,7 5 ,

r pi pi pi pi pi
1 L 234 l 235 A 236 X 237 L 23-

So -Sx meets F , giving the seventh line apart from the six lines Au (i = 2,..., 7)
to meet Tj.

•S"13. Continuing the construction of Grace's figure on Aj from Slu apply
(jf) to the case a = A1; Cj = Bl2, c2 = 51 3 , c3 = B14, c4 = B15, cs = B16,
c6 = 2?17. Then

ai2 = A23» <*i3 = A24, a,4 = A25, a23 = A34, a24 = A35, a34 = A45.

Therefore, we have

Ah Ah Ah 5,
h 5
45 5

45 5

The reguli on the left have a common line y\lt which meets B16, 2?17, B2, B3,
5 4 , 5 5 .

Ah
Ah
Ah

A

A

A

I
34
1
34

1
35

A

A

A

16

16

16

16

5 , 7

5 , 7

5 1 7

5 , 7

5 2

5 3

Bl
Bs
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No five of the lines Bu B2, B3, B4, B61 lie in a regulus, since

«(B1B2B
and since

0t{B^B2B3Bbl) => 5?(A?2A? 3Af 3

contradicting the existence of a double-six like that in Slt.

Therefore, using the lines yl
Jk, we have the double-sixes

D:

and
D':

Theorem. All six lines F 7 are the same.

Bi

yle

yls

B2

yle

B2

yh

B3

yle

B3

yh

B*

yle

B*

yh

B5

yle

B6

yle

Bei

Tl

Bsi

Proof. Tl # T^ => ^(y^r^r j) => ^(BiB2B3B4), contradicting the existence-
of D. So all six r(

7 are the same and will be written F7.

Theorem. All three lines y%n, y6
sl, y\6 are the same.

Proof. F 7 # yf7 as F 7 meets B5 and y6
51 does not. So

again a contradiction. So 7 ^ = yf7 = y5
61 and will be written F 5 6 7 . F 5 6 7

meets Bu B2, B3, B4, B56, B51, B61.

Sl4. Theorem. All seven lines Tl are the same.

Proof. F 7 # F 5 6 7 and F 6 # F 5 6 7 since both pairs occur in a double-six.
So F 7 ± F 6 => ̂ ( F 7 r 6 r 5 6 7 ) => 9t{BiB2B3BJ), a contradiction. So F7 = F 6

and similarly all seven Ff are the same.

Write F = F1'. Then F meets Bu B2, B3, B4, B5, B6> B7.

4. Description of the configuration

We now have the complete figure of 576 g-lines and 56 l-lines, where each
g-line meets seven l-lines and each l-line meets 72 g-lines. Further, the figure
can be constructed from any g-line and the seven l-lines which meet it.

A change in notation now leads to a great simplification as below:

Old A AiJk rJk Al
jk riJk F A, B-t

New A8 AfJk r'm A)k8 rfJk F 8 Bi 8 Ai8

A,-, Fj, A'jkl, Tjkl, Aij, Bij remain the same.
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Now there are

8 lines A,

8 lines F;

280 lines A)kl

280 lines T)kl

28 lines Au

28 lines Bu

where the indices vary from 1 to 8 with no repetitions.
The intersections of the lines are as follows:

A,- meets Bu

A)kl meets AJk, Bim

r'Jkl meets Aim, BJk

Fj meets Atj.

The 576 g-lines fall naturally into 36 double-eights, one like

Ax A2 A3 A4 A5 A6 A7 A8

F t F2 F3 F 4 F5 F6 F7 F8

and K J/2 = 35 like

A l A 2 A 3 A4- A 5 A 6 A 7 A 8
^ ^ * / m î  j « I \ M M A / ^ M A A / % ^- « rt / m T O C ^^A Q C £ ' * C £. ^
Z J 4 o41 "̂̂ 4-1 x 1 / J D / o 103 o 3D 3D /

^234 r 3 4 1 F4 1 2 F1 2 3 F6 7 8 F7 8 5 F8 5 6 F5 6 7

where the significance is quite unlike that of the double-six, but, for example,
if the construction is begun with the line A8 and the seven l-lines which meet it,
then Tu ..., F 7 are the seven Grace lines obtained and F8 is the completing
line of the configuration.

Each g-line occurs in exactly one double-eight. The eight g-lines forming
one-half of a double-eight have, as transversals, 28 of the l-lines: the eight
g-lines forming the other half have the other 28 l-lines as transversals.

Since each g-lines meets seven l-lines, there are 576x21/6 = 2016 double-
sixes. They are as follows:

m\3 ^23 # 1 4 #15 B16 B17 B18 o M = 1 6 8

i ii *i ii »i *i \ •£• /

« 1 Z> A A A A A 1 f\Q
"23 -°23 ^14 -^lS A\6 ^\1 - l̂S l u o

r rl -p1 F1 F1 r1

1 1 l 234 -1 235 -1 236 * 237 l 238
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,11234
A12

A?34

^ 2 3

^456

Ai3

A5! 24

^ 3 1

r2

1 456

Al4.

A?23

Al2

r3

1 456

B56

rj7 8

B56

At2 3

B51

T568

B6,

A?23

^ 5 8

1 567

* 4 5

A?23

8

(
V

.7

5)3/

•

(0

) = 1120
/

= 5604456

Each g-line lies in 21 double-sixes and each 1-line lies in 2016-6/56 = 216
double-sixes.

There is a key theorem for this configuration which deals with five, six
and seven skew lines having a transversal. Given a line b with n transversals
au ..., an, the locus of points P such that the n+l planes Pb, Pait ..., Pan touch
a quadric is a cubic surface, a twisted cubic or a single point P according as n
is five, six or seven, Baker (1), p. 195. Dually, the locus of planes n such that
the n+l points n.b, n.ait ..., n.an lie on a conic is a cubic envelope, a cubic
developable or a single plane according as n is five, six or seven. Passing from
five to six, six cubic surfaces all containing the twisted cubic are obtained:
passing from six to seven, seven twisted cubics are obtained all containing the
point.

For n = 1, there are other naturally associated algebraic varieties. A quartic
surface is determined by 34 conditions. For b and au ..., a7 to lie on a quartic
surface, there are 5 + 7-4 = 33 conditions. So there is a pencil of such surfaces
through the eight lines. Two of these are special: firstly, one may require that
the point P obtained above lies on the surface; secondly, one may require
that b is a double line of the surface. Either condition gives a unique quartic
surface. The former surface also contains the seven twisted cubics, each of
which has six of the af as chords. Both surfaces are described in (9).

Beginning with Tx meeting Al2, Al3, /414, AiS, A16, A17, six double-sixes
are obtained with the completing lines B28, B38, B48, B58, B6S, B18. These
twelve 1-lines are chords of a twisted cubic f?. Thus there are 56 cubics t{
with chords Aik, BJk {k # i, j). From r \ and the seven lines A12< •••> -4is>
the seven cubics t\(i # 1) are obtained, which are concurrent at the point Pt.
Thus there are eight points P{ and eight points Qh where Qu for example, is
the meet of t\, ..., t\.

Beginning with A234 meeting A23, A24, A34., B1S, Bi6, fi17, six double-
sixes with completing lines A28, A38, AAS, B56, BS1, B61 are obtained. These

AA
twelve lines are chords of a twisted cubic t2i^8- Thus there are I I = 70 cubics

tim with chords AtJ, Bmn (m, n # i,j, k, I). This gives 126 cubics in all. From
sixes of the seven 1-lines meeting A234, the seven cubics

*2345> *2346> *2347> *2348> *2> Hi U

are obtained and these meet at Qv. Similarly, from the seven Mines meeting
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r i 3 4 , the seven cubics t1567, t1568, f1578, tl618, t\, t\, t\, are obtained and they
meet at Pt.

Theorem. All 126 cubics t{, tijkl have a point P in common.

Proof. From above, t{ contains Pt, Qji tijkl contains Ph Qm. The two
cubics t1S61 and t1568 have the six chords A1S, A16, A56, B23, B24, B3A, in
common and so at most one point in common. Thus

'1567-'1568 =Pl=Ps=P6 = Q2 = Q3 = Q*-

Hence all P( and Q} are the same point, which will be called P. So all 126 cubics
have the point P in common.

Dually there are 126 cubic developables, all of which have a plane n in
common, n meets each g-line and its seven transversals in the eight points
of a conic. The eight planes joining P to a g-line and its seven transversals
touch a quadric cone with vertex P.

If a cubic surface contains five chords of a twisted cubic, then the surface
contains the curve. P lies on each of the 2016 cubic surfaces (containing the
double-sixes), each of which contains two of the 126 twisted cubics. For
example, m\3 contains the l-lines A23, B14, B15, B16, Bn, Bi8 and therefore
just the two cubics t\, t\. So each cubic curve lies on 2016x2/126 = 32
surfaces. For example, t\ lies on six surfaces m\i, six surfaces n\t and twenty
surfaces pH)^.

If a twisted cubic has thirteen points in common with a quartic surface,
the curve lies on the surface. So, for any g-line, there exists a unique quartic
surface containing it, the seven l-lines meeting it and the seven twisted cubics
with sixes of the seven lines as chords. Thus the number of such surfaces
through one of the 126 cubic curves is 576x7/126 = 32.

One final figure is the number of twisted cubics which have a given 1-line
as chord, viz. 126 x 12/56 = 27.

Therefore, to summarise the numerical properties of the figure, there are
the following tactical configurations:

g-lines, l-lines (576, 7; 56, 72)
cubic curves, l-lines (126, 12; 56, 27)
cubic surfaces, g-lines (2016, 6; 576, 21)
cubic surfaces, l-lines (2016, 6; 56, 216)
cubic surfaces, cubic curves (2016, 2; 126, 32)
quartic surfaces, g-lines (576, 1; 576, 1)
quartic surfaces, l-lines (576, 7; 56, 72)
quartic surfaces, cubic curves (576, 7; 126, 32)
quartic surfaces, cubic surfaces (576, 21; 2016, 6).

In the case of the last tactical configuration, for each quartic surface there
are 21 cubic surfaces, which meet it in a degenerate curve of order 12 consisting
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of a g-line, five 1-lines and two twisted cubics; for each cubic surface, there are
6 quartic surfaces meeting it in such a curve.

If, in the construction of the configuration, A-, is taken to be a chord of the
unique twisted cubic t with Ax, ..., A6 as chords, then all 126 twisted cubics
t{, ttJkl are the same, viz. t, and all 56 l-lines A u, Bu are chords of /. Also,
there is no special point P.

5. Groups of the configuration

From five skew lines with a transversal, the 27 lines of a cubic surface
are obtained: they form 36 double-sixes. The substitutions which preserve
the configuration are as follows: any two lines of one half of a double-six
may be interchanged; the two halves of a double-six may be interchanged;
any double-six may be transformed into any other. Thus the group, Gs,
of substitutions of the twenty-seven lines has order 6!x2x36 = 51,840 and
is well-known.

From six skew lines with a transversal, the 44 lines of Grace's extension
are derived. They form 32 double-sixes with halves as follows:

6 like dx c2 c3 c 4 c5 c6

6 like c t d2 d3 rf4 d5 d6

20 like c1 c2 c3 d4 d5 d6.

The generators of the group, G6, of the configuration are

(CiCjXdtdj), (Cid^Cjdj), i , j = l , . . . , 6 ;

i.e. these generate all permutations of the lines of any half of a double-six and
all interchanges of any two halves. So G6 has order 32 x 6! = 23,040.

Let M and N be the following subgroups of G6: M = <{(cjcJ)(«ii£?/)}>
and N = ({(Cfd^Cj-dj)}}. M is isomorphic to S6. N is abelian and has order
32; so N is an elementary abelian group of order 32 and isomorphic to

where C2 is cyclic of order 2. Further N is a normal subgroup of G6. Therefore
G6 = MN and is a split extension (or semi-direct product) of N by M.

The order of the group, G7, of the configuration that has been derived from
seven skew lines with a transversal is best seen from the double-eights. Any
two lines in the same row of one may be interchanged; the two rows of a
double-eight may be interchanged; and any double-eight may be changed
into any other. So the order of G7 is

8!x2x36 = 2,903,040.

The groups Gs, G6, Gn are related to the semi-simple Lie algebras E6, D6, En,
Bourbaki (2), pp. 256-266, and to the reflexion groups whose fundamental
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regions are the spherical simplexes E6, B6, E7, Coxeter (5), ch. 11. The
corresponding Dynkin graphs are

• • •
G5 and G6 are subgroups of G-, of indices 56 and 126 respectively.

The group G-, has an element y of order two, where

i.e. y interchanges Al} and BtJ, Ak and Fk, Afmn and Tfmn for all values of the
indices.

There exists a polarity which interchanges the lines at and bt (i = 1, ..., 6)
of a double-six. Further, there exists a polarity which interchanges the lines
a and /?, ct and rf,, aJfc and fiJk (i, j , k = 1, ..., 6) of Grace's extension of the
double-six. So it seems natural to postulate the following.

Conjecture. There exists a polarity which induces y and interchanges the
point P and the plane it.

The group G7 has a subgroup of index two which is isomorphic to the
group of the 28 bitangents of a non-singular plane quartic curve, (4). In
fact, it will be shown that the configuration obtained has—modulo the involu-
tion y—corresponding geometrical properties to those of the 28 bitangents.
Thus the group of the bitangents is isomorphic to G7/<y>.

6. The correspondence between the configuration and the bitangents of a non-
singular plane quartic curve

Firstly, it is necessary to give a brief review of the properties of the 28
bitangents of a non-singular plane quartic curve Q; cf. Salmon (12), p. 223.

Let the bitangents be denoted by Tu (/, j = 1, ..., 8, i<j). Then, given
any pair of bitangents, five other pairs are uniquely determined so that any
two of the six pairs have their eight points of contact with Q on a conic. Such
a set of 12 lines is called a Steiner set. There are 63 Steiner sets—28 like
{7\i> T2i | i = 3, ..., 8} and 35 like

i i 1 2 > - " 3 4 J J 1 3 > - / 2 4 > • / 1 4 > J 2 3 > 1 5 6 ' -* 7 8 s - / 5 7 > J 6 8 > -« 5 8 > J 6 7 / '

There exist sets of seven bitangents, called Aronhold sets, such that no three
of the seven have their six points of contact on a conic. There are 288 Aronhold
sets—8 like {Tu 11 = 2, ..., 8} and 280 like {T12, T13, Tl4, T1S, T61, T68, T18}

There are 36 ways in which the 28 bitangents can be arranged (each appear-
ing twice) as the elements of an 8x8 symmetric matrix excluding the main
diagonal such that each row and column is an Aronhold set. This is a Hesse
arrangement. It is, in fact, the basis for the notation Ti} for the bitangents.
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Thus the 288 Aronhold sets fall naturally by eights into the 36 Hesse arrange-
ments.

Any five bitangents of an Aronhold set determine a sixth such that their
twelve points of contact lie on a cubic curve: the six lines also touch a conic.
There are 1008 of these hexads—168 like {T2J, Tl4, Ti5, Tl6, T17, Ti8}, 560 like
{Ti2, J 1 3 , T14, TS6, T51, T58} and 280 like {T12, Tl3, T23, T45, T46, T56}.

Finally, given seven general lines in the plane, there exists a unique quartic
curve having these lines as bitangents. The remaining 21 bitangents can be
constructed linearly from the initial seven.

The correspondence between the bitangents of Q and our configuration is
then as follows.

Number Plane object Space object

36 Hesse arrangement of Double-eight of g-lines
the 28 bitangents

63 Steiner set of 12 lines Pair of twisted cubics each with 12 chords

288 Aronhold set of 7 lines Pair of g-lines each with 7 transversal
Mines

1008 Cubic curve and set of Pair of cubic surfaces each containing
6 lines 6 Mines

The pairs of space objects which are the same modulo y are as follows:

[ tJi with chords Aik, BJk (k ^ i, j)

t'j with chords Ajk, Bik (k # i, j)

(tiJkl with chords Aip Bmn (m, n # i, j , k, I)
cubics

1 tmnPq with chords Amn, Bi} (i, j / m, n, p, q)

{A,- with transversals Bu (j # i)

F, with transversals Atj (_/ # i)

(A'ikl with transversals A!k, Bim (m # i,j, k, I)

T)kl with transversals Aim, BJk (m ^ i, j , k, I)

{ m'Jk containing 1-lines Ajk, Bit (I / i, j , k)
_

rijk containing Mines Au, BJk (I ^ i, j , /<)

fPmmnp, containing Mines Atj,Bmn
cubic surfaces |

i P?wpq containing Mines Amn, Bi}

| J i m n containing Mines Aip Bln
cubic surfaces

•™ containing Mines Alm, Bip

E.M.S.—H
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It seems possible that the correspondence could be made more precise.
If the 56 1-lines are projected from T on to n, the 56 lines Plnn are obtained,
which touch 576 conies in sets of seven. Dually, the 56 points of intersection
Inn lie in sevens on 576 conies. It seems doubtful that these 56 points could
be the points of contact of 28 bitangents of a quartic curve, since they do not
lie suitably in eights on conies.

7. Conclusion

The complete configuration of 632 lines derived from seven skew lines with
a transversal has been obtained. Although we know that the seven Grace lines
r , , ..., F7 do not in general have a transversal, § 1, it has not been shown
without using a computed example. If one supposed that the seven Grace
lines did have a transversal, then the eight g-lines of any row of a double-eight
would have a transversal. It is therefore possible that, to understand the
above configuration completely, it is necessary to investigate the configuration
obtainable from eight skew lines with a transversal. For this case, however,
there does not seem to be an associated irreducible variety, as was the case for
five, six and seven lines.

From Longuet-Higgins's examples (11), it seems highly probable that the
seven Grace lines always belong to a linear complex. This has two con-
sequences. Firstly, it means that the eight g-lines of any row of a double-eight
belong to a linear complex, thus giving 72 linear complexes in all. Secondly,
by a theorem of Todd (13), p. 63, it means that any seven g-lines belonging to
one half of a double-eight lie on a quartic surface, thus associating another
set of 576 quartic surfaces with our figure.
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