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The translation initiation factor eIF4E mediates a rate-limiting process that drives selective translation of many
oncongenic proteins such as cyclin D1, survivin and VEGF, thereby contributing to tumour growth, metastasis
and therapy resistance. As an essential regulatory hub in cancer signalling network, many oncogenic signalling
pathways appear to converge on eIF4E. Therefore, targeting eIF4E-mediated cap-dependent translation is
considered a promising anticancer strategy. This paper reviews the strategies that can be used to target eIF4E,
highlighting agents that target eIF4E activity at each distinct level.

Introduction
Translation control, a tightly regulated process, plays a
critical role in cell growth, proliferation and differenti-
ation. Among the four consecutive stages of translation
(initiation, elongation, termination and ribosome recyc-
ling), more attention was paid to initiation (Ref. 1). At
this stage, the 43S preinitiation ribosome complex is
recruited to the 5′ terminus of mRNA through transla-
tion initiation complex eIF4F (Ref. 2). eIF4F is a het-
erotrimer complex binding the 5′-terminal cap
structure 7-MeGpppN (N is any nucleotide). eIF4F
consists of eIF4E, the 5′ cap mRNA-binding protein;
eIF4A, an ATP-dependent helicase unwinding the sec-
ondary structure of mRNA; and eIF4G, a scaffolding
molecule serving a docking function in the assembly
of eIF4F complex (Ref. 3). eIF4E mediates the associ-
ation of eIF4F with cap structure and promotes recruit-
ment of ribosome to the 5′ end of mRNA, playing a
vital role in regulating global translation rates. The
role of eIF4E in translation regulation unrelated to ini-
tiation, such as export of some specific mRNAs (e.g.
cyclin D) from nucleus to cytoplasm (Refs 4, 5), has
also been emphasised.
Cellular mRNAs can be categorised into two groups

according to their structure property and inherent
‘translatability’: strong mRNAs (e.g. housekeeping
genes), which have relatively short, unstructured 5′

UTRs (less C+G content); and weak mRNAs,
which have lengthy, highly structured 5′ UTRs (G+
C rich) (Refs 6, 7). The significant difference
between them is that weak mRNAs are much more
dependent on eIF4E availability and poorly translated
under normal conditions when eIF4F complex forma-
tion is limited. These mRNAs predominantly encode

proteins including proto-oncogenes that regulate hall-
mark capabilities of cancer cells. When eIF4E is over-
expressed or hyperactive, translation of weak mRNAs
is selectively and disproportionately enhanced, while
strong mRNAs are only minimally affected by alter-
ation in eIF4F complex formation.
Several studies have demonstrated that elevated

eIF4E levels preferentially increase mRNA translation
involved in all aspects of malignancy, such as proto-
oncoproteins (e.g. c-myc, cyclin D1, ODC, survivin),
angiogenesis factors (e.g. FGF2 and VEGF) and
degradative enzymes (e.g. MMP9) (Ref. 8). The list
of mRNAs controlled by eIF4E is ever-increasing.
Moreover, increased eIF4E up-regulates the nucleocy-
toplasmic transport of mRNAs encoding potent
growth and survival proteins, such as cyclin D1
(Ref. 9). Therefore, eIF4E level affects transformation,
tumourigenesis, metastasis, and drug resistance in both
experimental cancer models and human cancer tissues.
Indeed, its overexpression is common in multiple
cancer types, including malignancies of prostate,
breast, head and neck, stomach, colon, lung, skin,
oesophagus, bladder, cervix and the hematopoietic
system (Refs 10, 11). Also, elevated eIF4E levels
may serve as a biomarker predicting disease progres-
sion, overall survival, or relapse after definitive
therapy (Refs 12, 13). On the contrary, knockdown
eIF4E by small interfering RNA (siRNA) can suppress
oncogenic transformation (Refs 14, 15, 16).
The activation of eIF4E, which functions as a regu-

latory hub of many major oncogenic pathways, is a
crucial event of the PI3K/AKT/mTOR pathway.
Consequently, it has attracted considerable attention
as a promising target for anticancer drug discovery in
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practice (Ref. 7). This review provides a comprehensive
overview of strategies applicable for developing eIF4E-
targeted agents.

eIF4E regulation and targeting strategies
eIF4E is regulated at multiple levels, including gene
expression, sequestration and phosphorylation, etc.
(Refs 17).
At the transcriptional level, Myc is one of the

best known transcription factors, which can activate
eIF4E gene through two Myc-binding sites (E-boxes)
in the eIF4E promoter (Ref. 7). At post-transcriptional
level, HuR, a transcriptional factor, is responsible for
stabilising eIF4E mRNA (Ref. 18). Post-translational-
ly, eIF4E can be ubiquitinated primarily at Lys-159
and go through proteasome-dependent degradation
(Ref. 19).
The interaction of eIF4E with eIF4 G is indispensi-

ble for cap-dependent translation initiation. A group
of factors generally known as eIF4E inhibitory proteins
modulate the eIF4E–eIF4G interaction (Ref. 20). The
most well-studied eIF4E inhibitory proteins are
4EBPs, which sequester free-state eIF4E from eIF4G
and block eIF4F complex formation. This sequestration
results in the repression of translation of certain
mRNAs that normally require high levels of available
eIF4E (Ref. 20). Upon nutrients, energy, growth
factors and stress stimulation, 4EBPs become phos-
phorylated at different sites as a consequence of the
activation of PI3 K/AKT/mTOR signalling pathways.
4E-BP1 is one of the direct substrates of mTOR
Complex 1 (mTORC1). Phosphorylated 4E-BP1
releases eIF4E, which is then free to associate with
eIF4G to stimulate translation initiation (Refs 21, 22).
Besides 4EBPs, the newly discovered eIF4E inhibitory
proteins (e.g. Maskin and Cup) associate with eIF4E
only on specific mRNAs through interactions with
RNA-binding proteins (Ref. 20).
In addition, eIF4E itself has been shown to be phos-

phorylated in cancer cells, which is a prerequisite for
the activity of eIF4E in cancer cells, whereas dispens-
able for normal development (Ref. 23). Thus, an
increased level of phosphorylated eIF4E was found in
a broad spectrum of cancer cell lines (Ref. 24).
Phosphorylation of eIF4E (Ser209) is mediated by
the MAP kinase-interacting protein kinases (Mnk1
and Mnk2), which are in turn activated by ERK and
p38 MAPK pathways (Refs 25, 26).
Till now, eIF4E-targeted strategies should include:

targeting eIF4E synthesis; targeting eIF4F complex
integrity (antagonising eIF4E-to-cap and eIF4E-eIF4
G interaction); sequestration of eIF4E and phosphory-
lations of eIF4E. A summary of the strategies are
shown in Figures 1 and 2. Therapeutic agents derived
from these strategies that have been developed are sum-
marised in Figure 3 and Table 1 and will be reviewed in
detail.

Targeting eIF4E synthesis: siRNA and
antisense oligonucleotide (ASO)
eIF4E overexpression leads to the development of lymph-
omas and other cancers in vitro and in vivo (Ref. 99),
directly targeting eIF4E mRNA by siRNA (Refs 14,
15, 100, 101) or specific oligonucleotide (ASO)
(Refs 27, 28, 102, 103) has been extensively studied.
eIF4E knockdown by siRNA resulted in cell cycle

arrest, suppression of colony formation, inhibition of
cell mobility and enhanced chemosensitivity in MDA-
MB-231 triple negative (TN) breast cancer cells
(Ref. 14). Although eIF4E knockdown inhibited
growth in various breast cancer cell lines, it did not
lead to activation of Akt (Ref. 15). In addition, eIF4E
knockdown can suppress cell growth in endometrial
adenocarcinoma and squamous carcinoma (Refs 100,
101). Tumour-specific RNAi via using survivin pro-
moter-driven RNA interference system was recently
demonstrated to reduce eIF4E gene expression effective-
ly and specifically, resulting in apoptosis, growth inhib-
ition and enhancement of chemosensitivity to cisplatin
in breast cancer cells both in vitro and in vivo
(Ref. 16). Moreover, eIF4E silencing enhanced radio-
sensitivity of tumour cells, while has no effect on
normal cells (Ref. 104).
Antisense RNA (asRNA), a single-stranded RNA,

can be introduced into cells to inhibit the translation
of a complementary mRNA by base pairing to it and
physically obstructing translation machinery
(Ref. 105). Down-regulation of eIF4E via asRNA
slowed down soft agar growth, increased tumour
latency, and accelerated the rates of tumour-doubling
times (Ref. 106). asRNA therapy for eIF4E can also
be used as adjuvant therapy for head and neck
cancers, particularly in cases in which elevated eIF4E
is found in the surgical margins (Ref. 107).
ASOs are unmodified or chemically modified single-

stranded DNA molecules. In general, they are relatively
short (12–25 nucleotides) and hybridise to complemen-
tary target mRNAs by Watson–Crick base pairing
(Ref. 108). ASOs have been used to selectively inhibit
thousands of genes in mammalian cells and multiple
genes in humans. There are over 20 antisense drugs cur-
rently in clinical trials, some of which are showing
encouraging results (Ref. 109). First generation ASOs
contained a phosphorothioate (a sulfur substitution of a
non-bridging O) backbone, whereas second generation
ASOs, contained the phosphorothioate backbone plus
2′-O-methoxyethyl modification of riboses at the 5′

and 3′ ends. These modifications enhance affinity for
targeted RNA, thus increasing stability and potency,
improving antitumour potential and decreasing toxicity
(Ref. 110). Similarly, eIF4E ASOs were designed spe-
cifically to recruit endogenous RNase H and decreased
eIF4E expression at the mRNA level (Refs 111, 112).
Graff and colleagues designed ASOs capable of tar-

geting both murine and human eIF4E and evaluated
their effects on eIF4E reduction in both human
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xenografts and normal mouse tissues (Ref. 27). These
ASOs decreased eIF4E proteins and had dramatic cyto-
toxic effects at nanomolar concentrations across a panel
of human cancer cell lines, including prostate cancer,
breast cancer, head and neck cancer, non-small cell
lung cancer and mesothelioma (Refs 27, 102, 103).
These ASOs also repressed expression of eIF4E-regu-
lated proteins, inducing apoptosis as well as preventing
angiogenesis (Refs 27, 102, 103). Most importantly,
intravenous ASO administration selectively and remark-
ably reduced eIF4E expression in human tumour xeno-
grafts, significantly suppressing tumour growth without
obvious changes of body and organ weight, or liver
transaminase levels (Ref. 27). A phase I dose escalation
design was used to determine the dose level of eIF4E
ASO LY2275796 that could be safely administered to
patients with advanced solid tumours. LY2275796 was
well tolerated at the 1000 mg dose level with only
mild toxicities (grades 1–2), which meant it has alluring
prospect of clinical application (Ref. 28).

Antagonising eIF4E/cap interaction

Ribavirin

Targeting the interaction of eIF4E and 7-MeG-Capped
mRNA becomes attractive because an effective com-
pound based on this target should inhibit eIF4E

binding to capped mRNA specifically and block trans-
lation initiation subsequently. One typical approach to
this is ribavirin (1-β-D-ribofuranosyl-1, 2, 4-triazole-
3-caboxamide), which shares similar structure to
7-MeGTP (Refs 29, 113). It was observed that ribavirin
bound to eIF4E with micromolar affinity and competed
with eIF4E:mRNA binding (Ref. 30). At the same
time, it impaired eIF4E-dependent Akt survival path-
ways and potently inhibited the biological effect of
eIF4E (Ref. 31). As a result, it suppressed eIF4E-
mediated oncogenic transformation as well as tumour
growth both in vitro and in vivo (Ref. 30).
The clinical efficacy of ribavirin in M4/M5 acute

myeloid leukaemia (AML) patients was promising
(Ref. 32) because it can cooperate with a wide variety
of established agents to reduce the colony formation
in primary AML specimens (Ref. 33). In a Phase II
trial, ribavirin treatment benefits poor prognosis AML
patients (Ref. 34). 10 mM ribavirin was not cytotoxic
to primary chronic lymphocytic leukaemia (CLL) lym-
phocytes in vitro, and significantly sensitised 76% of
the samples tested with fludarabine (Ref. 35).
Ribavirin also has effects on solid tumour and inhibits
growth of several breast cancer cell lines with the ele-
vated eIF4E level (Ref. 36). More interestingly, riba-
virin effectively restored oestrogen receptor alpha
(ESR1) gene expression alone and even more in
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FIGURE 1.

Translation initiation regulation and targeting strategies. (a) Translation initiation complex eIF4F is regulated at distinct levels. (b) siRNA or
ASO degrade eIF4E mRNA to reduce its expression. (c) Ribavirin or nucleotide analogues disrupt interactions between eIF4E and Me7G-
capped mRNA. (d) Small molecules disrupt eIF4E/eIF4 G association. (e) Memetic peptides or mTOR inhibitors sequester eIF4E. (f) Mnk

inhibitors prevent eIF4E activation. 4E, eIF4E; 4G, eIF4G; 4A, eIF4A; 4EBP, eIF4E-binding protein; ASO, antisense oligonucleotide.
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combination with suberoylanilide hydroxamic acid,
leading to tamoxifen sensitivity restoration in ESR1
negative breast cancer cell lines (Ref. 37).
Pharmacologic inhibition of eIF4E with ribavirin also
improved tumour cell radiosensitivity (Ref. 104).
However, parallel studies have shown different out-

comes. Yan and co-workers found that ribavirin was
unable to function as a cap analogue in chemical
cross-linking assays, cap-affinity chromatography and
cap-dependent translation assays (Ref. 114).
Independently, Westman et al. verified the findings of
Yan et al. in a series of experiements (Ref. 115). In con-
trast, Kentsis et al. have rebutted their findings by sug-
gesting specific binding of ribavirin to eIF4E through
mass spectrometry detection (Ref. 116). These con-
trasting results may likely be because of different
experimental methods and conditions.

Other cap-binding antagonists

Over the years, a large variety of nucleoside and
nucleotide analogues derived from 7-MeGTP have
been synthesised and evaluated for their ability of inhi-
biting eIF4E binding to capped mRNA specifically.
Three independent groups (Refs 38, 117, 118) have
developed libraries of 7-MeGMP analogues with
favourable drug-like properties. Since aryl substitution
at N7 has displayed a superior binding affinity

(Ref. 38), studies have therefore been focused on the
utility of the synthetic nucleotide derivative 7-benzyl
guanosine monophosphate (7-BnGMP) to block the
binding of eIF4E to mRNA cap (Ref. 39). A recent
crystallographic study with co-crystals of 7-BnGMP
and eIF4E revealed that cap-binding pocket undergoes
a unique structural change in order to accommodate the
benzyl group (Ref. 40).
While effective in mammalian cell-free systems and

zebrafish embryos, the efficacy of 7-BnGMP in cells is
poor because of its low cell-membrane permeability.
One approach to improve its in vivo activity is to
develop a stable, cell-permeable prodrug (pro-nucleo-
tide) which can be bio-activated within cells
(Ref. 119). Phosphoramidates are promising prodrugs
for this purpose in consideration of their low toxicity,
high solubility and stability. In fact, there have been
several successful examples of their applications for
antiviral and anticancer therapies (Refs 120, 121).
Carston R. Wagner’s group recently reported the

synthesis of a novel class of Histidine Triad
Nucleotide Binding Protein (HINT)-dependent pro-
nucleotides that interdict epithelial-to-mesenchymal
transition (EMT) (Ref. 41). 4Ei-1, one of the novel pro-
drugs, powerfully inhibited cap-dependent translation
in zebrafish embryos without causing developmental
abnormalities, and prevented eIF4E from triggering
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Upstream signalling pathways regulating eIF4E availability and activity.
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EMT in zebrafish ectoderm explants without obvious
toxicity (Ref. 41). Metabolism studies with whole
cell lysates demonstrated that this prodrug was
rapidly converted into active metabolite 7-BnGMP
(Ref. 41). 4Ei-1 is the first nontoxic small molecule
able to repress EMT by targeting the interaction of
eIF4E with mRNA cap. More recently, Chen et al.
pointed out that 4Ei-1 was a novel prodrug that
reduced proliferation, suppressed colony formation,
diminished association of eIF4E with the mRNA cap,
and sensitised mesothelioma cells to pemetrexed
(Ref. 42). Shui and co-workers showed that treatment
of breast and lung cancer cells with 4Ei-1 resulted

in chemosensitisation to gemcitabine and induced
eIF4E proteasomal degradation, providing another
mechanism of 4Ei-1 to induce translation inhibition
except for down-regulation of eIF4E cap binding
(Ref. 43).

Targeting eIF4E and eIF4G interaction
Studies have demonstrated that, eIF4E function is also
regulated at the level of interactions with eIF4G and
4E-BPs (Ref. 20). This occurs on the dorsal surface
of eIF4E, opposite to the cap-binding site. Binding of
eIF4 G to eIF4E improves cap-dependent translation
through recruitment of eIF4A and the eIF3-40S

OH –2O3PO

OH

Ribavirin

Rapamycin

PP242

Palomid 529

SF1126

Silvesterol Pateamine A Clotrimazole Troglitazone Genistein

NVP-BEZ235

PI103 XL765

EPA

GNE-477

Quercetin

WYE-354 CGP052088 CGP57380

Cercosporamide

PP30 Torin 1 AZD8055 WYE-125132 Ku-0063794

CCI-779 RAD001 AP23573

Bn7GMP 4Ei-1 4EGI-1 4E1RCat
OH OH OH OH

OH

OH

N N

N NN N
NH2

NH2

NH
HN

O
P O

OO

H2
N
+

+ +
–

–O

OMe

OMe

OH

H

H

H

N

Me

Me

Me

Me Me MeOMe

Me

O
OH

HO

HO
HO

OH

HO

O

H

H
H
H

N

N N
N

N
N

N
N

N
N

N
OH

HO

O

N

O
O

O

O

O

O

N

NN

N
OS

O

Me

Me

HO

OH
OH

OH
OH

O

O

N

NH2N

S

O

O
N S

N NH
NH

N
H

N

N

N

N

N O
O

O

O
OH

OH

HO
N
HO

S

CI
HO

O

O
N

N+

O

O
O

O

O

O
O O

O
ON

S

O

O

OOHO
OH

HO
HO CO2Me

H2N

O

O

O O OH

O–

O–

O

H

O

O

O

O

O

O

N

N N

N

N N
O

O
O

O

F

O

O

N

N

N

O O

HO

O

OH

OH

NH2

H
N

H

NH2

H2N
O N

H

H
N

O

OH

CH3
H3CH3C

O

O

N

N

N
N

N

O

O

O

O

O

OH

OO

N
H

N
H

O

OH

O

N

N

N

N

N

N N

N N

N

N

N

O

N

NN

NH

N

N N
N

N

N N
N

N

SN
HNH2

NH2

CF3

O

O

O

O

OO

O

O

O

O

O
HO

O
O

OH

O

O

O

O

O
O

O

O

O

O

O

O

O
OH

H

N

O

O

OH

P
O

O
O

OHO

O

O O

N

HO
O

O

O

O

O

O

O O
N

N N

N
N

S
CI

CI
N
H

N

NH2

NH

O

O

O
O O

O

O

OH

NN

–O

O

N N

Chemical structures of eIF4F-targeted agents
Expert Reviews in Molecular Medicine © 2015 Cambridge University Press

N+

N
HO

O

N

O

N

O

O

FIGURE 3.

Chemical structures of eIF4F-targeted agents.

EIF4E AS AN EMERGING ANTICANCER DRUG TARGET 5

https://doi.org/10.1017/erm.2015.20 Published online by Cambridge University Press

https://doi.org/10.1017/erm.2015.20


ribosomal subunit (Refs 17, 20). Thus, targeting the
eIF4E/eIF4 G protein-protein interaction is a rational
mechanism to repress cap-dependent translation.

4EGI-1

The formation of eIF4E/eIF4 G complex is regulated
by the 4E-BPs, which competes with eIF4G for
binding to eIF4E (Ref. 122). Gerhard et al. developed
a high-throughput fluorescence polarisation assay for
identifying small-molecule inhibitors of eIF4E/eIF4
G interaction to pharmacologically mimic anti-eIF4F
effect of 4E-BPs (Ref. 44). Among the 16 000 com-
pounds screened, the most potent one identified is
4EGI-1, which bound eIF4E, disrupted eIF4E/eIF4
G association, and inhibited cap-dependent translation.
Interestingly, while 4EGI-1 displaced eIF4 G from
eIF4E, it effectively enhanced 4EBP1 association
both in vitro and in cells (Ref. 44). 4EGI-1 exhibits
pro-apoptotic activity and represses the growth of mul-
tiple cancer cell lines. Its treatment caused cell death in

Jurkat cell lines and multiple myeloma cells, decreased
proliferation of A549 lung cancer cell lines (Refs 44,
45). In primary AML cells, 4EGI-1 dramatically
slowed down clonogenic growth of AML precursors
and induced apoptosis in massive blast cells
(Ref. 46), which thus represented an attractive option
for the development of new therapies in AML. More
recently, some researchers attempted to improve the
physicochemical properties of 4EGI-1 to meet the
urgent demand for clinical application (Refs 123,
124). Subsequently, a series of rigidified mimetic of
4EGI-1 were synthesised and characterised, which
were more potent than the parent inhibitor (Ref. 125).
Although 4EGI-1 was discovered as a small mol-

ecule inhibitor that disturbed the interaction of eIF4E
and eIF4G, Fan et al. revealed that 4EGI-1 sensitised
human lung cancer cells by promoting TRAIL-
mediated apoptosis (Refs 126, 127). In addition,
cancer cells showed only 2-fold higher susceptibility
to 4EGI-1 than their non-transformed counterparts.

TABLE 1.

AGENTS TARGETING EIF4F AT DIFFERENT LEVELS

Primary target Agent Agent class Clinical stage Reference

eIF4E synthesis eIF4E ASO LY2275796 Oligonucleotide Phase I (Refs 27, 28)
eIF4E–cap interaction Ribavirin Nucleoside analogue Phase II (Refs 29, 30, 31, 32, 33, 34, 35, 36, 37)

Bn7GMP Small organic Laboratory (Refs 38, 39, 40)
4Ei-1 Small organic Laboratory (Refs 41, 42, 43)

eIF4E–eIF4G interaction 4EGI-1 Small organic Laboratory (Refs 44, 45, 46)
4E1RCat Small organic Laboratory (Ref. 47)
GnRH–4EBP fusion

peptide
Oligopeptide Laboratory (Ref. 48)

eIF4E binding 4EBP mimetic peptides Oligopeptide Laboratory (Refs 49, 50)
mTOC1 activity Rapamycin Antibiotics FDA

approved
(Refs 51, 52, 53, 54, 55, 56, 57)

CCI-779 Rapamycin
analogues

FDA
approved

(Refs 58, 59, 60, 61, 62, 63, 64, 65)

RAD001 Rapamycin
analogues

Phase II (Ref. 66)

AP23573 Rapamycin
analogues

Phase II (Ref. 67)

mTOC1 and mTOC2
activity

PP242 Small organic Laboratory (Ref. 68)

PP30 Small organic Laboratory (Ref. 68)
Torin 1 Small organic Laboratory (Ref. 69)
AZD8055 Small organic Phase I (Refs 70, 71, 72)
WYE-125132 Small organic Laboratory (Ref. 73)
Ku-0063794 Small organic Laboratory (Ref. 74)
Palomid 529 Small organic Laboratory (Ref. 75)
WYE-354 Small organic Laboratory (Ref. 76)

P13 K and mTOR activity SF1126 Small organic Laboratory (Ref. 77)
NVP-BEZ235 Small organic Phase I (Refs 78, 79)
PI103 Small organic Laboratory (Ref. 80)
XL765 Small organic Laboratory (Ref. 76)
GNE-477 Small organic Laboratory (Ref. 81)

Mnk activity CGP052088 Small organic Laboratory (Ref. 82)
CGP57380 Small organic Laboratory (Refs 83, 84, 85, 86, 87, 88)
Cercosporamide Small organic Laboratory (Refs 89, 90, 91)

eIF4A activity Silvesterol Small organic Laboratory (Refs 92, 93)
Pateamine A Small organic Laboratory (Ref. 94)

eIF2 activity Eicosapentaenoic Acid Small organic Laboratory (Ref. 95)
Clotrimazole Small organic Laboratory (Ref. 96)
Troglitazone Small organic Laboratory (Ref. 97)
Genistein Small organic Laboratory (Ref. 98)
Quercetin Small organic Laboratory (Ref. 98)

ASO, antisense oligonucleotide; 4EBP, eIF4E-binding protein.
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This inefficient therapeutic index, together with the sig-
nificant ‘off target’ mechanism, dampens the original
enthusiasm for this agent.

4E1RCat

Another small molecule inhibitor 4E1RCat has been
discovered (Ref. 47) after screening a library of 217
341 compounds via a time-resolved (TR)-fluorescence
resonance energy transfer (FRET) method. 4E1RCat
interfered with the interactions between eIF4E and
eIF4 G or 4E-BP1. As a consequence, cap-dependent
translation is suppressed. This compound can reverse
tumour chemoresistance (doxorubicin) in Eμ−Myc
lymphoma mouse model by sensitising cells to the
proapoptotic action of DNA damage (Ref. 47).

Other agents targeting eIF4E and eIF4 G Interaction

Cao et al. recently reported that Quabain, a kind of
cardiac glycoside, directly bound eIF4E, destroyed
eIF4E/eIF4 G association, thus inhibiting cap-depend-
ent translation and down-regulating its critical target
HIF-1. The association between Ouabain and eIF4E
gave us a new clue of using cardiac glycosides for
cancer therapeutics (Ref. 128). Perillyl alcohol, a
kind of secondary product of plant mevalonate metab-
olism, also attenuated interactions between eIF4E and
eIF4 G in prostate cancer cell lines (Ref. 129).

Sequestering eIF4E

4EBP mimetic peptides directly binding eIF4E

As mentioned above, 4EBP sequesters eIF4E and con-
sequently prevents cap-dependent translation initiation.
Reasonably, 4EBP mimetic peptides which directly
bind with eIF4E can reduce free eIF4E level, just as
4EBPs do.
Recently, a strategy developed by Naora and co-

workers is to use 4EBP-based peptides to sequester
eIF4E (Ref. 48). They designed a peptide containing
residues 49–68 of 4EBP1, and fused it to an analogue
of gonadotropin-releasing hormone (GnRH). GnRH
agonist-4EBP fusion peptide efficiently repressed the
growth of GnRH receptor-expressing tumour cells,
but not receptor negative cells, which is suitable for a
targeted strategy. Therefore, GnRH–4EBP fusion
peptide has the potential to treat ovarian cancer
because this kind of cancer is hardly cured by conven-
tional chemotherapies.
In addition, a eukaryotic expression vector pSecX–

t4EBP1 was skilfully constructed, which contained
phosphorylation defective 4E-BP1 domain and the
protein transduction domain. The former domain
down-regulated the expression of eIF4E by direct
binding, and the latter domain can help plasmid pene-
trate the cellular membrane and enhance the efficiency
of vector’s spread. Interestingly enough, this plasmid
significantly down-regulated tumour growth and
improved the radiosensitivity of mouse breast carcinoma
allografts in BALB/C mice model (Ref. 49). Moreover,

Terence et al. designed a series of peptides based on the
conserved eIF4E-binding motifs linked to the penetratin
peptide-carrier sequence. These peptides can effectively
bind recombinant human eIF4E in vitro and induce
apoptosis after introduction into MRC5 cells (Ref. 50).

Rapamycin and Rapalogues

In general, normalising deregulated eIF4F-mediated
translation can be accomplished indirectly by interrupt-
ing upstream signals leading to eIF4E dissociation
from 4EBPs. Naturally, targeting mTOR signalling
pathway is a therapeutically attractive option for the
purpose of sequestering eIF4E because 4EBPs are
direct substrates of mTOR kinase (Ref. 130).
So far, rapamycin (sirolimus) and its analogues are

the most well characterised mTOR inhibitors. As an
immunosuppresive drug, rapamycin can also act as a
cytostatic agent, preventing growth of various tumour
cell lines including renal cancer, small cell lung
cancer, and pancreatic cancer cells (Refs 51, 52, 53).
One potential mechanism explaining its antiprolifera-
tive effects is the prevention of phosphorylation of
4E-BP1 by mTORC1, which in turn sequesters eIF4E
and restrains the initiation of cap-dependent translation
(Ref. 54).
Although rapamycin has shown promising antitumour

effects in several experimental tumour models, its clinical
trials as an anticancer drug is unsuccessful at present.
Therefore, several rapamycin analogues (rapalogues)
with more favourable pharmaceutical characteristics
have been developed, such as CCI-779 (Temsirolimus),
RAD001 (Everolimus), AP23573 (Deforolimus,),
SAR943 (32-deoxorapamycin) (Ref. 131) and ABT-
578 (zotarolimus) (Ref. 132). CCI-779, RAD001 and
AP23573, which are currently under clinical trials,
have shown obvious antitumour effects against a
diverse range of cancer types in preclinical studies.
CCI-779 inhibited mTOR function in several breast
cancer cell lines (Ref. 58). Antiangiogenic effects may
substantially contribute to its antitumour activity in
breast cancer (Ref. 59). Also, CCI-779 can potentially
be used as an adjuvant therapy in head and neck squa-
mous cell cancer (Ref. 60), which has showed remark-
able efficacy in PTEN-deficient tumours (Ref. 61). As
such, CCI-779 recently became the first FDA-approved
mTOR-targeted agent based on a phase III trial in
advanced renal cell carcinoma patients (Ref. 62). In
haematologic malignancies, CCI-779 has substantial
single-agent activity in relapsed mantle cell lymphoma
(MCL) patients (Ref. 63). RAD001, the only orally
active rapamycin derivative, possessed antitumour activ-
ity in MCL and diffuse large B-cell lymphoma (Ref. 66).
A phase II clinical trial demonstrated that AP23573 was
well tolerated and had antitumour activity in patients with
heavily relapsed or refractory hematologic malignancies
(Ref. 67).
Rapamycin and rapalogues can also be used in com-

bination with other chemotherapeutics. Simultaneous
administration of rapamycin and EKI-785 (EGFR
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inhibitor) lead to synergistic antitumour effects in
glioblastoma (GBM) multiforme cells (Ref. 55).
Additionally, rapamycin increased the ability of cisplatin
to induce apoptosis in human promyelocytic leukaemia
cell line HL-60 and human ovarian cancer cell line
SKOV3 (Ref. 56). Also, it can effectively restore tamoxi-
fen response in breast cancer cells with aberrant Akt activ-
ity (Ref. 57). CCI-779 was able to restore cisplatin
sensitivity in small cell lung cancer cell lines selected
for cisplatin resistance (Ref. 64). Combination use of
CCI-779 and gemcitabine achieved a significantly
better survival in xenograft models of human pancreatic
cancer compared with CCI-779 or gemcitabine alone
(Ref. 65).

Second-generation mTOR inhibitors

Extensive research on mTOR has uncovered a complex
network of regulatory loops that impact on mTOR-tar-
geting approaches (Ref. 133) and may explain the
inherent limitations of rapamycin-based strategies.
For example, when mTORC1 is inhibited and unable
to activate S6K, S6K-mediated feedback loop can
lead to an up-regulation of PI3K signalling, and
provide pro-survival and proliferative signals through
Akt (Ref. 134). These loops, at least in some degree,
counteract the effects of rapamycin in experimental
cancer models and in patients (Ref. 133). Moreover,
because mTORC2 also plays a vital role in tumourigen-
esis (Ref. 135), the high selectivity of rapamycin for
mTORC1 (Refs 136, 137) really triggers a major
concern. Thirdly, rapamycin does not inhibit 4EBP
phosphorylation by mTOR in some cells. One explan-
ation of this is that it works through sterically blocking
mTOR access to substrates, which is inefficient for a
small substrate like 4EBP, while very efficient for
large ones like S6K1(Refs 138, 139, 140). All the
drawbacks mentioned above indicate that there exists
an urgent need to search for second-generation
mTOR inhibitors, which can sequester eIF4E more
efficiently.
The second-generation inhibitors, which bind to the

catalytic sites of mTOR, inhibit kinase activities of
both mTORC1 and mTORC2 (Refs 68, 69, 70, 73, 74,
75, 76). The active-site inhibitors of mTOR, PP242
and PP30, suppressed proliferation of primary cells
more potently than rapamycin (Ref. 68). Torin1,
another highly potent and selective ATP-competitive
mTOR inhibitor, impaired cell growth and proliferation
to a far greater extent than rapamycin (Ref. 69).
AZD8055 (Refs 70, 71) and WYE-125132 (Ref. 73)
are both ATP-competitive mTOR inhibitors and have
antitumour activity in vitro and in vivo. Combination
use of MEK1/2 inhibitor AZD6244 with AZD8055
enhanced the antitumour efficacy relative to the respect-
ive monotherapies in nude mouse xenograft models of
human lung adenocarcinoma and colorectal carcinoma
(Ref. 72). Ku-0063794 is a cell permeable and specific
mTOR inhibitor, which inhibited mTOC1 and mTOC2
with an IC50∼ 10 nM (Ref. 74). Palomid 529 reduced

not only tumour growth, but also tumour angiogenesis
and vascular permeability (Ref. 75). WYE-354, a
novel pyrazolopyrimidine, displayed robust antitumour
activity in PTEN null tumours (Ref. 76). All the above
inhibitors can effectively minimise the feedback activa-
tion of Akt by mTORC2 to avoid offsetting their effects
of sequestering eIF4E. More importantly, they more
potently inhibit 4EBP phosphorylation compared with
rapamycin and rapalogues.
Another class of small molecules related to mTOR

kinase inhibitors is the mTOR and PI3 K dual specifi-
city inhibitors. These molecules, such as SF1126
(Ref. 77), NVP-BEZ235 (Refs 78, 79), PI103
(Ref. 80), XL765 (Ref. 76) and GNE-477 (Ref. 81),
simultaneously target ATP binding sites of mTORC
and PI3 K with similar potency. NVP-BEZ235 and
XL765 are undergoing clinical phase I trials. These
inhibitors have the unique advantages to avoid PI3 K
pathway reactivation caused by mTOR–p70S6 K nega-
tive feedback loop, so that they can exert their effects
more thoroughly derived from sequestering eIF4E.

Targeting eIF4E phosphorylation

Role of Mnks in tumourigenesis and its regulation

Although some success has been achieved on the
inhibition of PI3 K/mTOR axis, the multiple feedback
loops make this pathway disappointing, to some
degree. The ideal goal should be to down-regulate
the function of specific pathway in cancer cells
without affecting normal cells and eliciting feedback
loops that could impair the therapeutic efficacy.
Phosphorylation of eIF4E by Mnks on Ser209 is crit-
ical for oncogenic activity of eIF4E (Refs 141, 142)
Therefore, eIF4E phosphorylation has been estab-
lished as a crucial event in tumourigenesis (Refs 26,
143), such as prostate cancer progression (Ref. 143).
Reasonably, targeting Mnks could be the attractive
therapeutic approach that in mammalian cells,
Ser209 phosphorylation is not essential for the activity
of eIF4E in normal cells but is required in cancer cells
(Ref. 23). Takeshi and co-workers confirmed this
viewpoint by demonstrating that Mnk1 and Mnk2
double knockout dramatically delayed the tumour
development.
Mnk–eIF4 G interaction plays an essential role in the

eIF4E phosphorylation regulation. Mnk interacts with
the scaffolding protein eIF4G, which also binds
eIF4E and brings Mnk and its substrate into physical
proximity (Refs 144). From the aspect of negative regu-
lation, Mnks can be dephosphorylated and deactivated
by protein phosphatase 2A (PP2A), preventing further
eIF4E phosphorylation (Ref. 144).

Combination of targeting Mnk–eIF4E and mTOR
pathways

Mnk-induced eIF4E phosphorylation is closely related
to mTOR pathway inhibition (Refs 145, 146). Two
research groups have proposed a new strategy of
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enhancing mTOR-targeted cancer therapy through the
combined treatment with Mnk inhibitors. Michal
Marzec and co-workers reported that simultaneous
inhibition of mTORC1 and Mnk markedly induced
apoptosis of cutaneous T cell lymphoma cells
(Ref. 147). The combined treatment also arrested the
cell cycle progression and suppressed the growth of
prostate cancer cells (Ref. 148). Furthermore, co-expos-
ure to MNK1 and mTORC1 inhibitors profoundly
decreased 4EBP1 phosphorylation, protein synthesis
and proliferation in glioma cells, and reduced tumour
growth in an orthotopic GBMmouse model (Ref. 149).

Mnk inhibitors

So far, three well-studied Mnk inhibitors have been
reported: CGP052088, CGP57380 and Cercosporamide.
CGP052088 is a derivative of staurosporine, a broad-

spectrum kinase inhibitor. It inhibited Mnk1 with an
IC50 value of 70 nM in biochemical assays and was
cytotoxic with a GI50 value of 4.5 μM in a 24 h-
MTT proliferation assay (Ref. 82). CGP57380 was
also found to be a potent Mnk1 and Mnk2 inhibitor
in vitro (Refs 83, 84). Its antiproliferative effects in
five breast cancer cell lines were primarily cytostatic,
rather than cytotoxic, and were potentially because of
the inhibition of cyclin D1 synthesis (Ref. 85). In add-
ition, CGP57380 is therapeutically useful in blast crisis
CML (Ref. 86). It enhanced imatinib activity against
CML and overcame imatinib resistance through impair-
ing polysome assembly (Ref. 87). Similarly, treatment
of pancreatic cancer cell lines MiaPaCa2 and PT45P1
with CGP57380 in combination with gemcitabine
caused a greater apoptotic cell death when compared
with the use of either CGP57380 or gemcitabine alone
(Ref. 88). Another Mnk inhibitor is Cercosporamide,
an effective antifungal agent and phytotoxin extracted
from the fungus Cercosporidium henningsii (Ref. 89),
which suppressed AML precursors and enhanced the
antileukaemic properties of cytarabine or mTOC1 inhi-
bitors (Ref. 90). Furthermore, it can significantly
down-regulate outgrowth of experimental B16 melan-
oma pulmonary metastases and subcutaneous HCT116
colon carcinoma xenograft tumours, without side
effect on body weight. These findings confirmed that
Mnk inhibition may provide a tractable cancer therapeut-
ic approach (Ref. 91).
More recently, a novel Mnk inhibitor retinamides

(RR), one of retinoic acid metabolism blocking
agents, blocked eIF4E phosphorylation and subse-
quently restrained cell growth, colonisation, invasion,
and migration, as well as induced apoptosis in TN
and Her-2 overexpressing breast cancer cells through
degrading Mnks rather than inhibiting its kinase activ-
ity just like the three Mnk inhibitors mentioned above
(Ref. 150). Further, a series of 5-(2-(phenylamino pyr-
imidin-4-yl) tiazole-2(3H)-one derivatives have been
discovered as selective Mnk2 inhibitors. They facili-
tated apoptosis in MV4-11 AML cells by reducing

the expression of an antiapoptotic protein Mcl-1
(Ref. 151).

Conclusions and outlook
Our understanding of human cancer as a multi-factor-
network disease has led to the development of next-
generation therapeutics. It is clear now that targeting
regulatory hubs in the cancer signalling network
instead of targeting individual genetic alterations will
be more effective in treating a very heterogenous
tumour. Accumulating evidences indicate that one of
such hubs is eIF4E, serving as a node on which mul-
tiple oncogenic signalling pathways converge. As a
result, eIF4E and translation initiation provide a prom-
ising target for cancer therapeutics. Indeed, enthusiasm
for developing small molecule inhibitors blocking
eIF4E function has lasted over the years.
In addition to the therapeutic strategies targeting

eIF4E aforementioned, some other components of
eIF4F complex should be considered as appealing
oncology drug targets. These include eIF4A, an RNA
helicase, which is frequently activated in cancer cells,
either by its overexpression or by repression of the
tumour suppressor Pdcd4 (programmed cell death 4)
(Ref. 152). Silvesterol and Pateamine A are both
eIF4A inhibitors. Silvesterol can effectively modulate
the activity of eIF4A and repress translation initiation,
exhibiting powerful anticancer activity in human
breast cancer and prostate cancer xenograft models by
inducing apoptosis and inhibiting angiogenesis
(Refs 92, 93). In addition, the suppressive effects of
Pateamine A (PatA) on translation are mediated
through increasing the RNA-binding affinity of free
eIF4A, thus sequestering eIF4A from the 4F
complex, which may lead to stalling of initiation com-
plexes (Ref. 94).
The binding of initiator tRNA to the 40S ribosomal

unit is mediated by translation initiation factor 2
(eIF2). Phosphorylation of α-subunit of eIF2 prevents
formation of the eIF2/GTP/Met-tRNA complex and
stops global protein synthesis (Ref. 153). As a conse-
quence, eIF2 is also a promising drug target at the
level of translation initiation. eIF2α can be phosphory-
lated by haeme-regulated inhibitor, PERK/PEK, and
the double-stranded RNA-activated protein kinase
(PKR) (Ref. 154). So far, reported eIF2 inhibitors
include eicosapentaenoic acid (EPA) (Ref. 95), clotrima-
zole (Ref. 96), troglitazone (Ref. 97) and flavonoids (e.g.
Genistein and Quercetin) (Ref. 98).
Despite the encouraging targeting potential of cap-

dependent translation, our understanding of the role
of eIF4E and other members regulating translation ini-
tiation in tumourigenesis remains rudimentary. For
example, eIF4E is responsible for the regulation of
multiple mRNAs involved in cancer progression;
however, it is unclear if any of these eIF4E targets is
indispensable. A comprehensive mapping of eIF4E
target mRNAs will be imperative to elucidate the trans-
lational signature of eIF4E and its significance in
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human cancer. On the other hand, in order to improve
the anticancer efficacy, future studies are needed to
address the combination usage of eIF4E inhibitors
with inhibitors targeting other oncogenic signalling
pathways.
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