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Abstract. In this note we prove that a locally graded group G in which all proper
subgroups are (nilpotent of class not exceeding n)-by-Černikov, is itself (nilpotent of
class not exceeding n)-by-Černikov.

As a preparatory result that is used for the proof of the former statement in the
case of a periodic group, we also prove that a group G, containing a nilpotent of class
n subgroup of finite index, also contains a characteristic subgroup of finite index that
is nilpotent of class not exceeding n.

2000 Mathematics Subject Classification. Primary 20F19. Secondary 20F22.

1. Introduction. In various papers, by several authors (see, in particular, [1], [8]
and [9]), groups whose proper subgroups satisfy the condition of being nilpotent-by-
Černikov have been studied. It had been proved in [8] that the locally graded groups
with this property are themselves nilpotent-by-Černikov, if they are not locally finite
p-groups.

This case was studied by Asar in [1] where he proved, among other things, that the
locally finite p-groups do not constitute an exception to the former statement.

Also, Otal and Peña proved, in Theorem 2 of [9], that a locally graded, periodic
group whose proper subgroups are all abelian-by-Černikov, is itself abelian-by-
Černikov. This property was proved for non-periodic groups by Napolitani and
Pegoraro in [8].

It was now natural to ask if this were true also of locally graded groups whose
proper subgroups are all (nilpotent of class not exceeding n)-by-Černikov, for any
natural number n. Here we give a positive answer to this question.

Černikov groups are a particular case of groups with finite (Prüfer) rank (see
[12, 1.4] for the basic definitions). In [4], the authors investigate a situation which is
certainly related to the one that is examined here. They deal with groups G in which
every proper subgroup H contains a normal nilpotent (or nilpotent of bounded class)
subgroup K such that H/K is a group of finite rank. Some of the methods that we use
here can be extended to that case, in such a way that it is possible to improve some of
those results.

For example, Theorem 5 of [4] can be extended, by replacing “abelian” with
“nilpotent of class not exceeding n”, to get:

Let G be a group whose proper subgroups are all (nilpotent of class not exceeding
n)-by-(finite rank). If G is locally nilpotent or locally finite with no infinite simple
images, then G is also (nilpotent of class not exceeding n)-by-(finite rank).

In the present paper we prefer, however, to restrict our attention to the nilpotent-
by-Černikov case, since the proofs for the other case are complicated and the results
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are less general than those obtained here. In fact, the statement of our main Theorem
(see Theorem 2) is as follows:

MAIN THEOREM. Let G be a locally graded group and suppose that for every proper
subgroup H of G, H is (nilpotent of class not exceeding n)-by-Černikov, where n is a
fixed natural number. Then also G is (nilpotent of class not exceeding n)-by-Černikov.

Among other results that are used for the proof of the main Theorem is the
following Lemma that generalizes Passman’s Lemma [10, Chapter 12, Lemma 1.2]. We
prove it in Section 2.

LEMMA 3. Let G be a group and H be a subgroup of G, such that H is nilpotent
of class not exceeding n, for some natural number n and let [G : H] < ∞. Then G
contains a characteristic subgroup Z, such that Z is nilpotent of class not exceeding n
and [G : Z] < ∞.

In Section 2 we prove some preparatory results, and give the proof of the main
Theorem, in the case of G periodic.

In Section 3 we complete the proof of the main Theorem, by examining the case
of G non-periodic

We will mainly follow the notation of [11].
The notation N and Nn will indicate, respectively, the class of nilpotent groups and

of groups with nilpotent class not exceeding n. The class of nilpotent-by-finite groups
will be indicated by NF . The notation C will indicate the class of Černikov groups;
NnF , NC and NnC will have the obvious meaning. Moreover, for any group G, π (G)
will indicate the set of all primes that divide the orders of elements of G.

2. Some preparatory results and the case of periodic G. The first Lemma of this
section is a generalization of a similar result that can be found in the proof of Lemma
4.7 of [5]. Here we prove it, with the same method, in a slightly different context.

LEMMA 1. Let A be a periodic abelian group and let T ≤ Aut A be a radicable group.
Then T acts nilpotently on A (i.e. there is a natural number k such that [A,k T ] = 1) if
and only if T = 1.

Proof. A radicable group is a group in which every element is an n-th power, for
each natural number n ≥ 1. Let k be a natural number, minimal such that [A,k T ] = 1.
By way of contradiction we may suppose that k > 1. Let now x ∈ [A,(k−2) T ], (x ∈ A if
k = 2). Hence x ∈ A, which is periodic and so there exists a natural s, such that xs = 1.
Let also t ∈ T . T is radicable and so there is u ∈ T such that t = us. We get: [x, t] =
[x, us] = [x, u]s = [xs, u] = 1, since [x, u] ∈ [A,(k−1) T ] and so, by our hypotheses, is
centralized by both x and u. Now, x and t were arbitrarily chosen and this gives that
[A,(k−1) T ] = 1, a contradiction to our choice of k. Thus k = 1 and T = 1. �

The next Proposition is a direct consequence of the previous Lemma and also
generalizes a result contained in the proof of Lemma 4.7 of [5].

PROPOSITION 1. Let H be a periodic nilpotent group, A a normal subgroup of H,
A ∈ Nn (n ≥ 1) and such that H/A is divisible abelian. Then also H ∈ Nn.

Proof. If n = 1, then A ≤ CH(A) and T = H/CH(A) is a divisible subgroup of
Aut(A). By Lemma 1 we get that A ≤ Z1(H) and so (by, e.g., [7, 5.3.5]) H is abelian.
We now use induction on n. Consider T = H/CH(γn(A)). Again, since A ≤ CH(γn(A)),
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T is a divisible subgroup of Aut(γn(A)). Hence, by Lemma 1, we get that γn(A) ≤ Z1(H).
By the induction hypothesis, H/Z1(H) is nilpotent of class not exceeding n − 1. Then
H ∈ Nn and the proof is complete. �

LEMMA 2. Let G be a group, H a subgroup of G, H ∈ Nn. Let Z = Zn(G) be the n-th
term of the ascending central series of G. Then HZ ∈ Nn.

Proof. For n = 0, H = Z = 1 and the statement is true. Suppose n ≥ 1. By
induction on i, with 1 ≤ i ≤ n, it is easy to prove that γi(HZ) ≤ γi(H)Zn−i+1(G). From
this, with i = n, we get that γn(HZ) ≤ γn(H)Z1(G). Thus γn+1(HZ) ≤ γn+1(H) = 1 and
the thesis follows. �

As it was said in Section 1, the next Lemma is a generalization of Passman’s
Lemma, [10, Chapter 12, Lemma 1.2].

LEMMA 3. Let G be a group and H be a subgroup of G, such that H ∈ Nn and
[G : H] < ∞. Then G contains a characteristic subgroup Z, such that Z ∈ Nn and
[G : Z] < ∞.

Proof. We use induction on n. For n = 0, G is finite and the statement is obviously
true. If n = 1 the Lemma is true by ([10, Chapter 12, Lemma 1.2]).

Let now n > 1 and suppose that the Lemma is true for n − 1. Let K be the
characteristic closure of H in G. Hence K =< Hα : α ∈ Aut G >. Since H has finite
index in K , there is a finite number of automorphisms, α1, α2, . . . αr of G, such that
K =< Hαi : i = 1, 2 . . . r >. Set now L = HZ1(K), where Z1(K) is the centre of K . It is
easily seen that Z1(K) = ⋂r

i=1 Z1(Lαi ) and that K =< Lαi : i = 1, 2 . . . r >. Moreover
L ∈ Nn and has finite index in G. Set now M = ⋂r

i=1 Lαi . Then M has finite index in G
and γn(M) ≤ γn(Lαi ) ≤ Z1(Lαi ), ∀ i = 1, 2 . . . r. Thus γn(M) ≤ Z1(K) ≤ M and, since
K is characteristic in G, Z1(K) is also a characteristic subgroup of G. Now M/Z1(K) ∈
Nn−1 and has finite index in G/Z1(K). By the induction hypothesis, G/Z1(K) contains a
characteristic subgroup, say T/Z1(K), such that T/Z1(K) ∈ Nn−1 and [G : T ] is finite. It
follows that Z = T ∩ K is characteristic in G, [G : Z] < ∞ and Z ∈ Nn. This completes
the induction and the Lemma is proved. �

It is now possible to prove our main Theorem, in the case of G periodic.

THEOREM 1. Let G be a locally graded, periodic group and suppose that for every
proper subgroup H of G, H ∈ NnC, where n is a fixed natural number. Then also G ∈ NnC.

Proof. The Theorem is true if G contains a proper subgroup H of finite index, that
we may choose normal in G: namely, if K ∈ Nn is a normal subgroup of H, then K has
only a finite number of distinct conjugates in G. If H/K is Černikov, then also H/KG,
and hence G/KG, are Černikov (KG is the core of K in G) . Thus G ∈ NnC, as desired.

We may therefore suppose that G/γ2(G) is divisible abelian. By [8, Theorem A]
and [1, Theorem 1.3], there is a nilpotent subgroup N of G such that G/N is Černikov.
If G = N, then G is abelian by [11, 5.2.5], since G is nilpotent and periodic. Hence
we may suppose that N is a proper subgroup of G. Thus N has a normal subgroup
K , K ∈ Nn, such that N/K is a Černikov group. If n = 0, then G ∈ C = N0C and the
Theorem holds. Let now n ≥ 1 and let D/K be the maximal divisible abelian subgroup
of N/K . Then D has finite index in N and, by Proposition 1, D ∈ Nn. It follows, by
Lemma 3, that N contains a characteristic subgroup Z, such that Z ∈ Nn and N/Z is
finite. Then Z is normal in G and G/Z is Černikov. Hence G ∈ NnC and Theorem 1 is
proved. �
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3. The case of non-periodic G. We will complete here the proof of the main
Theorem, by examining the case of non-periodic G. The statement of the next Theorem
will be general; in the proof we will refer to Theorem 1 for the periodic case.

THEOREM 2. Let G be a locally graded group and suppose that for every proper
subgroup H of G, H ∈ NnC, where n is a fixed natural number. Then also G ∈ NnC.

Proof. By Theorem 1, we may assume that G is not periodic. Moreover, the proof of
Theorem 1 shows that we may also assume that G does not contain proper subgroups
of finite index. As above, by [8, Theorem A], there is a nilpotent subgroup N of G such
that G/N is Černikov.

The proof that we give, will follow the steps of the proof of Theorem C of [8], with
a few necessary adjustments. The notation will also be similar.

Since G/N is Černikov and therefore periodic, we have that N is non-periodic and
nilpotent. Thus, by [11, 5.2.6], N/γ2(N) is non-periodic. Let B/γ2(N) be the torsion
subgroup of N/γ2(N). Hence N/B is non-trivial, abelian and torsion free.

We may also suppose that N is a proper subgroup of G, since, if G = N, then G/B is
non-trivial, divisible abelian and torsion free and so, even in this case, G would contain
a proper normal (nilpotent) subgroup K with G/K ∈ C and we may now replace N by
K , if necessary.

We will start by supposing that N ∈ Nn+1.
Also, since N is a proper subgroup of G, there is a subgroup A, normal in N, such

that A ∈ Nn and N/A ∈ C.
Now G/N is a periodic abelian (in fact divisible abelian and Černikov) group,

acting on the non-trivial, abelian and torsion free group N/B. Hence we can apply
Lemma 2.3 of [2] and get that for each pair of primes p1 and p2, there exists a G-
invariant subgroup M of N, such that B < M and N/M is an abelian {p1, p2}-group
contaning elements of orders p1 and p2. Moreover, if σ = π (G/N) and π = π (N/A),
then σ ∪ π is a finite set (since both, G/N and N/A are Černikov groups) and we will
chose p1 and p2 such that p1 	= p2 and {p1, p2} ∩(σ ∪ π ) = ∅.

Notice also that N is the π -isolator of A in N and so, by Theorem 4.6 of [6], we
get, (since γn+1(A) = 1), that γn+1(N) is a π -group.

Now let Hi/M be the pi-subgroup of N/M, for i = 1, 2. N/M is an abelian {p1, p2}-
group and so N/M = H1/M × H2/M. Moreover, by Theorem 3 of [3], since G/M is
locally finite (it is metabelian and periodic) and π (N/M) ∩ π (G/N) = ∅, there exists a
subgroup C of G such that C/M is a complement of N/M in G/M.

Now we observe that, for i = 1, 2, CHi is a proper subgroup of G and that
CHi/Hi � C/C ∩ Hi = C/M � G/N ∈ C. Thus it is easy to see that, for i = 1, 2 there
exists Ti ≤ Hi such that Ti is normal in CHi, Ti ∈ Nn and CHi/Ti ∈ C. Also, by our
hypothesis on N and the choice of M, γ2(N) ≤ M ∩ Zn(N)). Thus, by Lemma 2, we
may take Ti ≥ γ2(N). It follows that Ti � NC = G, for i = 1, 2.

It is now easy to prove that the groups N/(T1T2) (and so, also G/(T1T2)) and
M/(T1 ∩ T2) are Černikov groups.

Consider the periodic abelian group (T1T2)/(T1 ∩ T2). Let P/(T1 ∩ T2) be the
{p1, p2}-component and Q/(T1 ∩ T2) be the {p1, p2}′-component, in (T1T2)/(T1 ∩ T2).
Then Q ≤ M and so Q/(T1 ∩ T2) ∈ C. Consequently, (T1T2)/P ∈ C and, since P � G,
we deduce that G/P ∈ C.

To conclude that G ∈ NnC we now prove that P ∈ Nn. Since P ≤ N, and γn+1(N)
is a π -group, we have that γn+1(P) is a π -group. But also P is the {p1, p2}-isolator of
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NILPOTENT-BY-ČERNIKOV GROUPS 215

T1 ∩ T2 in T1T2, and T1 ∩ T2 is nilpotent of class not exceeding n. Hence, again as we
did for N and A, by Theorem 4.6 of [6], we get that γn+1(P) is a {p1, p2}-group.

By the choice of {p1, p2}, we must have that γn+1(P) = 1. Thus P ∈ Nn as claimed.
To conclude the proof of Theorem 2, suppose now that N ∈ Nn+r, with r ≥ 1. We

use induction on r, since the Theorem is true for r = 1. Set l = n + r.
By the induction hypothesis, the soluble and therefore locally graded quotient

group G/γl(N) ∈ NnC. Then it contains a normal subgroup K/γl(N) ∈ Nn, such that
G/K ∈ C. Hence γn+1(N ∩ K) ≤ γl(N) ∩ K ≤ Z1(N) ∩ K ≤ Z1(N ∩ K). Thus N ∩ K ∈
Nn+1 and G/(N ∩ K) ∈ C. It follows, by the first part of this proof, that G ∈ NnC. Hence
the induction is complete and the Theorem is proved. �
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