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Abstract

The 5-nitroimidazole drug metronidazole has remained the drug of choice in the treatment of
anaerobic infections, parasitic as well as bacterial, ever since its development in 1959. In con-
trast to most other antimicrobials, it has a pleiotropic mode of action and reacts with a large
number of molecules. Importantly, metronidazole, which is strictly speaking a prodrug, needs
to be reduced at its nitro group in order to become toxic. Reduction of metronidazole, how-
ever, only takes place under very low concentrations of oxygen, explaining why metronidazole
is exclusively toxic to microaerophilic and anaerobic microorganisms. In general, resistance
rates amongst the pathogens treated with metronidazole have remained low until the present
day. Nevertheless, metronidazole resistance does occur, and for the treatment of some patho-
gens, especially Helicobacter pylori, metronidazole has become almost useless in some parts of
the world. This review will give an account on the current status of research on metronida-
zole’s mode of action, metronidazole resistance in eukaryotes and prokaryotes, and on
other 5-nitroimidazoles in use.

Introduction

Metronidazole is a 5-nitroimidazole drug that has become the mainstay in the treatment of
anaerobic infections worldwide and ranks amongst the ‘essential medicines’ as defined by
the WHO. It was developed in 1959 (Cosar and Julou, 1959) specifically for the treatment
of trichomoniasis, an infection of the genital tract caused by the microaerophilic parasite
Trichomonas vaginalis that was notoriously difficult to treat at that time. Although metronida-
zole is a synthetic drug, its basic structure derives from 2-nitroimidazole, or azomycin, which
had been isolated from Streptomyces sp. or other closely related bacteria a few years earlier
(Maeda et al. 1953). Several independent studies quickly confirmed the imposing effectivity
of metronidazole, then already being sold under its brand name Flagyl®, against T. vaginalis
(Durel et al. 1960; Nicol et al. 1960; Rodin et al. 1960). Soon thereafter, the suitability of
metronidazole for the treatment of other microaerophilic parasites, i.e. Giardia lamblia
(Schneider, 1961) and Entamoeba histolytica (Powell et al. 1966), was demonstrated.
Metronidazole proved to be active against anaerobic and microaerophilic bacteria as well, as
shown for Clostridium spp. (Freeman et al. 1968; Füzi and Csukás, 1969a), Fusobacterium fusi-
forme (Füzi and Csukás, 1969b), Bacteroides fragilis (Nastro and Finegold, 1972) and against
Helicobacter pylori (Hirschl et al. 1988). Indeed, metronidazole is active against the vast major-
ity of anaerobic and microaerophilic pathogens, rendering it an indispensable weapon in our
antimicrobial arsenal (Table 1).

Despite its frequent use over such a long period of time, metronidazole has remained a reli-
able drug for the treatment of most anaerobic/microaerophilic infections, thereby setting it
apart from most other antimicrobials to which resistance develops much more quickly
(Holmes et al. 2016). This is undoubtedly attributable to its pleiotropic mode of action as it
targets a large number of molecules in the cell, rather than only a few or even just a single
one, as most antimicrobials do. In fact, metronidazole’s mode of action is fiendishly simple:
it enters the cell without the help of any transporting mechanisms and unfolds its destructive
potential after having been reduced to its nitro group, a reaction which occurs only under very
low oxygen concentrations.

Nevertheless, metronidazole resistance does occur in some pathogens more frequently than
in others; and despite its overall high tolerability, metronidazole can cause unpleasant side-
effects. Further, metronidazole and other 5-nitroimidazoles are still under discussion as
being potentially carcinogenic. The present review will summarize the most important aspects
of metronidazole and gives a comprehensive overview of resistance and safety issues.

Mode of action

Metronidazole uptake occurs without any specific mechanisms such as transporters but
depends on metabolic activity ensuring an energized membrane (Müller and Gorrell, 1983;
Edwards, 1993). It is, as such, a prodrug which is poorly if at all reactive (Edwards, 1993).
However, if the nitro group is reduced (Fig. 1) metronidazole is transformed into a reactive
intermediate that reacts with multiple targets in the cell (Müller and Gorrell, 1983). To
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date, it is still not fully clear which intermediate, determined by
the number of electrons transferred to the nitro group, is the
actual toxic form. Several propositions were made, ranging from
the nitroradical anion stage (one electron transferred)
(Lindmark and Müller, 1976; Edwards, 1993; Kulda, 1999) to
the nitroso stage (two electrons transferred) or the hydroxylamine
stage (four electrons transferred) (Wardman, 1985; Leitsch et al.
2007, 2009, 2012a, b). Importantly, metronidazole has a very
low midpoint redox potential (−486 mV) (Smith and Edwards,
1995), thus well below the midpoint redox potential of NADPH
and NADH (approximately −320 mV each), resulting in very
small amounts of metronidazole being reduced in aerobes.
Moreover, oxygen can re-oxidize the metronidazole nitroradical
anion in a redox cycling reaction (Mason and Holtzman, 1975),
leading to the generation of superoxide anions and the
re-established prodrug. In microaerophiles and anaerobes, how-
ever, intracellular oxygen concentrations are low and factors
exist in abundance that are able to reduce metronidazole and,
thereby, activate it to its toxic form. In the last three to four dec-
ades, several such factors were identified in different microaero-
philic or anaerobic organisms. The first enzyme suggested to be
relevant for metronidazole reduction was pyruvate:ferredoxin oxi-
doreductase (PFOR) (Lindmark and Müller, 1976), which trans-
fers, via its iron–sulphur clusters, electrons derived from
pyruvate to the electron carrier protein ferredoxin, which also
contains iron–sulphur clusters. Ferredoxin, in turn, has a very
low midpoint redox potential (−430 mV) and can transfer elec-
trons to the nitro group of metronidazole, thereby generating
metronidazole nitroradical anions as can be readily measured
by electron paramagnetic resonance spectroscopy (Moreno et al.
1983, 1984; Chapman et al. 1985; Lloyd and Pedersen, 1985).
Since the PFOR pathway exists in almost all anaerobes susceptible
to metronidazole (Narikawa, 1986), with possibly the exception of
bifidobacteria, it was an obvious candidate for metronidazole acti-
vation in the living organism. About the same time, however, it
was observed that also rat liver microsomes (Pervez-Reyes et al.
1980) or certain flavin enzymes, such as xanthine oxidase
(Kedderis et al. 1988), can reduce metronidazole under anaerobic
conditions. Indeed, several flavin enzymes have been described in
microaerophiles and anaerobes to be involved in metronidazole
reduction, including thioredoxin reductase (TrxR) in T. vaginalis
(Leitsch et al. 2009), E. histolytica (Leitsch et al. 2007) and G. lam-
blia (Leitsch et al. 2011) and nitroreductase RdxA in H. pylori

(Olekhnovich et al. 2009). Many studies were conducted to iden-
tify the main activation pathways in anaerobic and microaero-
philic pathogens. Surprisingly, downregulation or deactivation
of PFOR in T. vaginalis (Leitsch et al. 2009), Tritrichomoas foetus
(Sutak et al. 2004) or B. fragilis (Diniz et al. 2004) had only a min-
imal effect, if any, on the susceptibility to metronidazole. An
appreciable negative effect on metronidazole susceptibility, how-
ever, could be observed when PFOR was downregulated in G.
lamblia (Dan et al. 2000). In turn, overexpression of TrxR ren-
dered G. lamblia somewhat more susceptible to metronidazole
(Leitsch et al. 2016). It has, however, proven impossible so far to
pinpoint reduction of metronidazole to one single enzymatic path-
way. Interestingly, even non-enzymatic reduction of metronidazole
under anaerobic conditions by cysteine and ferrous iron was
reported (Willson and Searle, 1975). It is, therefore, safe to con-
clude that reduction of metronidazole in microaerophiles and anae-
robes is performed by several factors, arguably some of which are
non-enzymatic. This circumstance reduces the likelihood of emer-
gence of metronidazole resistance in most organisms considerably.
The only exception might be RdxA in H. pylori, which was identi-
fied as the major activating enzyme of metronidazole in several in-
dependent studies (Debets-Ossenkopp et al. 1999; Jenks et al.
1999a, b; Kwon et al. 2001; Latham et al. 2002).

A fairly motley picture is also evident regarding the targets of
metronidazole in susceptible organisms. Damage to DNA, in-
cluding strand breaks, was reported from bacteria (Plant and
Edwards, 1976) as well as parasites, e.g. T. vaginalis (Ings et al.
1974) and G. lamblia (Uzlikova and Nohynkova, 2014). In add-
ition, 5-nitroimidazoles were shown to form adducts with nucleo-
tides (LaRusso et al. 1978; Ludlum et al. 1988) and cysteine
(Wislocki et al. 1984; Leitsch et al. 2007), an amino acid which
is highly abundant in many anaerobes, both as non-protein
thiol buffer and as constituent of proteins. Non-protein thiol buf-
fers can be depleted in metronidazole-treated parasites through
adduct formation (Leitsch et al. 2007, 2009, 2011; Williams
et al. 2012), thereby causing oxidative stress. Further, metronida-
zole–cysteine adducts can negatively affect the activity of certain
enzymes, such as the disulphide/thioredoxin reductase activity
of TrxR (Leitsch et al. 2007, 2009; Williams et al. 2012). Thus,
TrxR is a special case in this context as it functions, both, as an
activator and as a target of metronidazole. Importantly, TrxR
was identified as a target of metronidazole in four microaerophilic
parasites, i.e. E. histolytica (Leitsch et al. 2007), T. vaginalis
(Leitsch et al. 2009), Spironucleus vortens (Williams et al. 2012)
and G. lamblia (Leitsch et al. 2012b), whereas the other proteins
affected by metronidazole treatment varied strongly between the
parasites studied. The majority of these, however, were reported
to interact with thioredoxin in anaerobes and other organisms,
e.g. enolase, malate dehydrogenase and ribonucleotide reductase
in T. vaginalis (Leitsch et al. 2009), thereby underscoring a correl-
ation between metronidazole action and the thioredoxin system. It
is also interesting to note that metronidazole treatment in G. lam-
blia leads to the degradation of translation elongation factor 1-γ, a
factor likely to be essential for cell viability (Leitsch et al. 2012b).

Pharmacokinetics and safety issues

Mostly, metronidazole is administered intravenously or orally,
either in large single doses of 2 g or in smaller repeated doses
(Ralph et al. 1974). Treatment regimens vary with the condition
treated. After a 2 g oral dose, the peak serum level in a female
patient was 40 µg mL−1 and the half-life of elimination approximately
7 h (Wood and Monro, 1975). When smaller doses are administered,
peak serum levels are clearly lower, i.e. 11·5 µg mL−1 after oral
administration of 500 mg and 6·2 µg mL−1 after oral administration
of 250 mg (Ralph et al. 1974). However, metronidazole can also

Table 1. Human infections treated with metronidazole

Pathogens First report

Protist parasites

Trichomonas vaginalis Cosar and Julou (1959)

Entamoeba histolytica Powell et al. (1966)

Giardia lamblia Schneider (1961)

Balanthidium coli Zaman and Natarajan (1969)

Bacteria

Helicobacter pylori Hirschl et al. (1988)

Campylobacter spp. Chow et al. (1978)

Clostridium spp. Freeman et al. (1968)

Bacteroides spp. Nastro and Finegold (1972)

Fusobacterium spp. Füzi and Csukás (1969b)

Gardnerella vaginalis Ralph et al. (1979)

Desulfovibrio spp. Lozniewski et al. (2001)

1168 David Leitsch

https://doi.org/10.1017/S0031182017002025 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182017002025


be applied topically in ointments, e.g. for the treatment of rosacea
(Korting and Schöllmann, 2009), a chronic inflammatory skin
condition which is treatable with metronidazole for, as yet,
unknown reasons.

In most cases, metronidazole is fairly well tolerated, but adverse
effects, especially neurological, are not rare. Consumption of alco-
hol during metronidazole treatment and several days thereafter
should be strictly avoided because it can strongly exacerbate side-
effects such as nausea or stomach cramps. Indeed, the discomfort
resulting from simultaneous intake of metronidazole and alcoholic
beverages is so great that metronidazole was used as an adjuvant in
the treatment of alcoholism (Semer et al. 1966). Due to its reactivity
with DNA (LaRusso et al. 1978), metronidazole was soon assumed
to be carcinogenic and teratogenic (Voogd, 1981). A teratogenic
effect of metronidazole could not be established (Koss et al.
2012), but it was found to be carcinogenic in rodents after extended
durations of highly dosed treatment. In man, results were less clear
and often conflicting (Dobiás et al. 1994). With regard to short-
term treatment with metronidazole, originally no correlation
between metronidazole intake and cancer was found (Falagas
et al. 1998), but more recent studies report on a limited correl-
ation (Friedman et al. 2009). As a consequence, metronidazole
is officially classified as ‘reasonably anticipated to be a human
carcinogen’.

Metronidazole resistance

Due to metronidazole’s multifaceted and pleiotropic mode of
action and its ability to enter cells without the need for a specific
transport mechanism, the emergence of resistance is, on the
whole, far less common than seen with other antimicrobials
(Holmes et al. 2016). However, metronidazole resistance is
observed in the field, with varying frequency and depending on
the pathogen concerned. Importantly, treatment failures with
metronidazole are not necessarily due to drug resistance as such
but can also be attributable to reinfections or caused by poor
drug availability in the host (Nash, 2001). Other microbes inha-
biting the same niches as the pathogens can also modulate the
efficacy of metronidazole treatment (Nagy and Földes, 1991). In

laboratory research, resistance to metronidazole can be generated
in stocks of most parasites or bacteria. This, however, can give rise
to phenotypes which are not viable in the host (Tejman-Yarden
et al. 2011). Interestingly, several features of metronidazole resist-
ance seem to be shared in bacteria and protists, despite the large
evolutional distance between these kingdoms of life.
Unfortunately, however, there has been little cooperative research
between bacteriologists and protistologists on this particular issue,
so that our understanding of metronidazole resistance has
remained fairly incomplete despite the strong efforts undertaken
by a large number of individual research groups. Nevertheless, in
several microorganisms underlying mechanisms have been
described in detail and, gradually, a more complete picture is
evolving (Tables 2 and 3).

Parasites: T. vaginalis

In T. vaginalis, the mechanisms underlying metronidazole resist-
ance are complex. Importantly, two different types of resistance
have been established in the literature: ‘aerobic’ or clinical resist-
ance (Meingassner et al. 1978; Meingassner and Thurner, 1979),
and ‘anaerobic’ or laboratory-induced resistance (Cerkasovová
et al. 1984; Kulda, 1999). The former is caused by defective oxy-
gen scavenging mechanisms in the parasite (Yarlett et al. 1986),
leading to higher intracellular oxygen concentrations which coun-
teract metronidazole activation through redox cycling (Mason
and Holtzman, 1975) and, consequently, increase the tolerance
of T. vaginalis to the drug. Under normal growth conditions, as
applied in laboratory culture, these strains exhibit no or just min-
imal resistance (Müller and Gorrell, 1983). In the presence of oxy-
gen, however, susceptibilities can be reduced up to several orders
of magnitude. This startling effect is hard to observe in the labora-
tory because stably elevated oxygen levels are hard to achieve in
sealed culture flasks filled with commonly used growth media
developed for T. vaginalis. In the human host, however, a steady
state of decreased oxygen concentrations is readily established in
certain body parts. At the mucosal epithelium of the human
vagina, the niche of T. vaginalis, oxygen concentrations range
from 15 to 56 µM (Ellis et al. 1992), well below the approximate

Fig. 1. Metronidazole reduction and toxicity in
microaerophiles and anaerobes. Metronidazole
enters the cell (1). Depending on the number of
electrons transferred to the nitro group, a nitroi-
midazole radical anion (2), a nitrosoimidazole
(3) or a hydroxylaminimidazole (4) is formed.
Reduction can be either sequential, (2→3→4) or
catalysed in one step. If oxygen is present, the
nitroimidazole radical anion (2) is re-oxidized
and the original metronidazole prodrug (1)
re-established. Some enzymes (e.g. nitroreduc-
tase 2 from Giardia lamblia or Nim proteins
from Bacteroides spp.) are proposed to detoxify
metronidazole by transferring six electrons to
the nitro group, thereby generating a non-reactive
aminoimidazole (5). Reactive metronidazole inter-
mediates (2–4) damage cell constituents such as
DNA and proteins, and deplete thiol pools (6).
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Table 2. Overview over established factors involved in metronidazole resistance in protist parasites

Factor Organism Putative role Supportive observations Contradicitng observations References

PFOR/ferredoxin
(hydrogenosomal malate
deydrogense/ferredoxin)

All microaerophilic and
anaerobic protists
(only
trichomonadids)

Reduction to toxic
intermediates

Not expressed in many resistant lines
Direct inhibition in Giardia causes
resistance

Absence in iron-depleted trichomonads
(PFOR and hydrogenosomal MDH) has
no effect on metronidazole
susceptibility
Fully functional in some resistant
Giardia lines

Cerkasovová et al. (1984); Kulda et al. (1993); Dan
et al. (2000); Rasoloson et al. (2002); Sutak
et al. (2004); Hrdy et al. (2005); Leitsch et al.
(2009); Leitsch et al. (2011)

TrxR Entamoeba histolytica
Trichomonas vaginalis
Giardia lamblia

Reduction to toxic
intermediates

Inactive in anaerobic-resistant
T. vaginalis Overexpression in
G. lamblia causes enhanced
susceptibility
TrxR downregulated in resistant
E. histolytica

TrxR not downregulated or less active in
clinical resistance in T. vaginalis
Not downregulated in resistant
G. lamblia

Leitsch et al. (2007); Leitsch et al. (2009); Leitsch
et al. (2011); Leitsch et al. (2012a); Leitsch et al.
(2016); Ansell et al. (2017)

Nitroreductase 1 G. lamblia Reduction to toxic
intermediates

Downregulated in resistant G. lamblia
Overexpression causes enhanced
susceptibility

None so far Müller et al. (2007); Nillius et al. (2011); Müller
et al. (2013); Müller et al. (2015)

Nitroreductase 2 G. lamblia Reduction to
non-toxic
aminoimidazole

Overexpression renders G. lamblia and
Escherichia coli more resistant to
metronidazole

None so far Müller et al. (2007); Müller et al. (2013): Müller
et al. (2015)

Flavin reductase 1 T. vaginalis Oxygen scavenging Activity decreased or absent in all
resistant T. vaginalis studied
Overexpression of FR1 in resistant
strain cancels resistance

None so far Leitsch et al. (2009); Leitsch et al. (2010); Leitsch
et al. (2012a); Leitsch et al. (2014a)

Table 3. Overview over established factors involved in metronidazole resistance in bacteria

Factor Organism Putative role Supportive observations Contradicitng observations References

PFOR/
ferredoxin

Many microaerophilic and
anaerobic bacteria

Reduction to toxic
intermediates

Loss of PFOR activity in resistant Clostridium
perfringens

Knock-out of PFOR has no effect on
susceptibility in Bacteroides fragilis

Sindar et al. (1982); Diniz et al. (2004)

RdxA Helicobacter pylori
Campylobacter jejuni

Reduction to toxic
intermediates

Mutated in almost all resistant clinical isolates
Mutated in H. pylori with induced resistance
Reduction of metronidazole by RdxA under
anaerobic conditions shown in assays
Mutation of rdxA in C. jejuni causes resistance

RdxA-deficient strains are only resistant in
the presence of oxygen, although RdxA
reduces metronidazole only under
anaerobic conditions. This contradicts
RdxA’s role as a metronidazole activating
enzyme

Jenks et al. (1999a); Jenks et al. (1999b);
Debets-Ossenkopp et al. (1999);
Kwon et al. (2001); Latham et al.
(2002); Gerrits et al. (2004);
Olekhnovich et al. (2009); Ribardo
et al. (2010); Binh et al. (2015)

FrxA H. pylori Reduction to toxic
intermediates

FrxA mutated in many resistant strains
Mutations in frxA enhance resistance caused by
mutations in rdxA

FrxA-deficient strains only resistant in the
presence of oxygen. This contradicts
FrxA’s role as a metronidazole activating
enzyme.

Kwon et al. (2000); Kwon et al. (2001);
Gerrits et al. (2004)

Nim proteins Bacteroides spp. Reduction to non-toxic
aminoimidazole

Introduction of nim genes can cause metronidazole
resistance
nim-positive B. fragilis reduces dimetridazole to
aminodimetridazole
Most resistant strains are nim-positive
Resistance can be more easily induced in
nim-positive strains

With increasing resistance, Nim levels do not
increase
Transfer of nim-gene from a resistant
strain to a susceptible one renders the
latter resistant but to a lesser degree
Only few nim-positive strains are resistant

Breuil et al. (1989); Sebald (1994);
Haggoud et al. (1994); Carlier et al.
(1997); Gal and Brazier (2004);
Löfmark et al. (2005); Leitsch et al.
(2014b); Veeranagouda et al. (2014)
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200 µM as found in oxygen-saturated water but much higher than
in growth media. It is certain, however, that this mechanism is not
the only one contributing to treatment failures with metronida-
zole in trichomoniasis patients. Although a correlation between
measurable aerobic metronidazole resistance and treatment failure
does exist (Müller et al. 1988), it seems to be rather weak
(Schwebke and Barrientes, 2006), suggesting that the interplay
between host and parasite has a decisive role. This interplay has
not been studied as yet but likely involves a large number of
factors and processes. It is interesting to speculate that one of
the factors could be the oxygen concentration in the vagina
which varies individually and during different phases of the men-
strual cycle. It is important to note, however, that clinical resist-
ance to metronidazole varies strongly between different parts of
the world, ranging from the single-digit percentage area
(Wendel and Workowski, 2007) to almost 20% (Upcroft et al.
2009), indicating that there are genetically distinct subpopulations
of T. vaginalis with varying metronidazole susceptibility. This is
further emphasized by the division of the species into two simi-
larly large, globally occurring populations, of which the second
comprises far more metronidazole-resistant isolates than the
first (Conrad et al. 2012).

Anaerobic metronidazole resistance can only be induced in the
laboratory and has not been observed with clinical isolates, with
the possible exception of one strain, i.e. B7268 (Voolmann and
Boreham, 1993; Upcroft and Upcroft, 2001). This form of resist-
ance can be very strongly pronounced and allows growth of
T. vaginalis at metronidazole concentrations up to 1000-fold
higher than the minimum lethal concentration (MLC) observed
with the parent cell line (Kulda et al. 1993; Leitsch et al. 2009).
It is, however, accompanied by fundamental changes in the para-
site’s physiology. Most importantly, cell lines exhibiting anaerobic
resistance lack central hydrogenosomal pathways including PFOR
and hydrogenase (Kulda et al. 1993; Rasoloson et al. 2002).
Consequently, they produce no hydrogen, the usual end product
of the hydrogenosome. Rather, they produce lactate as the major
metabolic end product, formed by cytoplasmic lactate dehydro-
genases which are strongly upregulated in expression (Kulda
et al. 1993). A very similar phenotype can be observed in
metronidazole-resistant T. foetus (Cerkasovová et al. 1984), a
related parasite of cattle. The main fermentative end product in
resistant T. foetus, however, is not lactate but ethanol. Further,
highly resistant T. vaginalis cell lines have very low levels of flavins
(Leitsch et al. 2009), rendering flavin-dependent pathways,
including TrxR, inactive. This is accompanied by a marked
increase in expression of antioxidant enzymes (Leitsch et al.
2009), possibly in an attempt to counterbalance the loss of
TrxR activity, which is central to the antioxidant defence.
Nevertheless, these cell lines are highly sensitive to oxygen and,
therefore, difficult to grow. These physiological changes were
interpreted as being in line with the hypothesis that PFOR and
ferredoxin are critical for the activation of metronidazole because
the absence of this pathway was assumed to abolish metronida-
zole reduction (Kulda, 1999). Results from several studies, how-
ever, suggest that this pathway is unlikely to be decisive for
metronidazole reduction in T. vaginalis. First, the deletion of
the ferredoxin 1 gene, the main interaction partner of PFOR,
did not lead to a decreased susceptibility to metronidazole,
although the expression of PFOR was concomitantly decreased
by 95% (Land et al. 2004). Further, withdrawal of intracellular
iron with the iron chelator bipyridyl caused a near-to-complete
shutdown of PFOR expression but did not increase tolerance to
metronidazole (Leitsch et al. 2009). A similar observation was
made in T. foetus (Sutak et al. 2004). Possibly, downregulation
of PFOR and other hydrogenosomal enzymes is a consequence
of low flavin levels. Evidence for this assumption is provided by

a study on the effect of diphenyleneiodonium (DPI), a flavin
inhibitor which covalently binds to reduced flavins, on metro-
nidazole susceptibility in T. vaginalis (Leitsch et al. 2010).
Strikingly, 10 µM of DPI rendered T. vaginalis completely insensi-
tive to metronidazole. This was accompanied by a total loss of
TrxR and PFOR activities and strongly increased expression of
antioxidant enzymes, quite comparable to the situation in cell
lines with induced metronidazole resistance. It is important to
note, however, that protein levels of PFOR were not decreased
upon addition of DPI but, to the contrary, increased, probably
as an attempt by the cell to compensate for the sudden loss of
PFOR activity. Unfortunately, the continued culture of T. vagina-
lis in the presence of DPI was not possible due to its anti-
proliferative effect on the parasite, so that the long-term effect
of DPI on PFOR expression could not be monitored.

Although aerobic resistance and anaerobic resistance have
been established as two distinct phenomena, they have several
traits in common. Most importantly, the expression of flavin
reductase 1 (FR1) is decreased or even abolished in cells ex-
hibiting either form of resistance (Ellis et al. 1992; Leitsch et al.
2012a). FR1 reduces oxygen to hydrogen peroxide via its FMN
and NADPH cofactors and, arguably, constitutes a major pathway
for oxygen scavenging in T. vaginalis (Chapman et al. 1999;
Linstead and Bradley, 1988; Leitsch et al. 2014a). Accordingly,
the introduction of a functional episomal fr1 gene under the con-
trol of a strong promoter into a highly resistant clinical strain,
B7268, re-established metronidazole susceptibility (Leitsch et al.
2014a). It is, therefore, likely that FR1 is a central factor in the
emergence of aerobic resistance. Since FR1 was also found to be
inactive in an anaerobic-resistant cell line, it is likely that loss of
this pathway is also a necessary for the development of anaerobic
resistance (Leitsch et al. 2009). This hypothesis is supported by
the observation that an aerobic resistance-like phenotype consti-
tutes an early intermediate stage in the development of anaerobic
resistance (Tachezy et al. 1993).

Other factors modulating metronidazole resistance in T. vagi-
nalis also do exist, most notably nitroreductases (Pal et al. 2009).
Recently, a clear correlation of stop mutations in two nitroreduc-
tase genes, ntr4 and ntr6, and clinical resistance was found
(Paulish-Miller et al. 2014). However, since clinical strains do
not exhibit resistance in the absence of oxygen, it is questionable
if these nitroreductases directly reduce metronidazole. Their
importance is, nevertheless, also suggested by a recent large-scale
genomic study in which 102 isolates were included (Bradic et al.
2017). Ntr6, amongst other nitroreductases, was found downregu-
lated in metronidazole-resistant strains, as was FR1. In addition, a
thioredoxin family protein was upregulated, and three iron–
sulphur flavoproteins, two multidrug resistance pumps, four
r2r3-Myb transcription factors, and a metal ABC transporter
downregulated in metronidazole-resistant T. vaginalis. These
results provide good confirmation of previously made observa-
tions, but also suggest the existence of hitherto unstudied
mechanisms, although it is hard to reconcile reduced drug export
due to decreased levels of efflux pumps with resistance. The same
study also identified a number of single-nucleotide polymorph-
isms associated with metronidazole resistance. Interestingly, a
large number of these were found in intergenic regions, raising
the possibility that they are located in sequences modulating
expression of adjacent genes. This is consistent with the observa-
tion that the amino acid sequence of FR1 is unchanged even in
the most resistant strains studied (Leitsch et al. 2014a), suggesting
that metronidazole resistance in T. vaginalis is not caused by
mutations in genes but by their differential expression. In
addition, and to make things even more complicated, different
alterations might lead to the same phenotype. For example,
metronidazole resistance is also strongly correlated with a
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decreased activity of alcohol dehydrogenase 1 (ADH1), a zinc-
dependent enzyme that oxidizes secondary alcohols and reduces
ketones (Leitsch et al. 2012a, 2013). In some resistant strains
ADH1 expression levels are downregulated, but in others, the
decrease of ADH1 activity is caused by low intracellular zinc con-
centrations (Leitsch et al. 2012a). These issues add to the astound-
ing complexity of metronidazole resistance in T. vaginalis and
warrant further research.

Parasites: G. lamblia

Treatment regimens of giardiasis with metronidazole are failing
fairly often, with varying rates being reported from different
sources (Nash, 2001; Mørch et al. 2008; Carter et al. 2017); but
in contrast to clinical metronidazole resistance in T. vaginalis,
no ‘aerobic’ type of resistance has been observed so far. Rather,
G. lamblia isolates from patients who are refractory to metronida-
zole treatment are normally fully susceptible to metronidazole
(Smith et al. 1982). This, however, might also be due to non-
optimized conditions applied during drug susceptibility testing.
Giardia lamblia displays a lower tolerance to oxygen as compared
with T. vaginalis (Mastronicola et al. 2011), rendering metronida-
zole susceptibility testing in the presence of oxygen hardly feasible
if its concentration is not precisely tuned (Gillin and Reiner,
1982). Thus, it is presently not possible to rule out the existence
of a form of clinical metronidazole resistance in G. lamblia,
which resembles aerobic resistance in T. vaginalis. In fact, the
results from a study in which G. lamblia isolates from refractory
cases were tested in a mouse model suggest that true clinical
resistance does indeed exist as the parasites also retained their tol-
erance to metronidazole in the mice (Lemée et al. 2000). In any
case, further endeavours are needed in the future to optimize
assay conditions and to gain more clarity on whether treatment
failure is caused by a resistance mechanism in the parasite or
by other factors which could be, at least partly, host-derived.

Induction of metronidazole resistance in laboratory stocks of
G. lamblia is easily achievable and has been reported from several
laboratories. Different approaches have been applied, including
prolonged culture in the presence of sublethal but increasing
doses of the drug (Boreham et al. 1988; Townson et al. 1992;
Müller et al. 2007) and mutagenesis with UV-light (Townson
et al. 1992). As a rule of thumb, the tolerance to metronidazole
in G. lamblia can be enhanced by about 100-fold. Interestingly,
strongly decreased susceptibility to metronidazole was also
observed after knocking down PFOR levels with hammerhead
ribozymes (Dan et al. 2000). This contrasts with the results of
similar studies performed in trichomonadids in which (very)
low levels of PFOR activity did not alter metronidazole suscepti-
bility (Land et al. 2004; Sutak et al. 2004; Leitsch et al. 2009).
Importantly, however, the knock-down of PFOR also rendered
G. lamblia tolerant to oxygen (Dan et al. 2000), indicating a
large-scale shift in the parasite’s physiology due to the method-
ology applied. Results from other studies are rather conflicting
as to the role of PFOR in metronidazole resistance. In one cell
line, 106-2ID10, exhibiting metronidazole resistance induced by
prolonged exposure of the cells to sublethal doses of the drug,
PFOR was found to be strongly downregulated (Leitsch et al.
2011). In a cell line with metronidazole resistance induced by
mutagenesis with UV-light, however, the PFOR pathway was
fully intact (Leitsch et al. 2011). Other factors potentially involved
in metronidazole resistance were also studied, including nitrore-
ductase 1 (NR1) (GL50803_22677, now annotated as nitroreduc-
tase Fd-NR2) which also modulates metronidazole susceptibility
(Nillius et al. 2011). In a transfectant cell line expressing elevated
levels of NR1, metronidazole susceptibility was found to be
enhanced twofold to threefold. Recent data from a transcriptomic

study, measuring overall mRNA expression in three resistant
strains (106-2ID10, 713-M3 and WB-M3) and their respective sus-
ceptible parent strains (Ansell et al. 2017), further emphasize the
role of NR1 in metronidazole resistance. In two resistant strains,
expression levels were decreased and in the third line about a
third of the NR1 transcripts had a non-sense mutation, effectively
reducing the copy number of functional NR1 in the cell. In add-
ition to NR1, also other nitroreductases could have a role in
metronidazole resistance. Surprisingly, nitroreductase 2 (NR2)
(GL50803_6175; now annotated as nitroreductase family protein
fused to ferredoxin domain Fd-NR1), might have exactly the
opposite, i.e. protective effect if overexpressed (Müller et al.
2013). It is possible that NR2 transfers as many as six electrons
to the nitro group of metronidazole, thereby forming a non-toxic
aminoimidazole. However, further research will be necessary in
order to frame a reliable hypothesis regarding NR2 function. A
third nitroreductase, GL50803_8377, was found to be downregu-
lated in two of three resistant strains assayed (Ansell et al. 2017).
Nitroreductase activity, however, is not necessarily only exerted by
enzymes designated as nitroreductases. TrxR, for example, can
reduce nitro compounds, including nitroimidazoles in several
microaerophilic parasites, including G. lamblia (Leitsch et al.
2011). A potential role for TrxR in metronidazole activation in
G. lamblia was demonstrated recently when a cell line strongly
overexpressing TrxR (Leitsch et al. 2016) was found to exhibit
moderately increased metronidazole susceptibility. Importantly,
TrxR is not downregulated in metronidazole-resistant strains
(Leitsch et al. 2011; Ansell et al. 2017) but it is currently unclear
if it is active. Loss of TrxR activity but not expression was
observed before in a T. vaginalis strain with ‘anaerobic’ resistance
and was caused by the loss of the enzyme’s FAD cofactor (Leitsch
et al. 2009). Measuring TrxR activity in G. lamblia, however, is
currently unfeasible because a functional thioredoxin has not
yet been identified in this parasite.

In accordance with metronidazole-resistant T. vaginalis, reduc-
tion of flavins was also found to be decreased in cell extracts of
metronidazole-resistant G. lamblia cell lines as compared with
their parent cell lines (Ellis et al. 1993; Leitsch et al. 2011), mir-
roring the observations made in T. vaginalis (Leitsch et al.
2009, 2012a, 2014a). A homologue of T. vaginalis FR1 does not
exist in the G. lamblia genome but potential candidate enzymes
which could exert this activity, three FMN-dependent oxidoreduc-
tases (GL50803_9719; GL50803_17150; GL50803_17151), were
downregulated in metronidazole-resistant strains (Ansell et al.
2017). Quite confusingly, however, a closely related enzyme
(GL50803_15004), termed diaphorase (Sánchez et al. 2001), was
upregulated in two of the three strains. It was hypothesized that
diaphorase exerts a different activity, i.e. detoxification of metro-
nidazole (Ansell et al. 2017), but experimental data with the
purified enzyme are needed to support this claim.

Taken together, metronidazole resistance in G. lamblia is cur-
rently not as well understood as in T. vaginalis, mainly due to the
lack of clinical metronidazole-resistant strains available to the
research community. There is strong evidence for an involvement
of NR1, but further research on a larger number of resistant iso-
lates is warranted.

Parasites: E. histolytica

Clinical metronidazole resistance in E. histolytica has not been
reported in the field and, therefore, poses no problem for the
treatment of amoebic liver abscess. Intriguingly, it is also very dif-
ficult to induce metronidazole resistance in the laboratory with
only a few successful attempts documented (Samarawickrema
et al. 1997; Wassmann et al. 1999; Penuliar et al. 2015).
Moreover, the extent of the resistance induced is far smaller

1172 David Leitsch

https://doi.org/10.1017/S0031182017002025 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182017002025


than observed in T. vaginalis and G. lamblia, and ranges from
twofold (Samarawickrema et al. 1997; Penuliar et al. 2015) to
about 10-fold (Wassmann et al. 1999) of the normal MLC. This
low-level metronidazole resistance is associated with increased
expression of superoxide dismutase (Samarawickrema et al.
1997; Wassmann et al. 1999) and peroxiredoxin (Wassmann
et al. 1999), and decreased expression of ferredoxin 1 and TrxR
(Wassmann et al. 1999), which is strongly reminiscent of the
changes reported for metronidazole-resistant T. vaginalis
(Leitsch et al. 2009). However, levels of PFOR were reported to
be unchanged in another cell line with reduced susceptibility
to metronidazole, whereas 88 genes in total were reported to
be differentially regulated at the mRNA level (Penuliar et al.
2015). This set of genes also did not include TrxR or two
NADPH-dependent oxidoreductases which had been previously
discovered by the same investigators to render E. histolytica
slightly more susceptible to metronidazole if overexpressed
(Jeelani et al. 2010). Instead, DNA polymerase, several other fac-
tors involved in DNA metabolism, and several iron–sulphur fla-
voproteins were upregulated, whereas several leucine-reach
repeat proteins and cysteine proteases were downregulated.
The significance of these observations, however, is presently
unclear.

Bacteria: H. pylori

By a large margin, metronidazole resistance occurs most often
in H. pylori infections, for which metronidazole is often used in
combination with other antimicrobials such as clarithromycin
(De Francesco et al. 2017). Indeed, metronidazole resistance in
H. pylori has become so widespread in some parts of the world,
mainly in South Asia and Africa (De Francesco et al. 2010),
that metronidazole has been practically rendered useless in the
treatment of peptic ulcer. Resistance is, almost invariably, caused
by mutations in the rdxA gene (Debets-Ossenkopp et al. 1999;
Jenks et al. 1999a; b; Kwon et al. 2001; Latham et al. 2002),
encoding a nitroreductase harnessing FMN and NADH as cofac-
tors (Goodwin et al. 1998; Olekhnovich et al. 2009). In several
independent studies on metronidazole-resistant clinical isolates
as well as on laboratory stocks with induced resistance, the
rdxA gene contained non-sense and missense mutations (Kwon
et al. 2001; Latham et al. 2002). According to observations in
some studies, metronidazole resistance can be further enhanced
through mutations in the frxA gene, encoding another nitroreduc-
tase (Kwon et al. 2000, 2001; Justino et al. 2014). This notion was
further supported by a careful genomic study (Binh et al. 2015) in
which mutations were found in the rdxA and frxA genes in a
laboratory strain with induced resistance but not its susceptible
parent. Thus, at a first glance, a very clear correlation seems to
exist between abolished reduction of metronidazole and resist-
ance. At a second glance, however, the picture becomes less
clear because RdxA- and FrxA-deficient clinical strains are only
resistant in the presence of oxygen but not under anaerobic con-
ditions (Gerrits et al. 2004). This resembles ‘aerobic’ resistance
in T. vaginalis and is incompatible with the notion that RdxA
and FrxA are the only factors capable of reducing metronidazole
in H. pylori. Possibly, RdxA and FrxA do not reduce metronida-
zole in vivo at all because metronidazole reduction by RdxA was
only observed under anaerobic but not aerobic conditions in
assays with the purified enzyme (Olekhnovich et al. 2009). It
is interesting to note that in strains with laboratory-induced
metronidazole resistance, several enzyme activities, including
disulfide reduction (possibly catalysed by a TrxR), NADH
oxidation and nitroreduction were strongly decreased in
metronidazole-resistant cell lines as compared with the sensitive
parent cell lines (Trend et al. 2001). Unfortunately, these

enzymes have not been further characterized but the involve-
ment of these activities resembles metronidazole resistance in
parasites (Kaakoush et al. 2009). To conclude, it is well estab-
lished that clinical metronidazole resistance in H. pylori is
mostly caused by mutations in the rdxA and frxA genes, at
least in most cases (Marais et al. 2003), but the exact mechanism
of resistance remains unresolved.

Bacteria: B. fragilis and other Bacteroides spp.

Bacteroides fragilis, together with H. pylori, is the prokaryote in
which metronidazole resistance has been most extensively studied.
This is somewhat surprising considering resistance rates are very
low (about 1%) (Urbán et al. 2002; Aldridge et al. 2003; Hedberg
and Nord, 2003; Sóki et al. 2013; Snydman et al. 2017), although
alarmingly high metronidazole resistance rates (between 5 and
10%) have been reported in the UK (Brazier et al. 1999), Brazil
(Vieira et al. 2006), Lebanon (Yehya et al. 2014) and Pakistan
(Sheikh et al. 2015). Of great interest, however, is a metronidazole
resistance mechanism, possibly specific for B. fragilis and still
incompletely understood: Nim protein-mediated resistance. Nim
proteins were discovered in 1989 as transmissible, mainly
plasmid-borne metronidazole resistance determinants (Breuil
et al. 1989; Haggoud et al. 1994; Sebald, 1994), which are nor-
mally preceded by an insertion element to enable transcription
(Sóki et al. 2006). They are assumed to be the major cause of
metronidazole resistance in the field and predicted to contain a
FMN-binding domain and a pyridoxamine 5′-phosphate oxidase
domain. Currently, nine homologues of Nim proteins have been
described in Bacteroides spp. (NimA to NimJ, with NimI occur-
ring in Prevotella, a closely related genus.) Interestingly, proteins
with the same designation also exist in other organisms but the
nomenclature is confusing because the different Nim homologues
of Bacteroides are more closely related to each other than to
homologues with the same designation in other genera, e.g.
NimB in B. fragilis and Clostridium difficile. Interestingly, Nim
proteins also exist in T. vaginalis and E. histolytica (Pal et al.
2009). These homologues are only distantly related to the Nim
proteins in B. fragilis but seem to have a similar function because
they render Escherichia coli more insensitive to metronidazole
when introduced on a plasmid (Pal et al. 2009).

It has been proposed that Nim proteins act as nitroreductases
which reduce metronidazole to non-toxic aminoimidazoles
(Carlier et al. 1997) by transferring six electrons to the drug’s
nitro group. However, direct proof of this activity with purified
Nim is lacking and data from more recent studies are hard to rec-
oncile with this hypothesis. Expression levels of Nim proteins are
not increased in nim-positive strains after the induction of high-
level metronidazole resistance and, thus, are independent of the
degree of metronidazole resistance (Leitsch et al. 2014b). This is
at odds with the notion that Nim proteins are nitroreductases
because higher concentrations of metronidazole would require
larger amounts of the reducing enzyme in order to detoxify all
metronidazole. Further, nim genes only confer very modest levels
of resistance if transferred from highly resistant nim-positive to
nim-negative recipient strains (Husain et al. 2013). It is also inter-
esting to note that the occurrence of nim genes in B. fragilis by far
exceeds the proportion of metronidazole-resistant isolates (Gal
and Brazier, 2004; Löfmark et al. 2005). Thus, most isolates car-
rying a nim gene are not metronidazole resistant. By contrast, it
was repeatedly shown that high-level metronidazole resistance
can be much more easily induced in nim-positive strains (Gal
and Brazier, 2004; Löfmark et al. 2005; Leitsch et al. 2014b)
than in nim-negative strains, although the latter is still possible
(Schaumann et al. 2005). It is, therefore, certain that Nim proteins
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are correlated with metronidazole resistance but the underlying
mechanism remains to be discovered.

In addition to Nim proteins, other factors potentially involved
in metronidazole resistance were studied. Importantly, a knock-
out of PFOR (Diniz et al. 2004) had little or no effect at all on
metronidazole susceptibility. However, it was demonstrated that
the deletion of the iron transporter gene feoAB leads to reduced
susceptibility of B. fragilis to metronidazole (Veeranagouda
et al. 2014), but it is presently unclear if the iron import is also
reduced in metronidazole-resistant B. fragilis clinical isolates. A
forced efflux of metronidazole through efflux pumps of the
RND family (Pumbwe et al. 2006, 2007) could also have a certain
role in metronidazole resistance although their role in clinical
metronidazole resistance remains to be established.

Bacteria: Clostridia

Fairly little is known about metronidazole resistance in clostridia
despite their great medical importance. Metronidazole, together
with vancomycin, has remained the treatment option of choice
for C. difficile infections (Peng et al. 2017) but treatment failures
seem to occur more frequently lately (Leffler and Lamont, 2015).
It is important, however, to emphasize that treatment failures are
not necessarily caused by resistance as such, as discussed previ-
ously. Nevertheless, some of the refractory strains are definitely
metronidazole-resistant, as determined in appropriate susceptibil-
ity assays. In a careful proteomic study (Chong et al. 2014), overall
protein expression in one such isolate was compared to a nor-
mally metronidazole susceptible isolate, revealing numerous
changes in the expression profile. Interestingly, several thiore-
doxin reductases and thioredoxins were differentially expressed
and ferredoxin was downregulated approximately 2·5-fold. In con-
trast, a Nim homologue, NimB, was expressed more strongly (upto
threefold). The significance of these changes remains unclear, but
the same candidate factors emerge in C. difficilewith respect to metro-
nidazole resistance as seen in other microbes. Metronidazole resistance
in clostridia can also be induced in the laboratory. In a study on
Clostridium perfringens, metronidazole resistance was induced
by mutagenesis using N-methyl-N′-nitro-N-nitrosoguanidine

lactate (Sindar et al. 1982). Quite in accordance with the observa-
tions in T. vaginalis, resistance was accompanied by a total loss of
PFOR activity and a shift of metabolic end products from acetate
to pyruvate and lactate.

Other 5-nitroimidazoles and outlook

Research on alternative 5-nitroimidazoles began soon after the
introduction of metronidazole in order to develop alternatives
with similar potential but improved characteristics such as patient
compliance, serum half-life and safety. Tinidazole (Fig. 2) has
emerged as the most successful of these alternative 5-nitroimida-
zoles and is superior to metronidazole in several aspects. It has the
same spectrum as metronidazole (Fung and Doan, 2005) but a
longer half-life, i.e. 12·5 vs 7·3 h (Wood and Monro, 1975), and
is better tolerated (Fung and Doan, 2005). Most importantly, tini-
dazole can be used to overcome metronidazole resistance in many
cases. In metronidazole refractory trichomoniasis patients, for
example, cure rates with tinidazole were as high as 92% (Sobel
et al. 2001). Despite these advantages, tinidazole was not
approved in the USA before 2004 (Nailor and Sobel, 2007), and
in many countries metronidazole has even yet remained the
only approved 5-nitroimidazole for the treatment of anaerobic
infections in man. Nevertheless, other 5-nitroimidazoles are in
use, such as ornidazole, nimorazole, ronidazole and dimetridazole.
Ronidazole and dimetridazole were originally widely used in food-
producing animals but were banned in the USA and the EU due to
their suspected carcinogenic potential. The use of 5-nitroimida-
zoles, however, is still legal for the treatment of anaerobic infections
in companion animals, such as ronidazole for the treatment of
trichomoniasis in cats (Gookin et al. 2017). The mode of action
of the various 5-nitroimidazoles seems to be very similar. Along
with DNA (Zahoor et al. 1987), proteins and thiols seem to be
affected by all 5-nitroimidazoles studied so far. Tinidazole, for
example, was found to bind the same proteins as metronidazole
in the parasites E. histolytica (Leitsch et al. 2007), T. vaginalis
(Leitsch et al. 2009) and G. lamblia (Leitsch et al. 2012b) and to
inhibit TrxR to a similar extent as metronidazole (Leitsch et al.
2007, 2009). Moreover, tinidazole, ornidazole and ronidazole also

Fig. 2. 5-nitroimidazoles developed as alternatives to metronidazole or as novel treatment option against African trypanosomiasis. (1) Tinidazole; (2) ornidazole;
(3) dimetridazole; (4) ronidazole; (5) nimorazole; (6) fexinidazole.
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decrease non-protein thiol levels, with ronidazole exhibiting the
strongest effect (Leitsch et al. 2007, 2009, 2012b).

Despite the reluctance of the authorities to approve alternative
5-nitroimidazoles, obviously due to the deficient safety profile of
this drug class, research on novel 5-nitroimidazoles has never
stopped. There are many promising candidates amongst newly
developed 5-nitroimidazoles which could enable more effective
treatments with reduced mutagenicity and an improved manage-
ment of metronidazole resistance in the future (Crozet et al. 2009;
Dunn et al. 2010; Jarrad et al. 2016). Interestingly, another
5-nitroimidazole which was developed in 1983, fexinidazole
(Jennings and Urquhart, 1983; Raether and Seidenath, 1983),
might revolutionize the notoriously difficult treatment of
African trypanosomiasis or sleeping sickness in the near future
(https://www.dndi.org/diseases-projects/portfolio/fexinidazole/).
Probably, fexinidazole has a different mode of action than other
5-nitroimidazoles because trypanosomatids are not microaero-
philic. This example shows that the well-studied drug class of
5-nitroimidazoles might still have some surprises in store for us.
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